go/src/cmd/compile/internal/ssa/regalloc.go
David Chase ca360c3992 cmd/compile: better XPos for rematerialized values and JMPs
This attempts to choose better values for values that are
rematerialized (uses the XPos of the consumer, not the
original) and for unconditional branches (uses the last
assigned XPos in the block).

The JMP branches seem to sometimes end up with a PC in the
destination block, I think because of register movement
or rematerialization that gets placed in predecessor blocks.
This may be acceptable because (eyeball-empirically) that is
often the line number of the target block, so the line number
flow is correct.

Added proper test, that checks both -N -l and regular compilation.
The test is also capable (for gdb, delve soon) of tracking
variable printing based on comments in the source code.

There's substantial room for improvement in debugger behavior.

Updates #21098.

Change-Id: I13abd48a39141583b85576a015f561065819afd0
Reviewed-on: https://go-review.googlesource.com/50610
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-10-07 22:12:36 +00:00

2548 lines
72 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Register allocation.
//
// We use a version of a linear scan register allocator. We treat the
// whole function as a single long basic block and run through
// it using a greedy register allocator. Then all merge edges
// (those targeting a block with len(Preds)>1) are processed to
// shuffle data into the place that the target of the edge expects.
//
// The greedy allocator moves values into registers just before they
// are used, spills registers only when necessary, and spills the
// value whose next use is farthest in the future.
//
// The register allocator requires that a block is not scheduled until
// at least one of its predecessors have been scheduled. The most recent
// such predecessor provides the starting register state for a block.
//
// It also requires that there are no critical edges (critical =
// comes from a block with >1 successor and goes to a block with >1
// predecessor). This makes it easy to add fixup code on merge edges -
// the source of a merge edge has only one successor, so we can add
// fixup code to the end of that block.
// Spilling
//
// During the normal course of the allocator, we might throw a still-live
// value out of all registers. When that value is subsequently used, we must
// load it from a slot on the stack. We must also issue an instruction to
// initialize that stack location with a copy of v.
//
// pre-regalloc:
// (1) v = Op ...
// (2) x = Op ...
// (3) ... = Op v ...
//
// post-regalloc:
// (1) v = Op ... : AX // computes v, store result in AX
// s = StoreReg v // spill v to a stack slot
// (2) x = Op ... : AX // some other op uses AX
// c = LoadReg s : CX // restore v from stack slot
// (3) ... = Op c ... // use the restored value
//
// Allocation occurs normally until we reach (3) and we realize we have
// a use of v and it isn't in any register. At that point, we allocate
// a spill (a StoreReg) for v. We can't determine the correct place for
// the spill at this point, so we allocate the spill as blockless initially.
// The restore is then generated to load v back into a register so it can
// be used. Subsequent uses of v will use the restored value c instead.
//
// What remains is the question of where to schedule the spill.
// During allocation, we keep track of the dominator of all restores of v.
// The spill of v must dominate that block. The spill must also be issued at
// a point where v is still in a register.
//
// To find the right place, start at b, the block which dominates all restores.
// - If b is v.Block, then issue the spill right after v.
// It is known to be in a register at that point, and dominates any restores.
// - Otherwise, if v is in a register at the start of b,
// put the spill of v at the start of b.
// - Otherwise, set b = immediate dominator of b, and repeat.
//
// Phi values are special, as always. We define two kinds of phis, those
// where the merge happens in a register (a "register" phi) and those where
// the merge happens in a stack location (a "stack" phi).
//
// A register phi must have the phi and all of its inputs allocated to the
// same register. Register phis are spilled similarly to regular ops.
//
// A stack phi must have the phi and all of its inputs allocated to the same
// stack location. Stack phis start out life already spilled - each phi
// input must be a store (using StoreReg) at the end of the corresponding
// predecessor block.
// b1: y = ... : AX b2: z = ... : BX
// y2 = StoreReg y z2 = StoreReg z
// goto b3 goto b3
// b3: x = phi(y2, z2)
// The stack allocator knows that StoreReg args of stack-allocated phis
// must be allocated to the same stack slot as the phi that uses them.
// x is now a spilled value and a restore must appear before its first use.
// TODO
// Use an affinity graph to mark two values which should use the
// same register. This affinity graph will be used to prefer certain
// registers for allocation. This affinity helps eliminate moves that
// are required for phi implementations and helps generate allocations
// for 2-register architectures.
// Note: regalloc generates a not-quite-SSA output. If we have:
//
// b1: x = ... : AX
// x2 = StoreReg x
// ... AX gets reused for something else ...
// if ... goto b3 else b4
//
// b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX
// ... use x3 ... ... use x4 ...
//
// b2: ... use x3 ...
//
// If b3 is the primary predecessor of b2, then we use x3 in b2 and
// add a x4:CX->BX copy at the end of b4.
// But the definition of x3 doesn't dominate b2. We should really
// insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
// SSA form. For now, we ignore this problem as remaining in strict
// SSA form isn't needed after regalloc. We'll just leave the use
// of x3 not dominated by the definition of x3, and the CX->BX copy
// will have no use (so don't run deadcode after regalloc!).
// TODO: maybe we should introduce these extra phis?
package ssa
import (
"cmd/compile/internal/types"
"cmd/internal/objabi"
"cmd/internal/src"
"fmt"
"unsafe"
)
const (
moveSpills = iota
logSpills
regDebug
stackDebug
)
// distance is a measure of how far into the future values are used.
// distance is measured in units of instructions.
const (
likelyDistance = 1
normalDistance = 10
unlikelyDistance = 100
)
// regalloc performs register allocation on f. It sets f.RegAlloc
// to the resulting allocation.
func regalloc(f *Func) {
var s regAllocState
s.init(f)
s.regalloc(f)
}
type register uint8
const noRegister register = 255
type regMask uint64
func (m regMask) String() string {
s := ""
for r := register(0); m != 0; r++ {
if m>>r&1 == 0 {
continue
}
m &^= regMask(1) << r
if s != "" {
s += " "
}
s += fmt.Sprintf("r%d", r)
}
return s
}
// countRegs returns the number of set bits in the register mask.
func countRegs(r regMask) int {
n := 0
for r != 0 {
n += int(r & 1)
r >>= 1
}
return n
}
// pickReg picks an arbitrary register from the register mask.
func pickReg(r regMask) register {
// pick the lowest one
if r == 0 {
panic("can't pick a register from an empty set")
}
for i := register(0); ; i++ {
if r&1 != 0 {
return i
}
r >>= 1
}
}
type use struct {
dist int32 // distance from start of the block to a use of a value
pos src.XPos // source position of the use
next *use // linked list of uses of a value in nondecreasing dist order
}
// A valState records the register allocation state for a (pre-regalloc) value.
type valState struct {
regs regMask // the set of registers holding a Value (usually just one)
uses *use // list of uses in this block
spill *Value // spilled copy of the Value (if any)
restoreMin int32 // minimum of all restores' blocks' sdom.entry
restoreMax int32 // maximum of all restores' blocks' sdom.exit
needReg bool // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
rematerializeable bool // cached value of v.rematerializeable()
}
type regState struct {
v *Value // Original (preregalloc) Value stored in this register.
c *Value // A Value equal to v which is currently in a register. Might be v or a copy of it.
// If a register is unused, v==c==nil
}
type regAllocState struct {
f *Func
sdom SparseTree
registers []Register
numRegs register
SPReg register
SBReg register
GReg register
allocatable regMask
// for each block, its primary predecessor.
// A predecessor of b is primary if it is the closest
// predecessor that appears before b in the layout order.
// We record the index in the Preds list where the primary predecessor sits.
primary []int32
// live values at the end of each block. live[b.ID] is a list of value IDs
// which are live at the end of b, together with a count of how many instructions
// forward to the next use.
live [][]liveInfo
// desired register assignments at the end of each block.
// Note that this is a static map computed before allocation occurs. Dynamic
// register desires (from partially completed allocations) will trump
// this information.
desired []desiredState
// current state of each (preregalloc) Value
values []valState
// names associated with each Value
valueNames [][]LocalSlot
// ID of SP, SB values
sp, sb ID
// For each Value, map from its value ID back to the
// preregalloc Value it was derived from.
orig []*Value
// current state of each register
regs []regState
// registers that contain values which can't be kicked out
nospill regMask
// mask of registers currently in use
used regMask
// mask of registers used in the current instruction
tmpused regMask
// current block we're working on
curBlock *Block
// cache of use records
freeUseRecords *use
// endRegs[blockid] is the register state at the end of each block.
// encoded as a set of endReg records.
endRegs [][]endReg
// startRegs[blockid] is the register state at the start of merge blocks.
// saved state does not include the state of phi ops in the block.
startRegs [][]startReg
// spillLive[blockid] is the set of live spills at the end of each block
spillLive [][]ID
// a set of copies we generated to move things around, and
// whether it is used in shuffle. Unused copies will be deleted.
copies map[*Value]bool
loopnest *loopnest
}
type endReg struct {
r register
v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
c *Value // cached version of the value
}
type startReg struct {
r register
v *Value // pre-regalloc value needed in this register
c *Value // cached version of the value
pos src.XPos // source position of use of this register
}
// freeReg frees up register r. Any current user of r is kicked out.
func (s *regAllocState) freeReg(r register) {
s.freeOrResetReg(r, false)
}
// freeOrResetReg frees up register r. Any current user of r is kicked out.
// resetting indicates that the operation is only for bookkeeping,
// e.g. when clearing out state upon entry to a new block.
func (s *regAllocState) freeOrResetReg(r register, resetting bool) {
v := s.regs[r].v
if v == nil {
s.f.Fatalf("tried to free an already free register %d\n", r)
}
// Mark r as unused.
if s.f.pass.debug > regDebug {
fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c)
}
if !resetting && s.f.Config.ctxt.Flag_locationlists && len(s.valueNames[v.ID]) != 0 {
kill := s.curBlock.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid)
for int(kill.ID) >= len(s.orig) {
s.orig = append(s.orig, nil)
}
for _, name := range s.valueNames[v.ID] {
s.f.NamedValues[name] = append(s.f.NamedValues[name], kill)
}
s.f.setHome(kill, &s.registers[r])
}
s.regs[r] = regState{}
s.values[v.ID].regs &^= regMask(1) << r
s.used &^= regMask(1) << r
}
// freeRegs frees up all registers listed in m.
func (s *regAllocState) freeRegs(m regMask) {
for m&s.used != 0 {
s.freeReg(pickReg(m & s.used))
}
}
// setOrig records that c's original value is the same as
// v's original value.
func (s *regAllocState) setOrig(c *Value, v *Value) {
for int(c.ID) >= len(s.orig) {
s.orig = append(s.orig, nil)
}
if s.orig[c.ID] != nil {
s.f.Fatalf("orig value set twice %s %s", c, v)
}
s.orig[c.ID] = s.orig[v.ID]
}
// assignReg assigns register r to hold c, a copy of v.
// r must be unused.
func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
if s.f.pass.debug > regDebug {
fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c)
}
if s.regs[r].v != nil {
s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
}
// Update state.
s.regs[r] = regState{v, c}
s.values[v.ID].regs |= regMask(1) << r
s.used |= regMask(1) << r
s.f.setHome(c, &s.registers[r])
}
// allocReg chooses a register from the set of registers in mask.
// If there is no unused register, a Value will be kicked out of
// a register to make room.
func (s *regAllocState) allocReg(mask regMask, v *Value) register {
mask &= s.allocatable
mask &^= s.nospill
if mask == 0 {
s.f.Fatalf("no register available for %s", v)
}
// Pick an unused register if one is available.
if mask&^s.used != 0 {
return pickReg(mask &^ s.used)
}
// Pick a value to spill. Spill the value with the
// farthest-in-the-future use.
// TODO: Prefer registers with already spilled Values?
// TODO: Modify preference using affinity graph.
// TODO: if a single value is in multiple registers, spill one of them
// before spilling a value in just a single register.
// Find a register to spill. We spill the register containing the value
// whose next use is as far in the future as possible.
// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
var r register
maxuse := int32(-1)
for t := register(0); t < s.numRegs; t++ {
if mask>>t&1 == 0 {
continue
}
v := s.regs[t].v
if n := s.values[v.ID].uses.dist; n > maxuse {
// v's next use is farther in the future than any value
// we've seen so far. A new best spill candidate.
r = t
maxuse = n
}
}
if maxuse == -1 {
s.f.Fatalf("couldn't find register to spill")
}
// Try to move it around before kicking out, if there is a free register.
// We generate a Copy and record it. It will be deleted if never used.
v2 := s.regs[r].v
m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r)
if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 {
r2 := pickReg(m)
c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c)
s.copies[c] = false
if s.f.pass.debug > regDebug {
fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2])
}
s.setOrig(c, v2)
s.assignReg(r2, v2, c)
}
s.freeReg(r)
return r
}
// makeSpill returns a Value which represents the spilled value of v.
// b is the block in which the spill is used.
func (s *regAllocState) makeSpill(v *Value, b *Block) *Value {
vi := &s.values[v.ID]
if vi.spill != nil {
// Final block not known - keep track of subtree where restores reside.
vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry)
vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit)
return vi.spill
}
// Make a spill for v. We don't know where we want
// to put it yet, so we leave it blockless for now.
spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos)
// We also don't know what the spill's arg will be.
// Leave it argless for now.
s.setOrig(spill, v)
vi.spill = spill
vi.restoreMin = s.sdom[b.ID].entry
vi.restoreMax = s.sdom[b.ID].exit
return spill
}
// allocValToReg allocates v to a register selected from regMask and
// returns the register copy of v. Any previous user is kicked out and spilled
// (if necessary). Load code is added at the current pc. If nospill is set the
// allocated register is marked nospill so the assignment cannot be
// undone until the caller allows it by clearing nospill. Returns a
// *Value which is either v or a copy of v allocated to the chosen register.
func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value {
vi := &s.values[v.ID]
// Check if v is already in a requested register.
if mask&vi.regs != 0 {
r := pickReg(mask & vi.regs)
if s.regs[r].v != v || s.regs[r].c == nil {
panic("bad register state")
}
if nospill {
s.nospill |= regMask(1) << r
}
return s.regs[r].c
}
// Allocate a register.
r := s.allocReg(mask, v)
// Allocate v to the new register.
var c *Value
if vi.regs != 0 {
// Copy from a register that v is already in.
r2 := pickReg(vi.regs)
if s.regs[r2].v != v {
panic("bad register state")
}
c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c)
} else if v.rematerializeable() {
// Rematerialize instead of loading from the spill location.
c = v.copyIntoWithXPos(s.curBlock, pos)
} else {
// Load v from its spill location.
spill := s.makeSpill(v, s.curBlock)
if s.f.pass.debug > logSpills {
s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill)
}
c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill)
}
s.setOrig(c, v)
s.assignReg(r, v, c)
if nospill {
s.nospill |= regMask(1) << r
}
return c
}
// isLeaf reports whether f performs any calls.
func isLeaf(f *Func) bool {
for _, b := range f.Blocks {
for _, v := range b.Values {
if opcodeTable[v.Op].call {
return false
}
}
}
return true
}
func (s *regAllocState) init(f *Func) {
s.f = f
s.f.RegAlloc = s.f.Cache.locs[:0]
s.registers = f.Config.registers
if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
s.f.Fatalf("bad number of registers: %d", nr)
} else {
s.numRegs = register(nr)
}
// Locate SP, SB, and g registers.
s.SPReg = noRegister
s.SBReg = noRegister
s.GReg = noRegister
for r := register(0); r < s.numRegs; r++ {
switch s.registers[r].String() {
case "SP":
s.SPReg = r
case "SB":
s.SBReg = r
case "g":
s.GReg = r
}
}
// Make sure we found all required registers.
switch noRegister {
case s.SPReg:
s.f.Fatalf("no SP register found")
case s.SBReg:
s.f.Fatalf("no SB register found")
case s.GReg:
if f.Config.hasGReg {
s.f.Fatalf("no g register found")
}
}
// Figure out which registers we're allowed to use.
s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
s.allocatable &^= 1 << s.SPReg
s.allocatable &^= 1 << s.SBReg
if s.f.Config.hasGReg {
s.allocatable &^= 1 << s.GReg
}
if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 {
s.allocatable &^= 1 << uint(s.f.Config.FPReg)
}
if s.f.Config.LinkReg != -1 {
if isLeaf(f) {
// Leaf functions don't save/restore the link register.
s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
}
if s.f.Config.arch == "arm" && objabi.GOARM == 5 {
// On ARMv5 we insert softfloat calls at each FP instruction.
// This clobbers LR almost everywhere. Disable allocating LR
// on ARMv5.
s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
}
}
if s.f.Config.ctxt.Flag_dynlink {
switch s.f.Config.arch {
case "amd64":
s.allocatable &^= 1 << 15 // R15
case "arm":
s.allocatable &^= 1 << 9 // R9
case "ppc64le": // R2 already reserved.
// nothing to do
case "arm64":
// nothing to do?
case "386":
// nothing to do.
// Note that for Flag_shared (position independent code)
// we do need to be careful, but that carefulness is hidden
// in the rewrite rules so we always have a free register
// available for global load/stores. See gen/386.rules (search for Flag_shared).
case "s390x":
// nothing to do, R10 & R11 already reserved
default:
s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch)
}
}
if s.f.Config.nacl {
switch s.f.Config.arch {
case "arm":
s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm
case "amd64p32":
s.allocatable &^= 1 << 5 // BP - reserved for nacl
s.allocatable &^= 1 << 15 // R15 - reserved for nacl
}
}
if s.f.Config.use387 {
s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go)
}
s.regs = make([]regState, s.numRegs)
s.values = make([]valState, f.NumValues())
s.orig = make([]*Value, f.NumValues())
s.copies = make(map[*Value]bool)
if s.f.Config.ctxt.Flag_locationlists {
s.valueNames = make([][]LocalSlot, f.NumValues())
for slot, values := range f.NamedValues {
if isSynthetic(&slot) {
continue
}
for _, value := range values {
s.valueNames[value.ID] = append(s.valueNames[value.ID], slot)
}
}
}
for _, b := range f.Blocks {
for _, v := range b.Values {
if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
s.values[v.ID].needReg = true
s.values[v.ID].rematerializeable = v.rematerializeable()
s.orig[v.ID] = v
}
// Note: needReg is false for values returning Tuple types.
// Instead, we mark the corresponding Selects as needReg.
}
}
s.computeLive()
// Compute block order. This array allows us to distinguish forward edges
// from backward edges and compute how far they go.
blockOrder := make([]int32, f.NumBlocks())
for i, b := range f.Blocks {
blockOrder[b.ID] = int32(i)
}
// Compute primary predecessors.
s.primary = make([]int32, f.NumBlocks())
for _, b := range f.Blocks {
best := -1
for i, e := range b.Preds {
p := e.b
if blockOrder[p.ID] >= blockOrder[b.ID] {
continue // backward edge
}
if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] {
best = i
}
}
s.primary[b.ID] = int32(best)
}
s.endRegs = make([][]endReg, f.NumBlocks())
s.startRegs = make([][]startReg, f.NumBlocks())
s.spillLive = make([][]ID, f.NumBlocks())
s.sdom = f.sdom()
}
// Adds a use record for id at distance dist from the start of the block.
// All calls to addUse must happen with nonincreasing dist.
func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) {
r := s.freeUseRecords
if r != nil {
s.freeUseRecords = r.next
} else {
r = &use{}
}
r.dist = dist
r.pos = pos
r.next = s.values[id].uses
s.values[id].uses = r
if r.next != nil && dist > r.next.dist {
s.f.Fatalf("uses added in wrong order")
}
}
// advanceUses advances the uses of v's args from the state before v to the state after v.
// Any values which have no more uses are deallocated from registers.
func (s *regAllocState) advanceUses(v *Value) {
for _, a := range v.Args {
if !s.values[a.ID].needReg {
continue
}
ai := &s.values[a.ID]
r := ai.uses
ai.uses = r.next
if r.next == nil {
// Value is dead, free all registers that hold it.
s.freeRegs(ai.regs)
}
r.next = s.freeUseRecords
s.freeUseRecords = r
}
}
// liveAfterCurrentInstruction reports whether v is live after
// the current instruction is completed. v must be used by the
// current instruction.
func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
u := s.values[v.ID].uses
d := u.dist
for u != nil && u.dist == d {
u = u.next
}
return u != nil && u.dist > d
}
// Sets the state of the registers to that encoded in regs.
func (s *regAllocState) setState(regs []endReg) {
for s.used != 0 {
s.freeOrResetReg(pickReg(s.used), true)
}
for _, x := range regs {
s.assignReg(x.r, x.v, x.c)
}
}
// compatRegs returns the set of registers which can store a type t.
func (s *regAllocState) compatRegs(t *types.Type) regMask {
var m regMask
if t.IsTuple() || t.IsFlags() {
return 0
}
if t.IsFloat() || t == types.TypeInt128 {
m = s.f.Config.fpRegMask
} else {
m = s.f.Config.gpRegMask
}
return m & s.allocatable
}
func (s *regAllocState) regalloc(f *Func) {
regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register
defer f.retSparseSet(regValLiveSet)
var oldSched []*Value
var phis []*Value
var phiRegs []register
var args []*Value
// Data structure used for computing desired registers.
var desired desiredState
// Desired registers for inputs & outputs for each instruction in the block.
type dentry struct {
out [4]register // desired output registers
in [3][4]register // desired input registers (for inputs 0,1, and 2)
}
var dinfo []dentry
if f.Entry != f.Blocks[0] {
f.Fatalf("entry block must be first")
}
for _, b := range f.Blocks {
if s.f.pass.debug > regDebug {
fmt.Printf("Begin processing block %v\n", b)
}
s.curBlock = b
// Initialize regValLiveSet and uses fields for this block.
// Walk backwards through the block doing liveness analysis.
regValLiveSet.clear()
for _, e := range s.live[b.ID] {
s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block
regValLiveSet.add(e.ID)
}
if v := b.Control; v != nil && s.values[v.ID].needReg {
s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value
regValLiveSet.add(v.ID)
}
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
regValLiveSet.remove(v.ID)
if v.Op == OpPhi {
// Remove v from the live set, but don't add
// any inputs. This is the state the len(b.Preds)>1
// case below desires; it wants to process phis specially.
continue
}
if opcodeTable[v.Op].call {
// Function call clobbers all the registers but SP and SB.
regValLiveSet.clear()
if s.sp != 0 && s.values[s.sp].uses != nil {
regValLiveSet.add(s.sp)
}
if s.sb != 0 && s.values[s.sb].uses != nil {
regValLiveSet.add(s.sb)
}
}
for _, a := range v.Args {
if !s.values[a.ID].needReg {
continue
}
s.addUse(a.ID, int32(i), v.Pos)
regValLiveSet.add(a.ID)
}
}
if s.f.pass.debug > regDebug {
fmt.Printf("uses for %s:%s\n", s.f.Name, b)
for i := range s.values {
vi := &s.values[i]
u := vi.uses
if u == nil {
continue
}
fmt.Printf(" v%d:", i)
for u != nil {
fmt.Printf(" %d", u.dist)
u = u.next
}
fmt.Println()
}
}
// Make a copy of the block schedule so we can generate a new one in place.
// We make a separate copy for phis and regular values.
nphi := 0
for _, v := range b.Values {
if v.Op != OpPhi {
break
}
nphi++
}
phis = append(phis[:0], b.Values[:nphi]...)
oldSched = append(oldSched[:0], b.Values[nphi:]...)
b.Values = b.Values[:0]
// Initialize start state of block.
if b == f.Entry {
// Regalloc state is empty to start.
if nphi > 0 {
f.Fatalf("phis in entry block")
}
} else if len(b.Preds) == 1 {
// Start regalloc state with the end state of the previous block.
s.setState(s.endRegs[b.Preds[0].b.ID])
if nphi > 0 {
f.Fatalf("phis in single-predecessor block")
}
// Drop any values which are no longer live.
// This may happen because at the end of p, a value may be
// live but only used by some other successor of p.
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v != nil && !regValLiveSet.contains(v.ID) {
s.freeReg(r)
}
}
} else {
// This is the complicated case. We have more than one predecessor,
// which means we may have Phi ops.
// Start with the final register state of the primary predecessor
idx := s.primary[b.ID]
if idx < 0 {
f.Fatalf("block with no primary predecessor %s", b)
}
p := b.Preds[idx].b
s.setState(s.endRegs[p.ID])
if s.f.pass.debug > regDebug {
fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
for _, x := range s.endRegs[p.ID] {
fmt.Printf(" %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c)
}
}
// Decide on registers for phi ops. Use the registers determined
// by the primary predecessor if we can.
// TODO: pick best of (already processed) predecessors?
// Majority vote? Deepest nesting level?
phiRegs = phiRegs[:0]
var phiUsed regMask
for _, v := range phis {
if !s.values[v.ID].needReg {
phiRegs = append(phiRegs, noRegister)
continue
}
a := v.Args[idx]
// Some instructions target not-allocatable registers.
// They're not suitable for further (phi-function) allocation.
m := s.values[a.ID].regs &^ phiUsed & s.allocatable
if m != 0 {
r := pickReg(m)
phiUsed |= regMask(1) << r
phiRegs = append(phiRegs, r)
} else {
phiRegs = append(phiRegs, noRegister)
}
}
// Second pass - deallocate any phi inputs which are now dead.
for i, v := range phis {
if !s.values[v.ID].needReg {
continue
}
a := v.Args[idx]
if !regValLiveSet.contains(a.ID) {
// Input is dead beyond the phi, deallocate
// anywhere else it might live.
s.freeRegs(s.values[a.ID].regs)
} else {
// Input is still live.
// Try to move it around before kicking out, if there is a free register.
// We generate a Copy in the predecessor block and record it. It will be
// deleted if never used.
r := phiRegs[i]
if r == noRegister {
continue
}
// Pick a free register. At this point some registers used in the predecessor
// block may have been deallocated. Those are the ones used for Phis. Exclude
// them (and they are not going to be helpful anyway).
m := s.compatRegs(a.Type) &^ s.used &^ phiUsed
if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 {
r2 := pickReg(m)
c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c)
s.copies[c] = false
if s.f.pass.debug > regDebug {
fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2])
}
s.setOrig(c, a)
s.assignReg(r2, a, c)
s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c})
}
s.freeReg(r)
}
}
// Copy phi ops into new schedule.
b.Values = append(b.Values, phis...)
// Third pass - pick registers for phis whose inputs
// were not in a register.
for i, v := range phis {
if !s.values[v.ID].needReg {
continue
}
if phiRegs[i] != noRegister {
continue
}
if s.f.Config.use387 && v.Type.IsFloat() {
continue // 387 can't handle floats in registers between blocks
}
m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
if m != 0 {
r := pickReg(m)
phiRegs[i] = r
phiUsed |= regMask(1) << r
}
}
// Set registers for phis. Add phi spill code.
for i, v := range phis {
if !s.values[v.ID].needReg {
continue
}
r := phiRegs[i]
if r == noRegister {
// stack-based phi
// Spills will be inserted in all the predecessors below.
s.values[v.ID].spill = v // v starts life spilled
continue
}
// register-based phi
s.assignReg(r, v, v)
}
// Deallocate any values which are no longer live. Phis are excluded.
for r := register(0); r < s.numRegs; r++ {
if phiUsed>>r&1 != 0 {
continue
}
v := s.regs[r].v
if v != nil && !regValLiveSet.contains(v.ID) {
s.freeReg(r)
}
}
// Save the starting state for use by merge edges.
var regList []startReg
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
if phiUsed>>r&1 != 0 {
// Skip registers that phis used, we'll handle those
// specially during merge edge processing.
continue
}
regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos})
}
s.startRegs[b.ID] = regList
if s.f.pass.debug > regDebug {
fmt.Printf("after phis\n")
for _, x := range s.startRegs[b.ID] {
fmt.Printf(" %s: v%d\n", &s.registers[x.r], x.v.ID)
}
}
}
// Allocate space to record the desired registers for each value.
dinfo = dinfo[:0]
for i := 0; i < len(oldSched); i++ {
dinfo = append(dinfo, dentry{})
}
// Load static desired register info at the end of the block.
desired.copy(&s.desired[b.ID])
// Check actual assigned registers at the start of the next block(s).
// Dynamically assigned registers will trump the static
// desired registers computed during liveness analysis.
// Note that we do this phase after startRegs is set above, so that
// we get the right behavior for a block which branches to itself.
for _, e := range b.Succs {
succ := e.b
// TODO: prioritize likely successor?
for _, x := range s.startRegs[succ.ID] {
desired.add(x.v.ID, x.r)
}
// Process phi ops in succ.
pidx := e.i
for _, v := range succ.Values {
if v.Op != OpPhi {
continue
}
if !s.values[v.ID].needReg {
continue
}
rp, ok := s.f.getHome(v.ID).(*Register)
if !ok {
continue
}
desired.add(v.Args[pidx].ID, register(rp.num))
}
}
// Walk values backwards computing desired register info.
// See computeLive for more comments.
for i := len(oldSched) - 1; i >= 0; i-- {
v := oldSched[i]
prefs := desired.remove(v.ID)
desired.clobber(opcodeTable[v.Op].reg.clobbers)
for _, j := range opcodeTable[v.Op].reg.inputs {
if countRegs(j.regs) != 1 {
continue
}
desired.clobber(j.regs)
desired.add(v.Args[j.idx].ID, pickReg(j.regs))
}
if opcodeTable[v.Op].resultInArg0 {
if opcodeTable[v.Op].commutative {
desired.addList(v.Args[1].ID, prefs)
}
desired.addList(v.Args[0].ID, prefs)
}
// Save desired registers for this value.
dinfo[i].out = prefs
for j, a := range v.Args {
if j >= len(dinfo[i].in) {
break
}
dinfo[i].in[j] = desired.get(a.ID)
}
}
// Process all the non-phi values.
for idx, v := range oldSched {
if s.f.pass.debug > regDebug {
fmt.Printf(" processing %s\n", v.LongString())
}
regspec := opcodeTable[v.Op].reg
if v.Op == OpPhi {
f.Fatalf("phi %s not at start of block", v)
}
if v.Op == OpSP {
s.assignReg(s.SPReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
s.sp = v.ID
continue
}
if v.Op == OpSB {
s.assignReg(s.SBReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
s.sb = v.ID
continue
}
if v.Op == OpSelect0 || v.Op == OpSelect1 {
if s.values[v.ID].needReg {
var i = 0
if v.Op == OpSelect1 {
i = 1
}
s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v)
}
b.Values = append(b.Values, v)
s.advanceUses(v)
goto issueSpill
}
if v.Op == OpGetG && s.f.Config.hasGReg {
// use hardware g register
if s.regs[s.GReg].v != nil {
s.freeReg(s.GReg) // kick out the old value
}
s.assignReg(s.GReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
goto issueSpill
}
if v.Op == OpArg {
// Args are "pre-spilled" values. We don't allocate
// any register here. We just set up the spill pointer to
// point at itself and any later user will restore it to use it.
s.values[v.ID].spill = v
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if v.Op == OpKeepAlive {
// Make sure the argument to v is still live here.
s.advanceUses(v)
vi := &s.values[v.Args[0].ID]
if vi.spill != nil {
// Use the spill location.
v.SetArg(0, vi.spill)
} else {
// No need to keep unspilled values live.
// These are typically rematerializeable constants like nil,
// or values of a variable that were modified since the last call.
v.Op = OpCopy
v.SetArgs1(v.Args[1])
}
b.Values = append(b.Values, v)
continue
}
if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
// No register allocation required (or none specified yet)
s.freeRegs(regspec.clobbers)
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if s.values[v.ID].rematerializeable {
// Value is rematerializeable, don't issue it here.
// It will get issued just before each use (see
// allocValueToReg).
for _, a := range v.Args {
a.Uses--
}
s.advanceUses(v)
continue
}
if s.f.pass.debug > regDebug {
fmt.Printf("value %s\n", v.LongString())
fmt.Printf(" out:")
for _, r := range dinfo[idx].out {
if r != noRegister {
fmt.Printf(" %s", &s.registers[r])
}
}
fmt.Println()
for i := 0; i < len(v.Args) && i < 3; i++ {
fmt.Printf(" in%d:", i)
for _, r := range dinfo[idx].in[i] {
if r != noRegister {
fmt.Printf(" %s", &s.registers[r])
}
}
fmt.Println()
}
}
// Move arguments to registers. Process in an ordering defined
// by the register specification (most constrained first).
args = append(args[:0], v.Args...)
for _, i := range regspec.inputs {
mask := i.regs
if mask&s.values[args[i.idx].ID].regs == 0 {
// Need a new register for the input.
mask &= s.allocatable
mask &^= s.nospill
// Used desired register if available.
if i.idx < 3 {
for _, r := range dinfo[idx].in[i.idx] {
if r != noRegister && (mask&^s.used)>>r&1 != 0 {
// Desired register is allowed and unused.
mask = regMask(1) << r
break
}
}
}
// Avoid registers we're saving for other values.
if mask&^desired.avoid != 0 {
mask &^= desired.avoid
}
}
args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos)
}
// If the output clobbers the input register, make sure we have
// at least two copies of the input register so we don't
// have to reload the value from the spill location.
if opcodeTable[v.Op].resultInArg0 {
var m regMask
if !s.liveAfterCurrentInstruction(v.Args[0]) {
// arg0 is dead. We can clobber its register.
goto ok
}
if s.values[v.Args[0].ID].rematerializeable {
// We can rematerialize the input, don't worry about clobbering it.
goto ok
}
if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
// we have at least 2 copies of arg0. We can afford to clobber one.
goto ok
}
if opcodeTable[v.Op].commutative {
if !s.liveAfterCurrentInstruction(v.Args[1]) {
args[0], args[1] = args[1], args[0]
goto ok
}
if s.values[v.Args[1].ID].rematerializeable {
args[0], args[1] = args[1], args[0]
goto ok
}
if countRegs(s.values[v.Args[1].ID].regs) >= 2 {
args[0], args[1] = args[1], args[0]
goto ok
}
}
// We can't overwrite arg0 (or arg1, if commutative). So we
// need to make a copy of an input so we have a register we can modify.
// Possible new registers to copy into.
m = s.compatRegs(v.Args[0].Type) &^ s.used
if m == 0 {
// No free registers. In this case we'll just clobber
// an input and future uses of that input must use a restore.
// TODO(khr): We should really do this like allocReg does it,
// spilling the value with the most distant next use.
goto ok
}
// Try to move an input to the desired output.
for _, r := range dinfo[idx].out {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos)
// Note: we update args[0] so the instruction will
// use the register copy we just made.
goto ok
}
}
// Try to copy input to its desired location & use its old
// location as the result register.
for _, r := range dinfo[idx].in[0] {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
c := s.allocValToReg(v.Args[0], m, true, v.Pos)
s.copies[c] = false
// Note: no update to args[0] so the instruction will
// use the original copy.
goto ok
}
}
if opcodeTable[v.Op].commutative {
for _, r := range dinfo[idx].in[1] {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
c := s.allocValToReg(v.Args[1], m, true, v.Pos)
s.copies[c] = false
args[0], args[1] = args[1], args[0]
goto ok
}
}
}
// Avoid future fixed uses if we can.
if m&^desired.avoid != 0 {
m &^= desired.avoid
}
// Save input 0 to a new register so we can clobber it.
c := s.allocValToReg(v.Args[0], m, true, v.Pos)
s.copies[c] = false
}
ok:
// Now that all args are in regs, we're ready to issue the value itself.
// Before we pick a register for the output value, allow input registers
// to be deallocated. We do this here so that the output can use the
// same register as a dying input.
if !opcodeTable[v.Op].resultNotInArgs {
s.tmpused = s.nospill
s.nospill = 0
s.advanceUses(v) // frees any registers holding args that are no longer live
}
// Dump any registers which will be clobbered
s.freeRegs(regspec.clobbers)
s.tmpused |= regspec.clobbers
// Pick registers for outputs.
{
outRegs := [2]register{noRegister, noRegister}
var used regMask
for _, out := range regspec.outputs {
mask := out.regs & s.allocatable &^ used
if mask == 0 {
continue
}
if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
if !opcodeTable[v.Op].commutative {
// Output must use the same register as input 0.
r := register(s.f.getHome(args[0].ID).(*Register).num)
mask = regMask(1) << r
} else {
// Output must use the same register as input 0 or 1.
r0 := register(s.f.getHome(args[0].ID).(*Register).num)
r1 := register(s.f.getHome(args[1].ID).(*Register).num)
// Check r0 and r1 for desired output register.
found := false
for _, r := range dinfo[idx].out {
if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
mask = regMask(1) << r
found = true
if r == r1 {
args[0], args[1] = args[1], args[0]
}
break
}
}
if !found {
// Neither are desired, pick r0.
mask = regMask(1) << r0
}
}
}
for _, r := range dinfo[idx].out {
if r != noRegister && (mask&^s.used)>>r&1 != 0 {
// Desired register is allowed and unused.
mask = regMask(1) << r
break
}
}
// Avoid registers we're saving for other values.
if mask&^desired.avoid != 0 {
mask &^= desired.avoid
}
r := s.allocReg(mask, v)
outRegs[out.idx] = r
used |= regMask(1) << r
s.tmpused |= regMask(1) << r
}
// Record register choices
if v.Type.IsTuple() {
var outLocs LocPair
if r := outRegs[0]; r != noRegister {
outLocs[0] = &s.registers[r]
}
if r := outRegs[1]; r != noRegister {
outLocs[1] = &s.registers[r]
}
s.f.setHome(v, outLocs)
// Note that subsequent SelectX instructions will do the assignReg calls.
} else {
if r := outRegs[0]; r != noRegister {
s.assignReg(r, v, v)
}
}
}
// deallocate dead args, if we have not done so
if opcodeTable[v.Op].resultNotInArgs {
s.nospill = 0
s.advanceUses(v) // frees any registers holding args that are no longer live
}
s.tmpused = 0
// Issue the Value itself.
for i, a := range args {
v.SetArg(i, a) // use register version of arguments
}
b.Values = append(b.Values, v)
issueSpill:
}
// Load control value into reg.
if v := b.Control; v != nil && s.values[v.ID].needReg {
if s.f.pass.debug > regDebug {
fmt.Printf(" processing control %s\n", v.LongString())
}
// We assume that a control input can be passed in any
// type-compatible register. If this turns out not to be true,
// we'll need to introduce a regspec for a block's control value.
b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos)
if b.Control != v {
v.Uses--
b.Control.Uses++
}
// Remove this use from the uses list.
vi := &s.values[v.ID]
u := vi.uses
vi.uses = u.next
if u.next == nil {
s.freeRegs(vi.regs) // value is dead
}
u.next = s.freeUseRecords
s.freeUseRecords = u
}
// Spill any values that can't live across basic block boundaries.
if s.f.Config.use387 {
s.freeRegs(s.f.Config.fpRegMask)
}
// If we are approaching a merge point and we are the primary
// predecessor of it, find live values that we use soon after
// the merge point and promote them to registers now.
if len(b.Succs) == 1 {
// For this to be worthwhile, the loop must have no calls in it.
top := b.Succs[0].b
loop := s.loopnest.b2l[top.ID]
if loop == nil || loop.header != top || loop.containsCall {
goto badloop
}
// TODO: sort by distance, pick the closest ones?
for _, live := range s.live[b.ID] {
if live.dist >= unlikelyDistance {
// Don't preload anything live after the loop.
continue
}
vid := live.ID
vi := &s.values[vid]
if vi.regs != 0 {
continue
}
if vi.rematerializeable {
continue
}
v := s.orig[vid]
if s.f.Config.use387 && v.Type.IsFloat() {
continue // 387 can't handle floats in registers between blocks
}
m := s.compatRegs(v.Type) &^ s.used
if m&^desired.avoid != 0 {
m &^= desired.avoid
}
if m != 0 {
s.allocValToReg(v, m, false, b.Pos)
}
}
}
badloop:
;
// Save end-of-block register state.
// First count how many, this cuts allocations in half.
k := 0
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
k++
}
regList := make([]endReg, 0, k)
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
regList = append(regList, endReg{r, v, s.regs[r].c})
}
s.endRegs[b.ID] = regList
if checkEnabled {
regValLiveSet.clear()
for _, x := range s.live[b.ID] {
regValLiveSet.add(x.ID)
}
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
if !regValLiveSet.contains(v.ID) {
s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
}
}
}
// If a value is live at the end of the block and
// isn't in a register, generate a use for the spill location.
// We need to remember this information so that
// the liveness analysis in stackalloc is correct.
for _, e := range s.live[b.ID] {
vi := &s.values[e.ID]
if vi.regs != 0 {
// in a register, we'll use that source for the merge.
continue
}
if vi.rematerializeable {
// we'll rematerialize during the merge.
continue
}
//fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b)
spill := s.makeSpill(s.orig[e.ID], b)
s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
}
// Clear any final uses.
// All that is left should be the pseudo-uses added for values which
// are live at the end of b.
for _, e := range s.live[b.ID] {
u := s.values[e.ID].uses
if u == nil {
f.Fatalf("live at end, no uses v%d", e.ID)
}
if u.next != nil {
f.Fatalf("live at end, too many uses v%d", e.ID)
}
s.values[e.ID].uses = nil
u.next = s.freeUseRecords
s.freeUseRecords = u
}
}
// Decide where the spills we generated will go.
s.placeSpills()
// Anything that didn't get a register gets a stack location here.
// (StoreReg, stack-based phis, inputs, ...)
stacklive := stackalloc(s.f, s.spillLive)
// Fix up all merge edges.
s.shuffle(stacklive)
// Erase any copies we never used.
// Also, an unused copy might be the only use of another copy,
// so continue erasing until we reach a fixed point.
for {
progress := false
for c, used := range s.copies {
if !used && c.Uses == 0 {
if s.f.pass.debug > regDebug {
fmt.Printf("delete copied value %s\n", c.LongString())
}
c.RemoveArg(0)
f.freeValue(c)
delete(s.copies, c)
progress = true
}
}
if !progress {
break
}
}
for _, b := range f.Blocks {
i := 0
for _, v := range b.Values {
if v.Op == OpInvalid {
continue
}
b.Values[i] = v
i++
}
b.Values = b.Values[:i]
}
}
func (s *regAllocState) placeSpills() {
f := s.f
// Precompute some useful info.
phiRegs := make([]regMask, f.NumBlocks())
for _, b := range f.Blocks {
var m regMask
for _, v := range b.Values {
if v.Op == OpRegKill {
continue
}
if v.Op != OpPhi {
break
}
if r, ok := f.getHome(v.ID).(*Register); ok {
m |= regMask(1) << uint(r.num)
}
}
phiRegs[b.ID] = m
}
// Start maps block IDs to the list of spills
// that go at the start of the block (but after any phis).
start := map[ID][]*Value{}
// After maps value IDs to the list of spills
// that go immediately after that value ID.
after := map[ID][]*Value{}
for i := range s.values {
vi := s.values[i]
spill := vi.spill
if spill == nil {
continue
}
if spill.Block != nil {
// Some spills are already fully set up,
// like OpArgs and stack-based phis.
continue
}
v := s.orig[i]
// Walk down the dominator tree looking for a good place to
// put the spill of v. At the start "best" is the best place
// we have found so far.
// TODO: find a way to make this O(1) without arbitrary cutoffs.
best := v.Block
bestArg := v
var bestDepth int16
if l := s.loopnest.b2l[best.ID]; l != nil {
bestDepth = l.depth
}
b := best
const maxSpillSearch = 100
for i := 0; i < maxSpillSearch; i++ {
// Find the child of b in the dominator tree which
// dominates all restores.
p := b
b = nil
for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 {
if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax {
// c also dominates all restores. Walk down into c.
b = c
break
}
}
if b == nil {
// Ran out of blocks which dominate all restores.
break
}
var depth int16
if l := s.loopnest.b2l[b.ID]; l != nil {
depth = l.depth
}
if depth > bestDepth {
// Don't push the spill into a deeper loop.
continue
}
// If v is in a register at the start of b, we can
// place the spill here (after the phis).
if len(b.Preds) == 1 {
for _, e := range s.endRegs[b.Preds[0].b.ID] {
if e.v == v {
// Found a better spot for the spill.
best = b
bestArg = e.c
bestDepth = depth
break
}
}
} else {
for _, e := range s.startRegs[b.ID] {
if e.v == v {
// Found a better spot for the spill.
best = b
bestArg = e.c
bestDepth = depth
break
}
}
}
}
// Put the spill in the best block we found.
spill.Block = best
spill.AddArg(bestArg)
if best == v.Block && v.Op != OpPhi {
// Place immediately after v.
after[v.ID] = append(after[v.ID], spill)
} else {
// Place at the start of best block.
start[best.ID] = append(start[best.ID], spill)
}
}
// Insert spill instructions into the block schedules.
var oldSched []*Value
for _, b := range f.Blocks {
nphi := 0
for _, v := range b.Values {
if v.Op != OpRegKill && v.Op != OpPhi {
break
}
nphi++
}
oldSched = append(oldSched[:0], b.Values[nphi:]...)
b.Values = b.Values[:nphi]
b.Values = append(b.Values, start[b.ID]...)
for _, v := range oldSched {
b.Values = append(b.Values, v)
b.Values = append(b.Values, after[v.ID]...)
}
}
}
// shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
func (s *regAllocState) shuffle(stacklive [][]ID) {
var e edgeState
e.s = s
e.cache = map[ID][]*Value{}
e.contents = map[Location]contentRecord{}
if s.f.pass.debug > regDebug {
fmt.Printf("shuffle %s\n", s.f.Name)
fmt.Println(s.f.String())
}
for _, b := range s.f.Blocks {
if len(b.Preds) <= 1 {
continue
}
e.b = b
for i, edge := range b.Preds {
p := edge.b
e.p = p
e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
e.process()
}
}
}
type edgeState struct {
s *regAllocState
p, b *Block // edge goes from p->b.
// for each pre-regalloc value, a list of equivalent cached values
cache map[ID][]*Value
cachedVals []ID // (superset of) keys of the above map, for deterministic iteration
// map from location to the value it contains
contents map[Location]contentRecord
// desired destination locations
destinations []dstRecord
extra []dstRecord
usedRegs regMask // registers currently holding something
uniqueRegs regMask // registers holding the only copy of a value
finalRegs regMask // registers holding final target
}
type contentRecord struct {
vid ID // pre-regalloc value
c *Value // cached value
final bool // this is a satisfied destination
pos src.XPos // source position of use of the value
}
type dstRecord struct {
loc Location // register or stack slot
vid ID // pre-regalloc value it should contain
splice **Value // place to store reference to the generating instruction
pos src.XPos // source position of use of this location
}
// setup initializes the edge state for shuffling.
func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
if e.s.f.pass.debug > regDebug {
fmt.Printf("edge %s->%s\n", e.p, e.b)
}
// Clear state.
for _, vid := range e.cachedVals {
delete(e.cache, vid)
}
e.cachedVals = e.cachedVals[:0]
for k := range e.contents {
delete(e.contents, k)
}
e.usedRegs = 0
e.uniqueRegs = 0
e.finalRegs = 0
// Live registers can be sources.
for _, x := range srcReg {
e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source
}
// So can all of the spill locations.
for _, spillID := range stacklive {
v := e.s.orig[spillID]
spill := e.s.values[v.ID].spill
if !e.s.sdom.isAncestorEq(spill.Block, e.p) {
// Spills were placed that only dominate the uses found
// during the first regalloc pass. The edge fixup code
// can't use a spill location if the spill doesn't dominate
// the edge.
// We are guaranteed that if the spill doesn't dominate this edge,
// then the value is available in a register (because we called
// makeSpill for every value not in a register at the start
// of an edge).
continue
}
e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source
}
// Figure out all the destinations we need.
dsts := e.destinations[:0]
for _, x := range dstReg {
dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos})
}
// Phis need their args to end up in a specific location.
for _, v := range e.b.Values {
if v.Op == OpRegKill {
continue
}
if v.Op != OpPhi {
break
}
loc := e.s.f.getHome(v.ID)
if loc == nil {
continue
}
dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos})
}
e.destinations = dsts
if e.s.f.pass.debug > regDebug {
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c)
}
}
for _, d := range e.destinations {
fmt.Printf("dst %s: v%d\n", d.loc, d.vid)
}
}
}
// process generates code to move all the values to the right destination locations.
func (e *edgeState) process() {
dsts := e.destinations
// Process the destinations until they are all satisfied.
for len(dsts) > 0 {
i := 0
for _, d := range dsts {
if !e.processDest(d.loc, d.vid, d.splice, d.pos) {
// Failed - save for next iteration.
dsts[i] = d
i++
}
}
if i < len(dsts) {
// Made some progress. Go around again.
dsts = dsts[:i]
// Append any extras destinations we generated.
dsts = append(dsts, e.extra...)
e.extra = e.extra[:0]
continue
}
// We made no progress. That means that any
// remaining unsatisfied moves are in simple cycles.
// For example, A -> B -> C -> D -> A.
// A ----> B
// ^ |
// | |
// | v
// D <---- C
// To break the cycle, we pick an unused register, say R,
// and put a copy of B there.
// A ----> B
// ^ |
// | |
// | v
// D <---- C <---- R=copyofB
// When we resume the outer loop, the A->B move can now proceed,
// and eventually the whole cycle completes.
// Copy any cycle location to a temp register. This duplicates
// one of the cycle entries, allowing the just duplicated value
// to be overwritten and the cycle to proceed.
d := dsts[0]
loc := d.loc
vid := e.contents[loc].vid
c := e.contents[loc].c
r := e.findRegFor(c.Type)
if e.s.f.pass.debug > regDebug {
fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c)
}
e.erase(r)
if _, isReg := loc.(*Register); isReg {
c = e.p.NewValue1(d.pos, OpCopy, c.Type, c)
} else {
c = e.p.NewValue1(d.pos, OpLoadReg, c.Type, c)
}
e.set(r, vid, c, false, d.pos)
}
}
// processDest generates code to put value vid into location loc. Returns true
// if progress was made.
func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool {
occupant := e.contents[loc]
if occupant.vid == vid {
// Value is already in the correct place.
e.contents[loc] = contentRecord{vid, occupant.c, true, pos}
if splice != nil {
(*splice).Uses--
*splice = occupant.c
occupant.c.Uses++
}
// Note: if splice==nil then c will appear dead. This is
// non-SSA formed code, so be careful after this pass not to run
// deadcode elimination.
if _, ok := e.s.copies[occupant.c]; ok {
// The copy at occupant.c was used to avoid spill.
e.s.copies[occupant.c] = true
}
return true
}
// Check if we're allowed to clobber the destination location.
if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
// We can't overwrite the last copy
// of a value that needs to survive.
return false
}
// Copy from a source of v, register preferred.
v := e.s.orig[vid]
var c *Value
var src Location
if e.s.f.pass.debug > regDebug {
fmt.Printf("moving v%d to %s\n", vid, loc)
fmt.Printf("sources of v%d:", vid)
}
for _, w := range e.cache[vid] {
h := e.s.f.getHome(w.ID)
if e.s.f.pass.debug > regDebug {
fmt.Printf(" %s:%s", h, w)
}
_, isreg := h.(*Register)
if src == nil || isreg {
c = w
src = h
}
}
if e.s.f.pass.debug > regDebug {
if src != nil {
fmt.Printf(" [use %s]\n", src)
} else {
fmt.Printf(" [no source]\n")
}
}
_, dstReg := loc.(*Register)
// Pre-clobber destination. This avoids the
// following situation:
// - v is currently held in R0 and stacktmp0.
// - We want to copy stacktmp1 to stacktmp0.
// - We choose R0 as the temporary register.
// During the copy, both R0 and stacktmp0 are
// clobbered, losing both copies of v. Oops!
// Erasing the destination early means R0 will not
// be chosen as the temp register, as it will then
// be the last copy of v.
e.erase(loc)
var x *Value
if c == nil {
if !e.s.values[vid].rematerializeable {
e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString())
}
if dstReg {
x = v.copyIntoNoXPos(e.p)
} else {
// Rematerialize into stack slot. Need a free
// register to accomplish this.
r := e.findRegFor(v.Type)
e.erase(r)
x = v.copyIntoWithXPos(e.p, pos)
e.set(r, vid, x, false, pos)
// Make sure we spill with the size of the slot, not the
// size of x (which might be wider due to our dropping
// of narrowing conversions).
x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x)
}
} else {
// Emit move from src to dst.
_, srcReg := src.(*Register)
if srcReg {
if dstReg {
x = e.p.NewValue1(pos, OpCopy, c.Type, c)
} else {
x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c)
}
} else {
if dstReg {
x = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
} else {
// mem->mem. Use temp register.
r := e.findRegFor(c.Type)
e.erase(r)
t := e.p.NewValue1(pos, OpLoadReg, c.Type, c)
e.set(r, vid, t, false, pos)
x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t)
}
}
}
e.set(loc, vid, x, true, pos)
if splice != nil {
(*splice).Uses--
*splice = x
x.Uses++
}
return true
}
// set changes the contents of location loc to hold the given value and its cached representative.
func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) {
e.s.f.setHome(c, loc)
e.contents[loc] = contentRecord{vid, c, final, pos}
a := e.cache[vid]
if len(a) == 0 {
e.cachedVals = append(e.cachedVals, vid)
}
a = append(a, c)
e.cache[vid] = a
if r, ok := loc.(*Register); ok {
e.usedRegs |= regMask(1) << uint(r.num)
if final {
e.finalRegs |= regMask(1) << uint(r.num)
}
if len(a) == 1 {
e.uniqueRegs |= regMask(1) << uint(r.num)
}
if len(a) == 2 {
if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
e.uniqueRegs &^= regMask(1) << uint(t.num)
}
}
}
if e.s.f.pass.debug > regDebug {
fmt.Printf("%s\n", c.LongString())
fmt.Printf("v%d now available in %s:%s\n", vid, loc, c)
}
}
// erase removes any user of loc.
func (e *edgeState) erase(loc Location) {
cr := e.contents[loc]
if cr.c == nil {
return
}
vid := cr.vid
if cr.final {
// Add a destination to move this value back into place.
// Make sure it gets added to the tail of the destination queue
// so we make progress on other moves first.
e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos})
}
// Remove c from the list of cached values.
a := e.cache[vid]
for i, c := range a {
if e.s.f.getHome(c.ID) == loc {
if e.s.f.pass.debug > regDebug {
fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c)
}
a[i], a = a[len(a)-1], a[:len(a)-1]
if e.s.f.Config.ctxt.Flag_locationlists {
if _, isReg := loc.(*Register); isReg && int(c.ID) < len(e.s.valueNames) && len(e.s.valueNames[c.ID]) != 0 {
kill := e.p.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid)
e.s.f.setHome(kill, loc)
for _, name := range e.s.valueNames[c.ID] {
e.s.f.NamedValues[name] = append(e.s.f.NamedValues[name], kill)
}
}
}
break
}
}
e.cache[vid] = a
// Update register masks.
if r, ok := loc.(*Register); ok {
e.usedRegs &^= regMask(1) << uint(r.num)
if cr.final {
e.finalRegs &^= regMask(1) << uint(r.num)
}
}
if len(a) == 1 {
if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
e.uniqueRegs |= regMask(1) << uint(r.num)
}
}
}
// findRegFor finds a register we can use to make a temp copy of type typ.
func (e *edgeState) findRegFor(typ *types.Type) Location {
// Which registers are possibilities.
var m regMask
types := &e.s.f.Config.Types
if typ.IsFloat() {
m = e.s.compatRegs(types.Float64)
} else {
m = e.s.compatRegs(types.Int64)
}
// Pick a register. In priority order:
// 1) an unused register
// 2) a non-unique register not holding a final value
// 3) a non-unique register
// 4) TODO: a register holding a rematerializeable value
x := m &^ e.usedRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
x = m &^ e.uniqueRegs &^ e.finalRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
x = m &^ e.uniqueRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
// No register is available.
// Pick a register to spill.
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 {
if !c.rematerializeable() {
x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c)
// Allocate a temp location to spill a register to.
// The type of the slot is immaterial - it will not be live across
// any safepoint. Just use a type big enough to hold any register.
t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64}
// TODO: reuse these slots. They'll need to be erased first.
e.set(t, vid, x, false, c.Pos)
if e.s.f.pass.debug > regDebug {
fmt.Printf(" SPILL %s->%s %s\n", r, t, x.LongString())
}
}
// r will now be overwritten by the caller. At some point
// later, the newly saved value will be moved back to its
// final destination in processDest.
return r
}
}
}
fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs)
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID))
}
}
e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
return nil
}
// rematerializeable reports whether the register allocator should recompute
// a value instead of spilling/restoring it.
func (v *Value) rematerializeable() bool {
if !opcodeTable[v.Op].rematerializeable {
return false
}
for _, a := range v.Args {
// SP and SB (generated by OpSP and OpSB) are always available.
if a.Op != OpSP && a.Op != OpSB {
return false
}
}
return true
}
type liveInfo struct {
ID ID // ID of value
dist int32 // # of instructions before next use
pos src.XPos // source position of next use
}
// computeLive computes a map from block ID to a list of value IDs live at the end
// of that block. Together with the value ID is a count of how many instructions
// to the next use of that value. The resulting map is stored in s.live.
// computeLive also computes the desired register information at the end of each block.
// This desired register information is stored in s.desired.
// TODO: this could be quadratic if lots of variables are live across lots of
// basic blocks. Figure out a way to make this function (or, more precisely, the user
// of this function) require only linear size & time.
func (s *regAllocState) computeLive() {
f := s.f
s.live = make([][]liveInfo, f.NumBlocks())
s.desired = make([]desiredState, f.NumBlocks())
var phis []*Value
live := newSparseMap(f.NumValues())
t := newSparseMap(f.NumValues())
// Keep track of which value we want in each register.
var desired desiredState
// Instead of iterating over f.Blocks, iterate over their postordering.
// Liveness information flows backward, so starting at the end
// increases the probability that we will stabilize quickly.
// TODO: Do a better job yet. Here's one possibility:
// Calculate the dominator tree and locate all strongly connected components.
// If a value is live in one block of an SCC, it is live in all.
// Walk the dominator tree from end to beginning, just once, treating SCC
// components as single blocks, duplicated calculated liveness information
// out to all of them.
po := f.postorder()
s.loopnest = f.loopnest()
s.loopnest.calculateDepths()
for {
changed := false
for _, b := range po {
// Start with known live values at the end of the block.
// Add len(b.Values) to adjust from end-of-block distance
// to beginning-of-block distance.
live.clear()
for _, e := range s.live[b.ID] {
live.set(e.ID, e.dist+int32(len(b.Values)), e.pos)
}
// Mark control value as live
if b.Control != nil && s.values[b.Control.ID].needReg {
live.set(b.Control.ID, int32(len(b.Values)), b.Pos)
}
// Propagate backwards to the start of the block
// Assumes Values have been scheduled.
phis = phis[:0]
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
live.remove(v.ID)
if v.Op == OpPhi {
// save phi ops for later
phis = append(phis, v)
continue
}
if opcodeTable[v.Op].call {
c := live.contents()
for i := range c {
c[i].val += unlikelyDistance
}
}
for _, a := range v.Args {
if s.values[a.ID].needReg {
live.set(a.ID, int32(i), v.Pos)
}
}
}
// Propagate desired registers backwards.
desired.copy(&s.desired[b.ID])
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
prefs := desired.remove(v.ID)
if v.Op == OpPhi {
// TODO: if v is a phi, save desired register for phi inputs.
// For now, we just drop it and don't propagate
// desired registers back though phi nodes.
continue
}
// Cancel desired registers if they get clobbered.
desired.clobber(opcodeTable[v.Op].reg.clobbers)
// Update desired registers if there are any fixed register inputs.
for _, j := range opcodeTable[v.Op].reg.inputs {
if countRegs(j.regs) != 1 {
continue
}
desired.clobber(j.regs)
desired.add(v.Args[j.idx].ID, pickReg(j.regs))
}
// Set desired register of input 0 if this is a 2-operand instruction.
if opcodeTable[v.Op].resultInArg0 {
if opcodeTable[v.Op].commutative {
desired.addList(v.Args[1].ID, prefs)
}
desired.addList(v.Args[0].ID, prefs)
}
}
// For each predecessor of b, expand its list of live-at-end values.
// invariant: live contains the values live at the start of b (excluding phi inputs)
for i, e := range b.Preds {
p := e.b
// Compute additional distance for the edge.
// Note: delta must be at least 1 to distinguish the control
// value use from the first user in a successor block.
delta := int32(normalDistance)
if len(p.Succs) == 2 {
if p.Succs[0].b == b && p.Likely == BranchLikely ||
p.Succs[1].b == b && p.Likely == BranchUnlikely {
delta = likelyDistance
}
if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
p.Succs[1].b == b && p.Likely == BranchLikely {
delta = unlikelyDistance
}
}
// Update any desired registers at the end of p.
s.desired[p.ID].merge(&desired)
// Start t off with the previously known live values at the end of p.
t.clear()
for _, e := range s.live[p.ID] {
t.set(e.ID, e.dist, e.pos)
}
update := false
// Add new live values from scanning this block.
for _, e := range live.contents() {
d := e.val + delta
if !t.contains(e.key) || d < t.get(e.key) {
update = true
t.set(e.key, d, e.aux)
}
}
// Also add the correct arg from the saved phi values.
// All phis are at distance delta (we consider them
// simultaneously happening at the start of the block).
for _, v := range phis {
id := v.Args[i].ID
if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
update = true
t.set(id, delta, v.Pos)
}
}
if !update {
continue
}
// The live set has changed, update it.
l := s.live[p.ID][:0]
if cap(l) < t.size() {
l = make([]liveInfo, 0, t.size())
}
for _, e := range t.contents() {
l = append(l, liveInfo{e.key, e.val, e.aux})
}
s.live[p.ID] = l
changed = true
}
}
if !changed {
break
}
}
if f.pass.debug > regDebug {
fmt.Println("live values at end of each block")
for _, b := range f.Blocks {
fmt.Printf(" %s:", b)
for _, x := range s.live[b.ID] {
fmt.Printf(" v%d", x.ID)
for _, e := range s.desired[b.ID].entries {
if e.ID != x.ID {
continue
}
fmt.Printf("[")
first := true
for _, r := range e.regs {
if r == noRegister {
continue
}
if !first {
fmt.Printf(",")
}
fmt.Print(&s.registers[r])
first = false
}
fmt.Printf("]")
}
}
fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid))
fmt.Println()
}
}
}
// A desiredState represents desired register assignments.
type desiredState struct {
// Desired assignments will be small, so we just use a list
// of valueID+registers entries.
entries []desiredStateEntry
// Registers that other values want to be in. This value will
// contain at least the union of the regs fields of entries, but
// may contain additional entries for values that were once in
// this data structure but are no longer.
avoid regMask
}
type desiredStateEntry struct {
// (pre-regalloc) value
ID ID
// Registers it would like to be in, in priority order.
// Unused slots are filled with noRegister.
regs [4]register
}
func (d *desiredState) clear() {
d.entries = d.entries[:0]
d.avoid = 0
}
// get returns a list of desired registers for value vid.
func (d *desiredState) get(vid ID) [4]register {
for _, e := range d.entries {
if e.ID == vid {
return e.regs
}
}
return [4]register{noRegister, noRegister, noRegister, noRegister}
}
// add records that we'd like value vid to be in register r.
func (d *desiredState) add(vid ID, r register) {
d.avoid |= regMask(1) << r
for i := range d.entries {
e := &d.entries[i]
if e.ID != vid {
continue
}
if e.regs[0] == r {
// Already known and highest priority
return
}
for j := 1; j < len(e.regs); j++ {
if e.regs[j] == r {
// Move from lower priority to top priority
copy(e.regs[1:], e.regs[:j])
e.regs[0] = r
return
}
}
copy(e.regs[1:], e.regs[:])
e.regs[0] = r
return
}
d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
}
func (d *desiredState) addList(vid ID, regs [4]register) {
// regs is in priority order, so iterate in reverse order.
for i := len(regs) - 1; i >= 0; i-- {
r := regs[i]
if r != noRegister {
d.add(vid, r)
}
}
}
// clobber erases any desired registers in the set m.
func (d *desiredState) clobber(m regMask) {
for i := 0; i < len(d.entries); {
e := &d.entries[i]
j := 0
for _, r := range e.regs {
if r != noRegister && m>>r&1 == 0 {
e.regs[j] = r
j++
}
}
if j == 0 {
// No more desired registers for this value.
d.entries[i] = d.entries[len(d.entries)-1]
d.entries = d.entries[:len(d.entries)-1]
continue
}
for ; j < len(e.regs); j++ {
e.regs[j] = noRegister
}
i++
}
d.avoid &^= m
}
// copy copies a desired state from another desiredState x.
func (d *desiredState) copy(x *desiredState) {
d.entries = append(d.entries[:0], x.entries...)
d.avoid = x.avoid
}
// remove removes the desired registers for vid and returns them.
func (d *desiredState) remove(vid ID) [4]register {
for i := range d.entries {
if d.entries[i].ID == vid {
regs := d.entries[i].regs
d.entries[i] = d.entries[len(d.entries)-1]
d.entries = d.entries[:len(d.entries)-1]
return regs
}
}
return [4]register{noRegister, noRegister, noRegister, noRegister}
}
// merge merges another desired state x into d.
func (d *desiredState) merge(x *desiredState) {
d.avoid |= x.avoid
// There should only be a few desired registers, so
// linear insert is ok.
for _, e := range x.entries {
d.addList(e.ID, e.regs)
}
}
func min32(x, y int32) int32 {
if x < y {
return x
}
return y
}
func max32(x, y int32) int32 {
if x > y {
return x
}
return y
}