mirror of
https://github.com/golang/go.git
synced 2025-05-23 16:31:27 +00:00
Implement ODOT. Similar to ArrayIndex, StructSelect selects a field out of a larger Value. We may need more ways to rewrite StructSelect, but StructSelect/Load is the typical way it is used. Change-Id: Ida7b8aab3298f4754eaf9fee733974cf8736e45d Reviewed-on: https://go-review.googlesource.com/12265 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
1518 lines
41 KiB
Go
1518 lines
41 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/obj/x86"
|
|
)
|
|
|
|
// buildssa builds an SSA function
|
|
// and reports whether it should be used.
|
|
// Once the SSA implementation is complete,
|
|
// it will never return nil, and the bool can be removed.
|
|
func buildssa(fn *Node) (ssafn *ssa.Func, usessa bool) {
|
|
name := fn.Func.Nname.Sym.Name
|
|
usessa = strings.HasSuffix(name, "_ssa")
|
|
|
|
if usessa {
|
|
dumplist("buildssa-enter", fn.Func.Enter)
|
|
dumplist("buildssa-body", fn.Nbody)
|
|
}
|
|
|
|
var s state
|
|
s.pushLine(fn.Lineno)
|
|
defer s.popLine()
|
|
|
|
// TODO(khr): build config just once at the start of the compiler binary
|
|
|
|
var e ssaExport
|
|
e.log = usessa
|
|
s.config = ssa.NewConfig(Thearch.Thestring, &e)
|
|
s.f = s.config.NewFunc()
|
|
s.f.Name = name
|
|
|
|
// If SSA support for the function is incomplete,
|
|
// assume that any panics are due to violated
|
|
// invariants. Swallow them silently.
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
if !e.unimplemented {
|
|
panic(err)
|
|
}
|
|
}
|
|
}()
|
|
|
|
// We construct SSA using an algorithm similar to
|
|
// Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau
|
|
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
|
|
// TODO: check this comment
|
|
|
|
// Allocate starting block
|
|
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// Allocate exit block
|
|
s.exit = s.f.NewBlock(ssa.BlockExit)
|
|
|
|
// Allocate starting values
|
|
s.vars = map[*Node]*ssa.Value{}
|
|
s.labels = map[string]*ssa.Block{}
|
|
s.startmem = s.entryNewValue0(ssa.OpArg, ssa.TypeMem)
|
|
s.sp = s.entryNewValue0(ssa.OpSP, s.config.Uintptr) // TODO: use generic pointer type (unsafe.Pointer?) instead
|
|
s.sb = s.entryNewValue0(ssa.OpSB, s.config.Uintptr)
|
|
|
|
// Generate addresses of local declarations
|
|
s.decladdrs = map[*Node]*ssa.Value{}
|
|
for d := fn.Func.Dcl; d != nil; d = d.Next {
|
|
n := d.N
|
|
switch n.Class {
|
|
case PPARAM, PPARAMOUT:
|
|
aux := &ssa.ArgSymbol{Typ: n.Type, Offset: n.Xoffset, Sym: n.Sym}
|
|
s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
|
|
case PAUTO:
|
|
aux := &ssa.AutoSymbol{Typ: n.Type, Offset: -1, Sym: n.Sym} // offset TBD by SSA pass
|
|
s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
|
|
default:
|
|
str := ""
|
|
if n.Class&PHEAP != 0 {
|
|
str = ",heap"
|
|
}
|
|
s.Unimplementedf("local variable %v with class %s%s unimplemented", n, classnames[n.Class&^PHEAP], str)
|
|
}
|
|
}
|
|
// nodfp is a special argument which is the function's FP.
|
|
aux := &ssa.ArgSymbol{Typ: s.config.Uintptr, Offset: 0, Sym: nodfp.Sym}
|
|
s.decladdrs[nodfp] = s.entryNewValue1A(ssa.OpAddr, s.config.Uintptr, aux, s.sp)
|
|
|
|
// Convert the AST-based IR to the SSA-based IR
|
|
s.startBlock(s.f.Entry)
|
|
s.stmtList(fn.Func.Enter)
|
|
s.stmtList(fn.Nbody)
|
|
|
|
// fallthrough to exit
|
|
if b := s.endBlock(); b != nil {
|
|
addEdge(b, s.exit)
|
|
}
|
|
|
|
// Finish up exit block
|
|
s.startBlock(s.exit)
|
|
s.exit.Control = s.mem()
|
|
s.endBlock()
|
|
|
|
// Link up variable uses to variable definitions
|
|
s.linkForwardReferences()
|
|
|
|
// Main call to ssa package to compile function
|
|
ssa.Compile(s.f)
|
|
|
|
// Calculate stats about what percentage of functions SSA handles.
|
|
if false {
|
|
fmt.Printf("SSA implemented: %t\n", !e.unimplemented)
|
|
}
|
|
|
|
if e.unimplemented {
|
|
return nil, false
|
|
}
|
|
return s.f, usessa // TODO: return s.f, true once runtime support is in (gc maps, write barriers, etc.)
|
|
}
|
|
|
|
type state struct {
|
|
// configuration (arch) information
|
|
config *ssa.Config
|
|
|
|
// function we're building
|
|
f *ssa.Func
|
|
|
|
// exit block that "return" jumps to (and panics jump to)
|
|
exit *ssa.Block
|
|
|
|
// the target block for each label in f
|
|
labels map[string]*ssa.Block
|
|
|
|
// current location where we're interpreting the AST
|
|
curBlock *ssa.Block
|
|
|
|
// variable assignments in the current block (map from variable symbol to ssa value)
|
|
// *Node is the unique identifier (an ONAME Node) for the variable.
|
|
vars map[*Node]*ssa.Value
|
|
|
|
// all defined variables at the end of each block. Indexed by block ID.
|
|
defvars []map[*Node]*ssa.Value
|
|
|
|
// addresses of PPARAM, PPARAMOUT, and PAUTO variables.
|
|
decladdrs map[*Node]*ssa.Value
|
|
|
|
// starting values. Memory, frame pointer, and stack pointer
|
|
startmem *ssa.Value
|
|
sp *ssa.Value
|
|
sb *ssa.Value
|
|
|
|
// line number stack. The current line number is top of stack
|
|
line []int32
|
|
}
|
|
|
|
func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) }
|
|
func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(msg, args...) }
|
|
func (s *state) Unimplementedf(msg string, args ...interface{}) { s.config.Unimplementedf(msg, args...) }
|
|
|
|
// dummy node for the memory variable
|
|
var memvar = Node{Op: ONAME, Sym: &Sym{Name: "mem"}}
|
|
|
|
// startBlock sets the current block we're generating code in to b.
|
|
func (s *state) startBlock(b *ssa.Block) {
|
|
if s.curBlock != nil {
|
|
s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
|
|
}
|
|
s.curBlock = b
|
|
s.vars = map[*Node]*ssa.Value{}
|
|
}
|
|
|
|
// endBlock marks the end of generating code for the current block.
|
|
// Returns the (former) current block. Returns nil if there is no current
|
|
// block, i.e. if no code flows to the current execution point.
|
|
func (s *state) endBlock() *ssa.Block {
|
|
b := s.curBlock
|
|
if b == nil {
|
|
return nil
|
|
}
|
|
for len(s.defvars) <= int(b.ID) {
|
|
s.defvars = append(s.defvars, nil)
|
|
}
|
|
s.defvars[b.ID] = s.vars
|
|
s.curBlock = nil
|
|
s.vars = nil
|
|
b.Line = s.peekLine()
|
|
return b
|
|
}
|
|
|
|
// pushLine pushes a line number on the line number stack.
|
|
func (s *state) pushLine(line int32) {
|
|
s.line = append(s.line, line)
|
|
}
|
|
|
|
// popLine pops the top of the line number stack.
|
|
func (s *state) popLine() {
|
|
s.line = s.line[:len(s.line)-1]
|
|
}
|
|
|
|
// peekLine peek the top of the line number stack.
|
|
func (s *state) peekLine() int32 {
|
|
return s.line[len(s.line)-1]
|
|
}
|
|
|
|
// newValue0 adds a new value with no arguments to the current block.
|
|
func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
|
|
return s.curBlock.NewValue0(s.peekLine(), op, t)
|
|
}
|
|
|
|
// newValue0A adds a new value with no arguments and an aux value to the current block.
|
|
func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
|
|
return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
|
|
}
|
|
|
|
// newValue1 adds a new value with one argument to the current block.
|
|
func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
|
|
}
|
|
|
|
// newValue1A adds a new value with one argument and an aux value to the current block.
|
|
func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue1I adds a new value with one argument and an auxint value to the current block.
|
|
func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue2 adds a new value with two arguments to the current block.
|
|
func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
|
|
}
|
|
|
|
// newValue2I adds a new value with two arguments and an auxint value to the current block.
|
|
func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
|
|
}
|
|
|
|
// newValue3 adds a new value with three arguments to the current block.
|
|
func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
|
|
}
|
|
|
|
// entryNewValue adds a new value with no arguments to the entry block.
|
|
func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
|
|
return s.f.Entry.NewValue0(s.peekLine(), op, t)
|
|
}
|
|
|
|
// entryNewValue adds a new value with no arguments and an aux value to the entry block.
|
|
func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
|
|
return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument to the entry block.
|
|
func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
|
|
func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
|
|
}
|
|
|
|
// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
|
|
func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
|
|
}
|
|
|
|
// entryNewValue2 adds a new value with two arguments to the entry block.
|
|
func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
|
|
}
|
|
|
|
// constInt adds a new const int value to the entry block.
|
|
func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
|
|
return s.f.ConstInt(s.peekLine(), t, c)
|
|
}
|
|
|
|
// ssaStmtList converts the statement n to SSA and adds it to s.
|
|
func (s *state) stmtList(l *NodeList) {
|
|
for ; l != nil; l = l.Next {
|
|
s.stmt(l.N)
|
|
}
|
|
}
|
|
|
|
// ssaStmt converts the statement n to SSA and adds it to s.
|
|
func (s *state) stmt(n *Node) {
|
|
s.pushLine(n.Lineno)
|
|
defer s.popLine()
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
|
|
case OBLOCK:
|
|
s.stmtList(n.List)
|
|
|
|
case OEMPTY, ODCLCONST, ODCLTYPE:
|
|
|
|
case ODCL:
|
|
if n.Left.Class&PHEAP == 0 {
|
|
return
|
|
}
|
|
if compiling_runtime != 0 {
|
|
Fatal("%v escapes to heap, not allowed in runtime.", n)
|
|
}
|
|
|
|
// TODO: the old pass hides the details of PHEAP
|
|
// variables behind ONAME nodes. Figure out if it's better
|
|
// to rewrite the tree and make the heapaddr construct explicit
|
|
// or to keep this detail hidden behind the scenes.
|
|
palloc := prealloc[n.Left]
|
|
if palloc == nil {
|
|
palloc = callnew(n.Left.Type)
|
|
prealloc[n.Left] = palloc
|
|
}
|
|
s.assign(OAS, n.Left.Name.Heapaddr, palloc)
|
|
|
|
case OLABEL, OGOTO:
|
|
if n.Op == OLABEL && isblanksym(n.Left.Sym) {
|
|
// Empty identifier is valid but useless.
|
|
// See issues 11589, 11593.
|
|
return
|
|
}
|
|
// get block at label, or make one
|
|
t := s.labels[n.Left.Sym.Name]
|
|
if t == nil {
|
|
t = s.f.NewBlock(ssa.BlockPlain)
|
|
s.labels[n.Left.Sym.Name] = t
|
|
}
|
|
// go to that label (we pretend "label:" is preceded by "goto label")
|
|
if b := s.endBlock(); b != nil {
|
|
addEdge(b, t)
|
|
}
|
|
|
|
if n.Op == OLABEL {
|
|
// next we work on the label's target block
|
|
s.startBlock(t)
|
|
}
|
|
if n.Op == OGOTO && s.curBlock == nil {
|
|
s.Unimplementedf("goto at start of function; see test/goto.go")
|
|
panic("stop compiling here, on pain of infinite loops")
|
|
}
|
|
|
|
case OAS, OASWB:
|
|
s.assign(n.Op, n.Left, n.Right)
|
|
|
|
case OIF:
|
|
cond := s.expr(n.Left)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Control = cond
|
|
// TODO(khr): likely direction
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
var bElse *ssa.Block
|
|
|
|
if n.Rlist == nil {
|
|
addEdge(b, bThen)
|
|
addEdge(b, bEnd)
|
|
} else {
|
|
bElse = s.f.NewBlock(ssa.BlockPlain)
|
|
addEdge(b, bThen)
|
|
addEdge(b, bElse)
|
|
}
|
|
|
|
s.startBlock(bThen)
|
|
s.stmtList(n.Nbody)
|
|
b = s.endBlock()
|
|
if b != nil {
|
|
addEdge(b, bEnd)
|
|
}
|
|
|
|
if n.Rlist != nil {
|
|
s.startBlock(bElse)
|
|
s.stmtList(n.Rlist)
|
|
b = s.endBlock()
|
|
if b != nil {
|
|
addEdge(b, bEnd)
|
|
}
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case ORETURN:
|
|
s.stmtList(n.List)
|
|
b := s.endBlock()
|
|
addEdge(b, s.exit)
|
|
|
|
case OFOR:
|
|
// OFOR: for Ninit; Left; Right { Nbody }
|
|
bCond := s.f.NewBlock(ssa.BlockPlain)
|
|
bBody := s.f.NewBlock(ssa.BlockPlain)
|
|
bIncr := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// first, jump to condition test
|
|
b := s.endBlock()
|
|
addEdge(b, bCond)
|
|
|
|
// generate code to test condition
|
|
s.startBlock(bCond)
|
|
var cond *ssa.Value
|
|
if n.Left != nil {
|
|
cond = s.expr(n.Left)
|
|
} else {
|
|
cond = s.entryNewValue0A(ssa.OpConst, Types[TBOOL], true)
|
|
}
|
|
b = s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Control = cond
|
|
// TODO(khr): likely direction
|
|
addEdge(b, bBody)
|
|
addEdge(b, bEnd)
|
|
|
|
// generate body
|
|
s.startBlock(bBody)
|
|
s.stmtList(n.Nbody)
|
|
if b := s.endBlock(); b != nil {
|
|
addEdge(b, bIncr)
|
|
}
|
|
|
|
// generate incr
|
|
s.startBlock(bIncr)
|
|
if n.Right != nil {
|
|
s.stmt(n.Right)
|
|
}
|
|
if b := s.endBlock(); b != nil {
|
|
addEdge(b, bCond)
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case OCALLFUNC:
|
|
s.expr(n)
|
|
|
|
case OVARKILL:
|
|
// TODO(khr): ??? anything to do here? Only for addrtaken variables?
|
|
// Maybe just link it in the store chain?
|
|
default:
|
|
s.Unimplementedf("unhandled stmt %s", opnames[n.Op])
|
|
}
|
|
}
|
|
|
|
var binOpToSSA = [...]ssa.Op{
|
|
// Comparisons
|
|
OEQ: ssa.OpEq,
|
|
ONE: ssa.OpNeq,
|
|
OLT: ssa.OpLess,
|
|
OLE: ssa.OpLeq,
|
|
OGT: ssa.OpGreater,
|
|
OGE: ssa.OpGeq,
|
|
// Arithmetic
|
|
OADD: ssa.OpAdd,
|
|
OSUB: ssa.OpSub,
|
|
OLSH: ssa.OpLsh,
|
|
ORSH: ssa.OpRsh,
|
|
}
|
|
|
|
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
|
|
func (s *state) expr(n *Node) *ssa.Value {
|
|
s.pushLine(n.Lineno)
|
|
defer s.popLine()
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
case ONAME:
|
|
if n.Class == PFUNC {
|
|
// "value" of a function is the address of the function's closure
|
|
sym := funcsym(n.Sym)
|
|
aux := &ssa.ExternSymbol{n.Type, sym}
|
|
return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
|
|
}
|
|
if canSSA(n) {
|
|
return s.variable(n, n.Type)
|
|
}
|
|
addr := s.addr(n)
|
|
return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
case OLITERAL:
|
|
switch n.Val().Ctype() {
|
|
case CTINT:
|
|
return s.constInt(n.Type, Mpgetfix(n.Val().U.(*Mpint)))
|
|
case CTSTR, CTBOOL:
|
|
return s.entryNewValue0A(ssa.OpConst, n.Type, n.Val().U)
|
|
case CTNIL:
|
|
return s.entryNewValue0(ssa.OpConst, n.Type)
|
|
default:
|
|
s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
|
|
return nil
|
|
}
|
|
case OCONVNOP:
|
|
x := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpConvNop, n.Type, x)
|
|
case OCONV:
|
|
x := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpConvert, n.Type, x)
|
|
|
|
// binary ops
|
|
case OLT, OEQ, ONE, OLE, OGE, OGT:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.newValue2(binOpToSSA[n.Op], ssa.TypeBool, a, b)
|
|
case OADD, OSUB, OLSH, ORSH:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.newValue2(binOpToSSA[n.Op], a.Type, a, b)
|
|
case OANDAND, OOROR:
|
|
// To implement OANDAND (and OOROR), we introduce a
|
|
// new temporary variable to hold the result. The
|
|
// variable is associated with the OANDAND node in the
|
|
// s.vars table (normally variables are only
|
|
// associated with ONAME nodes). We convert
|
|
// A && B
|
|
// to
|
|
// var = A
|
|
// if var {
|
|
// var = B
|
|
// }
|
|
// Using var in the subsequent block introduces the
|
|
// necessary phi variable.
|
|
el := s.expr(n.Left)
|
|
s.vars[n] = el
|
|
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Control = el
|
|
|
|
bRight := s.f.NewBlock(ssa.BlockPlain)
|
|
bResult := s.f.NewBlock(ssa.BlockPlain)
|
|
if n.Op == OANDAND {
|
|
addEdge(b, bRight)
|
|
addEdge(b, bResult)
|
|
} else if n.Op == OOROR {
|
|
addEdge(b, bResult)
|
|
addEdge(b, bRight)
|
|
}
|
|
|
|
s.startBlock(bRight)
|
|
er := s.expr(n.Right)
|
|
s.vars[n] = er
|
|
|
|
b = s.endBlock()
|
|
addEdge(b, bResult)
|
|
|
|
s.startBlock(bResult)
|
|
return s.variable(n, n.Type)
|
|
|
|
// unary ops
|
|
case ONOT:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpNot, a.Type, a)
|
|
|
|
case OADDR:
|
|
return s.addr(n.Left)
|
|
|
|
case OIND:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
|
|
case ODOT:
|
|
v := s.expr(n.Left)
|
|
return s.newValue1I(ssa.OpStructSelect, n.Type, n.Xoffset, v)
|
|
|
|
case ODOTPTR:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
p = s.newValue2(ssa.OpAdd, p.Type, p, s.constInt(s.config.Uintptr, n.Xoffset))
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
|
|
case OINDEX:
|
|
if n.Left.Type.Bound >= 0 { // array or string
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
var elemtype *Type
|
|
var len *ssa.Value
|
|
if n.Left.Type.IsString() {
|
|
len = s.newValue1(ssa.OpStringLen, s.config.Uintptr, a)
|
|
elemtype = Types[TUINT8]
|
|
} else {
|
|
len = s.constInt(s.config.Uintptr, n.Left.Type.Bound)
|
|
elemtype = n.Left.Type.Type
|
|
}
|
|
s.boundsCheck(i, len)
|
|
return s.newValue2(ssa.OpArrayIndex, elemtype, a, i)
|
|
} else { // slice
|
|
p := s.addr(n)
|
|
return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem())
|
|
}
|
|
|
|
case OLEN, OCAP:
|
|
switch {
|
|
case n.Left.Type.IsSlice():
|
|
op := ssa.OpSliceLen
|
|
if n.Op == OCAP {
|
|
op = ssa.OpSliceCap
|
|
}
|
|
return s.newValue1(op, s.config.Int, s.expr(n.Left))
|
|
case n.Left.Type.IsString(): // string; not reachable for OCAP
|
|
return s.newValue1(ssa.OpStringLen, s.config.Int, s.expr(n.Left))
|
|
default: // array
|
|
return s.constInt(s.config.Int, n.Left.Type.Bound)
|
|
}
|
|
|
|
case OCALLFUNC:
|
|
static := n.Left.Op == ONAME && n.Left.Class == PFUNC
|
|
|
|
// evaluate closure
|
|
var closure *ssa.Value
|
|
if !static {
|
|
closure = s.expr(n.Left)
|
|
}
|
|
|
|
// run all argument assignments
|
|
s.stmtList(n.List)
|
|
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
var call *ssa.Value
|
|
if static {
|
|
call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, n.Left.Sym, s.mem())
|
|
} else {
|
|
entry := s.newValue2(ssa.OpLoad, s.config.Uintptr, closure, s.mem())
|
|
call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, entry, closure, s.mem())
|
|
}
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockCall
|
|
b.Control = call
|
|
addEdge(b, bNext)
|
|
addEdge(b, s.exit)
|
|
|
|
// read result from stack at the start of the fallthrough block
|
|
s.startBlock(bNext)
|
|
var titer Iter
|
|
fp := Structfirst(&titer, Getoutarg(n.Left.Type))
|
|
if fp == nil {
|
|
// CALLFUNC has no return value. Continue with the next statement.
|
|
return nil
|
|
}
|
|
a := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp)
|
|
return s.newValue2(ssa.OpLoad, fp.Type, a, call)
|
|
default:
|
|
s.Unimplementedf("unhandled expr %s", opnames[n.Op])
|
|
return nil
|
|
}
|
|
}
|
|
|
|
func (s *state) assign(op uint8, left *Node, right *Node) {
|
|
// TODO: do write barrier
|
|
// if op == OASWB
|
|
var val *ssa.Value
|
|
if right == nil {
|
|
// right == nil means use the zero value of the assigned type.
|
|
t := left.Type
|
|
if !canSSA(left) {
|
|
// if we can't ssa this memory, treat it as just zeroing out the backing memory
|
|
addr := s.addr(left)
|
|
s.vars[&memvar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem())
|
|
return
|
|
}
|
|
switch {
|
|
case t.IsString():
|
|
val = s.entryNewValue0A(ssa.OpConst, left.Type, "")
|
|
case t.IsInteger() || t.IsPtr():
|
|
val = s.entryNewValue0(ssa.OpConst, left.Type)
|
|
case t.IsBoolean():
|
|
val = s.entryNewValue0A(ssa.OpConst, left.Type, false) // TODO: store bools as 0/1 in AuxInt?
|
|
default:
|
|
s.Unimplementedf("zero for type %v not implemented", t)
|
|
}
|
|
} else {
|
|
val = s.expr(right)
|
|
}
|
|
if left.Op == ONAME && canSSA(left) {
|
|
// Update variable assignment.
|
|
s.vars[left] = val
|
|
return
|
|
}
|
|
// not ssa-able. Treat as a store.
|
|
addr := s.addr(left)
|
|
s.vars[&memvar] = s.newValue3(ssa.OpStore, ssa.TypeMem, addr, val, s.mem())
|
|
}
|
|
|
|
// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
|
|
// The value that the returned Value represents is guaranteed to be non-nil.
|
|
func (s *state) addr(n *Node) *ssa.Value {
|
|
switch n.Op {
|
|
case ONAME:
|
|
switch n.Class {
|
|
case PEXTERN:
|
|
// global variable
|
|
aux := &ssa.ExternSymbol{n.Type, n.Sym}
|
|
return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
|
|
case PPARAM, PPARAMOUT, PAUTO:
|
|
// parameter/result slot or local variable
|
|
v := s.decladdrs[n]
|
|
if v == nil {
|
|
if flag_race != 0 && n.String() == ".fp" {
|
|
s.Unimplementedf("race detector mishandles nodfp")
|
|
}
|
|
s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
|
|
}
|
|
return v
|
|
case PAUTO | PHEAP:
|
|
return s.expr(n.Name.Heapaddr)
|
|
default:
|
|
s.Unimplementedf("variable address of %v not implemented", n)
|
|
return nil
|
|
}
|
|
case OINDREG:
|
|
// indirect off a register (TODO: always SP?)
|
|
// used for storing/loading arguments/returns to/from callees
|
|
return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
|
|
case OINDEX:
|
|
if n.Left.Type.IsSlice() {
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
len := s.newValue1(ssa.OpSliceLen, s.config.Uintptr, a)
|
|
s.boundsCheck(i, len)
|
|
p := s.newValue1(ssa.OpSlicePtr, Ptrto(n.Left.Type.Type), a)
|
|
return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), p, i)
|
|
} else { // array
|
|
a := s.addr(n.Left)
|
|
i := s.expr(n.Right)
|
|
len := s.constInt(s.config.Uintptr, n.Left.Type.Bound)
|
|
s.boundsCheck(i, len)
|
|
return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), a, i)
|
|
}
|
|
case OIND:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
return p
|
|
case ODOT:
|
|
p := s.addr(n.Left)
|
|
return s.newValue2(ssa.OpAdd, p.Type, p, s.constInt(s.config.Uintptr, n.Xoffset))
|
|
case ODOTPTR:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
return s.newValue2(ssa.OpAdd, p.Type, p, s.constInt(s.config.Uintptr, n.Xoffset))
|
|
default:
|
|
s.Unimplementedf("addr: bad op %v", Oconv(int(n.Op), 0))
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// canSSA reports whether n is SSA-able.
|
|
// n must be an ONAME.
|
|
func canSSA(n *Node) bool {
|
|
if n.Op != ONAME {
|
|
return false
|
|
}
|
|
if n.Addrtaken {
|
|
return false
|
|
}
|
|
if n.Class&PHEAP != 0 {
|
|
return false
|
|
}
|
|
if n.Class == PEXTERN {
|
|
return false
|
|
}
|
|
if n.Class == PPARAMOUT {
|
|
return false
|
|
}
|
|
if Isfat(n.Type) {
|
|
return false
|
|
}
|
|
return true
|
|
// TODO: try to make more variables SSAable.
|
|
}
|
|
|
|
// nilCheck generates nil pointer checking code.
|
|
// Starts a new block on return.
|
|
func (s *state) nilCheck(ptr *ssa.Value) {
|
|
c := s.newValue1(ssa.OpIsNonNil, ssa.TypeBool, ptr)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Control = c
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
addEdge(b, bNext)
|
|
addEdge(b, s.exit)
|
|
s.startBlock(bNext)
|
|
// TODO(khr): Don't go directly to exit. Go to a stub that calls panicmem first.
|
|
// TODO: implicit nil checks somehow?
|
|
}
|
|
|
|
// boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
|
|
// Starts a new block on return.
|
|
func (s *state) boundsCheck(idx, len *ssa.Value) {
|
|
// TODO: convert index to full width?
|
|
// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
|
|
|
|
// bounds check
|
|
cmp := s.newValue2(ssa.OpIsInBounds, ssa.TypeBool, idx, len)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Control = cmp
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
addEdge(b, bNext)
|
|
addEdge(b, s.exit)
|
|
// TODO: don't go directly to s.exit. Go to a stub that calls panicindex first.
|
|
s.startBlock(bNext)
|
|
}
|
|
|
|
// variable returns the value of a variable at the current location.
|
|
func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
|
|
if s.curBlock == nil {
|
|
// Unimplemented instead of Fatal because fixedbugs/bug303.go
|
|
// demonstrates a case in which this appears to happen legitimately.
|
|
// TODO: decide on the correct behavior here.
|
|
s.Unimplementedf("nil curblock adding variable %v (%v)", name, t)
|
|
}
|
|
v := s.vars[name]
|
|
if v == nil {
|
|
// TODO: get type? Take Sym as arg?
|
|
v = s.newValue0A(ssa.OpFwdRef, t, name)
|
|
s.vars[name] = v
|
|
}
|
|
return v
|
|
}
|
|
|
|
func (s *state) mem() *ssa.Value {
|
|
return s.variable(&memvar, ssa.TypeMem)
|
|
}
|
|
|
|
func (s *state) linkForwardReferences() {
|
|
// Build ssa graph. Each variable on its first use in a basic block
|
|
// leaves a FwdRef in that block representing the incoming value
|
|
// of that variable. This function links that ref up with possible definitions,
|
|
// inserting Phi values as needed. This is essentially the algorithm
|
|
// described by Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
|
|
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
|
|
for _, b := range s.f.Blocks {
|
|
for _, v := range b.Values {
|
|
if v.Op != ssa.OpFwdRef {
|
|
continue
|
|
}
|
|
name := v.Aux.(*Node)
|
|
v.Op = ssa.OpCopy
|
|
v.Aux = nil
|
|
v.SetArgs1(s.lookupVarIncoming(b, v.Type, name))
|
|
}
|
|
}
|
|
}
|
|
|
|
// lookupVarIncoming finds the variable's value at the start of block b.
|
|
func (s *state) lookupVarIncoming(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value {
|
|
// TODO(khr): have lookupVarIncoming overwrite the fwdRef or copy it
|
|
// will be used in, instead of having the result used in a copy value.
|
|
if b == s.f.Entry {
|
|
if name == &memvar {
|
|
return s.startmem
|
|
}
|
|
// variable is live at the entry block. Load it.
|
|
addr := s.decladdrs[name]
|
|
if addr == nil {
|
|
// TODO: closure args reach here.
|
|
s.Unimplementedf("variable %s not found", name)
|
|
}
|
|
if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
|
|
s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
|
|
}
|
|
return s.entryNewValue2(ssa.OpLoad, t, addr, s.startmem)
|
|
}
|
|
var vals []*ssa.Value
|
|
for _, p := range b.Preds {
|
|
vals = append(vals, s.lookupVarOutgoing(p, t, name))
|
|
}
|
|
if len(vals) == 0 {
|
|
s.Unimplementedf("TODO: Handle fixedbugs/bug076.go")
|
|
return nil
|
|
}
|
|
v0 := vals[0]
|
|
for i := 1; i < len(vals); i++ {
|
|
if vals[i] != v0 {
|
|
// need a phi value
|
|
v := b.NewValue0(s.peekLine(), ssa.OpPhi, t)
|
|
v.AddArgs(vals...)
|
|
return v
|
|
}
|
|
}
|
|
return v0
|
|
}
|
|
|
|
// lookupVarOutgoing finds the variable's value at the end of block b.
|
|
func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value {
|
|
m := s.defvars[b.ID]
|
|
if v, ok := m[name]; ok {
|
|
return v
|
|
}
|
|
// The variable is not defined by b and we haven't
|
|
// looked it up yet. Generate v, a copy value which
|
|
// will be the outgoing value of the variable. Then
|
|
// look up w, the incoming value of the variable.
|
|
// Make v = copy(w). We need the extra copy to
|
|
// prevent infinite recursion when looking up the
|
|
// incoming value of the variable.
|
|
v := b.NewValue0(s.peekLine(), ssa.OpCopy, t)
|
|
m[name] = v
|
|
v.AddArg(s.lookupVarIncoming(b, t, name))
|
|
return v
|
|
}
|
|
|
|
// TODO: the above mutually recursive functions can lead to very deep stacks. Fix that.
|
|
|
|
// addEdge adds an edge from b to c.
|
|
func addEdge(b, c *ssa.Block) {
|
|
b.Succs = append(b.Succs, c)
|
|
c.Preds = append(c.Preds, b)
|
|
}
|
|
|
|
// an unresolved branch
|
|
type branch struct {
|
|
p *obj.Prog // branch instruction
|
|
b *ssa.Block // target
|
|
}
|
|
|
|
// genssa appends entries to ptxt for each instruction in f.
|
|
// gcargs and gclocals are filled in with pointer maps for the frame.
|
|
func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
|
|
// TODO: line numbers
|
|
|
|
if f.FrameSize > 1<<31 {
|
|
Yyerror("stack frame too large (>2GB)")
|
|
return
|
|
}
|
|
|
|
ptxt.To.Type = obj.TYPE_TEXTSIZE
|
|
ptxt.To.Val = int32(Rnd(Curfn.Type.Argwid, int64(Widthptr))) // arg size
|
|
ptxt.To.Offset = f.FrameSize - 8 // TODO: arch-dependent
|
|
|
|
// Remember where each block starts.
|
|
bstart := make([]*obj.Prog, f.NumBlocks())
|
|
|
|
// Remember all the branch instructions we've seen
|
|
// and where they would like to go
|
|
var branches []branch
|
|
|
|
// Emit basic blocks
|
|
for i, b := range f.Blocks {
|
|
bstart[b.ID] = Pc
|
|
// Emit values in block
|
|
for _, v := range b.Values {
|
|
genValue(v)
|
|
}
|
|
// Emit control flow instructions for block
|
|
var next *ssa.Block
|
|
if i < len(f.Blocks)-1 {
|
|
next = f.Blocks[i+1]
|
|
}
|
|
branches = genBlock(b, next, branches)
|
|
}
|
|
|
|
// Resolve branches
|
|
for _, br := range branches {
|
|
br.p.To.Val = bstart[br.b.ID]
|
|
}
|
|
|
|
Pc.As = obj.ARET // overwrite AEND
|
|
|
|
// TODO: liveness
|
|
// TODO: gcargs
|
|
// TODO: gclocals
|
|
|
|
// TODO: dump frame if -f
|
|
|
|
// Emit garbage collection symbols. TODO: put something in them
|
|
//liveness(Curfn, ptxt, gcargs, gclocals)
|
|
duint32(gcargs, 0, 0)
|
|
ggloblsym(gcargs, 4, obj.RODATA|obj.DUPOK)
|
|
duint32(gclocals, 0, 0)
|
|
ggloblsym(gclocals, 4, obj.RODATA|obj.DUPOK)
|
|
}
|
|
|
|
func genValue(v *ssa.Value) {
|
|
lineno = v.Line
|
|
switch v.Op {
|
|
case ssa.OpAMD64ADDQ:
|
|
// TODO: use addq instead of leaq if target is in the right register.
|
|
p := Prog(x86.ALEAQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.From.Scale = 1
|
|
p.From.Index = regnum(v.Args[1])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64ADDL:
|
|
p := Prog(x86.ALEAL)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.From.Scale = 1
|
|
p.From.Index = regnum(v.Args[1])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64ADDW:
|
|
p := Prog(x86.ALEAW)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.From.Scale = 1
|
|
p.From.Index = regnum(v.Args[1])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64ADDB, ssa.OpAMD64ANDQ:
|
|
r := regnum(v)
|
|
x := regnum(v.Args[0])
|
|
y := regnum(v.Args[1])
|
|
if x != r && y != r {
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
x = r
|
|
}
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
if x == r {
|
|
p.From.Reg = y
|
|
} else {
|
|
p.From.Reg = x
|
|
}
|
|
case ssa.OpAMD64ADDQconst:
|
|
// TODO: use addq instead of leaq if target is in the right register.
|
|
p := Prog(x86.ALEAQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64MULQconst:
|
|
v.Unimplementedf("IMULQ doasm")
|
|
return
|
|
// TODO: this isn't right. doasm fails on it. I don't think obj
|
|
// has ever been taught to compile imul $c, r1, r2.
|
|
p := Prog(x86.AIMULQ)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.From3 = new(obj.Addr)
|
|
p.From3.Type = obj.TYPE_REG
|
|
p.From3.Reg = regnum(v.Args[0])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64SUBQconst:
|
|
// This code compensates for the fact that the register allocator
|
|
// doesn't understand 2-address instructions yet. TODO: fix that.
|
|
x := regnum(v.Args[0])
|
|
r := regnum(v)
|
|
if x != r {
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
x = r
|
|
}
|
|
p := Prog(x86.ASUBQ)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64SHLQ, ssa.OpAMD64SHRQ, ssa.OpAMD64SARQ:
|
|
x := regnum(v.Args[0])
|
|
r := regnum(v)
|
|
if x != r {
|
|
if r == x86.REG_CX {
|
|
v.Fatalf("can't implement %s, target and shift both in CX", v.LongString())
|
|
}
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
x = r
|
|
}
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[1]) // should be CX
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64SHLQconst, ssa.OpAMD64SHRQconst, ssa.OpAMD64SARQconst:
|
|
x := regnum(v.Args[0])
|
|
r := regnum(v)
|
|
if x != r {
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
x = r
|
|
}
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64SBBQcarrymask:
|
|
r := regnum(v)
|
|
p := Prog(x86.ASBBQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64CMOVQCC:
|
|
r := regnum(v)
|
|
x := regnum(v.Args[1])
|
|
y := regnum(v.Args[2])
|
|
if x != r && y != r {
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
x = r
|
|
}
|
|
var p *obj.Prog
|
|
if x == r {
|
|
p = Prog(x86.ACMOVQCS)
|
|
p.From.Reg = y
|
|
} else {
|
|
p = Prog(x86.ACMOVQCC)
|
|
p.From.Reg = x
|
|
}
|
|
p.From.Type = obj.TYPE_REG
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64LEAQ1:
|
|
p := Prog(x86.ALEAQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.From.Scale = 1
|
|
p.From.Index = regnum(v.Args[1])
|
|
addAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64LEAQ:
|
|
p := Prog(x86.ALEAQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
addAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64CMPQ, ssa.OpAMD64TESTB, ssa.OpAMD64TESTQ:
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v.Args[1])
|
|
case ssa.OpAMD64CMPQconst:
|
|
p := Prog(x86.ACMPQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.To.Type = obj.TYPE_CONST
|
|
p.To.Offset = v.AuxInt
|
|
case ssa.OpAMD64MOVQconst:
|
|
x := regnum(v)
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x
|
|
case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload:
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
addAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64MOVQloadidx8:
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = regnum(v.Args[0])
|
|
addAux(&p.From, v)
|
|
p.From.Scale = 8
|
|
p.From.Index = regnum(v.Args[1])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore:
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[1])
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = regnum(v.Args[0])
|
|
addAux(&p.To, v)
|
|
case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX:
|
|
p := Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpAMD64MOVXzero:
|
|
nb := v.AuxInt
|
|
offset := int64(0)
|
|
reg := regnum(v.Args[0])
|
|
for nb >= 8 {
|
|
nb, offset = movZero(x86.AMOVQ, 8, nb, offset, reg)
|
|
}
|
|
for nb >= 4 {
|
|
nb, offset = movZero(x86.AMOVL, 4, nb, offset, reg)
|
|
}
|
|
for nb >= 2 {
|
|
nb, offset = movZero(x86.AMOVW, 2, nb, offset, reg)
|
|
}
|
|
for nb >= 1 {
|
|
nb, offset = movZero(x86.AMOVB, 1, nb, offset, reg)
|
|
}
|
|
case ssa.OpCopy: // TODO: lower to MOVQ earlier?
|
|
if v.Type.IsMemory() {
|
|
return
|
|
}
|
|
x := regnum(v.Args[0])
|
|
y := regnum(v)
|
|
if x != y {
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = y
|
|
}
|
|
case ssa.OpLoadReg8:
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = x86.REG_SP
|
|
p.From.Offset = localOffset(v.Args[0])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v)
|
|
case ssa.OpStoreReg8:
|
|
p := Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = regnum(v.Args[0])
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = x86.REG_SP
|
|
p.To.Offset = localOffset(v)
|
|
case ssa.OpPhi:
|
|
// just check to make sure regalloc did it right
|
|
f := v.Block.Func
|
|
loc := f.RegAlloc[v.ID]
|
|
for _, a := range v.Args {
|
|
if f.RegAlloc[a.ID] != loc { // TODO: .Equal() instead?
|
|
v.Fatalf("phi arg at different location than phi %v %v %v %v", v, loc, a, f.RegAlloc[a.ID])
|
|
}
|
|
}
|
|
case ssa.OpConst:
|
|
if v.Block.Func.RegAlloc[v.ID] != nil {
|
|
v.Fatalf("const value %v shouldn't have a location", v)
|
|
}
|
|
case ssa.OpArg:
|
|
// memory arg needs no code
|
|
// TODO: check that only mem arg goes here.
|
|
case ssa.OpAMD64CALLstatic:
|
|
p := Prog(obj.ACALL)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = Linksym(v.Aux.(*Sym))
|
|
case ssa.OpAMD64CALLclosure:
|
|
p := Prog(obj.ACALL)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v.Args[0])
|
|
case ssa.OpAMD64XORQconst:
|
|
p := Prog(x86.AXORQ)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = regnum(v.Args[0])
|
|
case ssa.OpSP, ssa.OpSB:
|
|
// nothing to do
|
|
default:
|
|
v.Unimplementedf("value %s not implemented", v.LongString())
|
|
}
|
|
}
|
|
|
|
// movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset
|
|
func movZero(as int, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) {
|
|
p := Prog(as)
|
|
// TODO: use zero register on archs that support it.
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 0
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = regnum
|
|
p.To.Offset = offset
|
|
offset += width
|
|
nleft = nbytes - width
|
|
return nleft, offset
|
|
}
|
|
|
|
func genBlock(b, next *ssa.Block, branches []branch) []branch {
|
|
lineno = b.Line
|
|
switch b.Kind {
|
|
case ssa.BlockPlain:
|
|
if b.Succs[0] != next {
|
|
p := Prog(obj.AJMP)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
}
|
|
case ssa.BlockExit:
|
|
Prog(obj.ARET)
|
|
case ssa.BlockCall:
|
|
if b.Succs[0] != next {
|
|
p := Prog(obj.AJMP)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
}
|
|
case ssa.BlockAMD64EQ:
|
|
if b.Succs[0] == next {
|
|
p := Prog(x86.AJNE)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[1]})
|
|
} else if b.Succs[1] == next {
|
|
p := Prog(x86.AJEQ)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
} else {
|
|
p := Prog(x86.AJEQ)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{q, b.Succs[1]})
|
|
}
|
|
case ssa.BlockAMD64NE:
|
|
if b.Succs[0] == next {
|
|
p := Prog(x86.AJEQ)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[1]})
|
|
} else if b.Succs[1] == next {
|
|
p := Prog(x86.AJNE)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
} else {
|
|
p := Prog(x86.AJNE)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{q, b.Succs[1]})
|
|
}
|
|
case ssa.BlockAMD64LT:
|
|
if b.Succs[0] == next {
|
|
p := Prog(x86.AJGE)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[1]})
|
|
} else if b.Succs[1] == next {
|
|
p := Prog(x86.AJLT)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
} else {
|
|
p := Prog(x86.AJLT)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{q, b.Succs[1]})
|
|
}
|
|
case ssa.BlockAMD64ULT:
|
|
if b.Succs[0] == next {
|
|
p := Prog(x86.AJCC)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[1]})
|
|
} else if b.Succs[1] == next {
|
|
p := Prog(x86.AJCS)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
} else {
|
|
p := Prog(x86.AJCS)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{q, b.Succs[1]})
|
|
}
|
|
case ssa.BlockAMD64UGT:
|
|
if b.Succs[0] == next {
|
|
p := Prog(x86.AJLS)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[1]})
|
|
} else if b.Succs[1] == next {
|
|
p := Prog(x86.AJHI)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
} else {
|
|
p := Prog(x86.AJHI)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{p, b.Succs[0]})
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
branches = append(branches, branch{q, b.Succs[1]})
|
|
}
|
|
|
|
default:
|
|
b.Unimplementedf("branch %s not implemented", b.LongString())
|
|
}
|
|
return branches
|
|
}
|
|
|
|
// addAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
|
|
func addAux(a *obj.Addr, v *ssa.Value) {
|
|
if a.Type != obj.TYPE_MEM {
|
|
v.Fatalf("bad addAux addr %s", a)
|
|
}
|
|
// add integer offset
|
|
a.Offset += v.AuxInt
|
|
|
|
// If no additional symbol offset, we're done.
|
|
if v.Aux == nil {
|
|
return
|
|
}
|
|
// Add symbol's offset from its base register.
|
|
switch sym := v.Aux.(type) {
|
|
case *ssa.ExternSymbol:
|
|
a.Name = obj.NAME_EXTERN
|
|
a.Sym = Linksym(sym.Sym.(*Sym))
|
|
case *ssa.ArgSymbol:
|
|
a.Offset += v.Block.Func.FrameSize + sym.Offset
|
|
case *ssa.AutoSymbol:
|
|
if sym.Offset == -1 {
|
|
v.Fatalf("auto symbol %s offset not calculated", sym.Sym)
|
|
}
|
|
a.Offset += sym.Offset
|
|
default:
|
|
v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
|
|
}
|
|
}
|
|
|
|
// ssaRegToReg maps ssa register numbers to obj register numbers.
|
|
var ssaRegToReg = [...]int16{
|
|
x86.REG_AX,
|
|
x86.REG_CX,
|
|
x86.REG_DX,
|
|
x86.REG_BX,
|
|
x86.REG_SP,
|
|
x86.REG_BP,
|
|
x86.REG_SI,
|
|
x86.REG_DI,
|
|
x86.REG_R8,
|
|
x86.REG_R9,
|
|
x86.REG_R10,
|
|
x86.REG_R11,
|
|
x86.REG_R12,
|
|
x86.REG_R13,
|
|
x86.REG_R14,
|
|
x86.REG_R15,
|
|
x86.REG_X0,
|
|
x86.REG_X1,
|
|
x86.REG_X2,
|
|
x86.REG_X3,
|
|
x86.REG_X4,
|
|
x86.REG_X5,
|
|
x86.REG_X6,
|
|
x86.REG_X7,
|
|
x86.REG_X8,
|
|
x86.REG_X9,
|
|
x86.REG_X10,
|
|
x86.REG_X11,
|
|
x86.REG_X12,
|
|
x86.REG_X13,
|
|
x86.REG_X14,
|
|
x86.REG_X15,
|
|
0, // SB isn't a real register. We fill an Addr.Reg field with 0 in this case.
|
|
// TODO: arch-dependent
|
|
}
|
|
|
|
// regnum returns the register (in cmd/internal/obj numbering) to
|
|
// which v has been allocated. Panics if v is not assigned to a
|
|
// register.
|
|
func regnum(v *ssa.Value) int16 {
|
|
return ssaRegToReg[v.Block.Func.RegAlloc[v.ID].(*ssa.Register).Num]
|
|
}
|
|
|
|
// localOffset returns the offset below the frame pointer where
|
|
// a stack-allocated local has been allocated. Panics if v
|
|
// is not assigned to a local slot.
|
|
func localOffset(v *ssa.Value) int64 {
|
|
return v.Block.Func.RegAlloc[v.ID].(*ssa.LocalSlot).Idx
|
|
}
|
|
|
|
// ssaExport exports a bunch of compiler services for the ssa backend.
|
|
type ssaExport struct {
|
|
log bool
|
|
unimplemented bool
|
|
}
|
|
|
|
// StringSym returns a symbol (a *Sym wrapped in an interface) which
|
|
// is a global string constant containing s.
|
|
func (*ssaExport) StringSym(s string) interface{} {
|
|
// TODO: is idealstring correct? It might not matter...
|
|
hdr, _ := stringsym(s)
|
|
return &ssa.ExternSymbol{Typ: idealstring, Sym: hdr}
|
|
}
|
|
|
|
// Log logs a message from the compiler.
|
|
func (e *ssaExport) Logf(msg string, args ...interface{}) {
|
|
// If e was marked as unimplemented, anything could happen. Ignore.
|
|
if e.log && !e.unimplemented {
|
|
fmt.Printf(msg, args...)
|
|
}
|
|
}
|
|
|
|
// Fatal reports a compiler error and exits.
|
|
func (e *ssaExport) Fatalf(msg string, args ...interface{}) {
|
|
// If e was marked as unimplemented, anything could happen. Ignore.
|
|
if !e.unimplemented {
|
|
Fatal(msg, args...)
|
|
}
|
|
}
|
|
|
|
// Unimplemented reports that the function cannot be compiled.
|
|
// It will be removed once SSA work is complete.
|
|
func (e *ssaExport) Unimplementedf(msg string, args ...interface{}) {
|
|
const alwaysLog = false // enable to calculate top unimplemented features
|
|
if !e.unimplemented && (e.log || alwaysLog) {
|
|
// first implementation failure, print explanation
|
|
fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
|
|
}
|
|
e.unimplemented = true
|
|
}
|