mirror of
https://github.com/golang/go.git
synced 2025-05-23 00:11:26 +00:00
ZeroAuto was used with the ambiguously live logic. The ambiguously live logic is removed as we switched to stack objects. It is now never called. Remove. Change-Id: If4cdd7fed5297f8ab591cc392a76c80f57820856 Reviewed-on: https://go-review.googlesource.com/c/go/+/203538 Run-TryBot: Cherry Zhang <cherryyz@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
138 lines
4.2 KiB
Go
138 lines
4.2 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package amd64
|
|
|
|
import (
|
|
"cmd/compile/internal/gc"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/obj/x86"
|
|
"cmd/internal/objabi"
|
|
)
|
|
|
|
// no floating point in note handlers on Plan 9
|
|
var isPlan9 = objabi.GOOS == "plan9"
|
|
|
|
// DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ,
|
|
// See runtime/mkduff.go.
|
|
const (
|
|
dzBlocks = 16 // number of MOV/ADD blocks
|
|
dzBlockLen = 4 // number of clears per block
|
|
dzBlockSize = 19 // size of instructions in a single block
|
|
dzMovSize = 4 // size of single MOV instruction w/ offset
|
|
dzLeaqSize = 4 // size of single LEAQ instruction
|
|
dzClearStep = 16 // number of bytes cleared by each MOV instruction
|
|
|
|
dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block
|
|
dzSize = dzBlocks * dzBlockSize
|
|
)
|
|
|
|
// dzOff returns the offset for a jump into DUFFZERO.
|
|
// b is the number of bytes to zero.
|
|
func dzOff(b int64) int64 {
|
|
off := int64(dzSize)
|
|
off -= b / dzClearLen * dzBlockSize
|
|
tailLen := b % dzClearLen
|
|
if tailLen >= dzClearStep {
|
|
off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep)
|
|
}
|
|
return off
|
|
}
|
|
|
|
// duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO.
|
|
// b is the number of bytes to zero.
|
|
func dzDI(b int64) int64 {
|
|
tailLen := b % dzClearLen
|
|
if tailLen < dzClearStep {
|
|
return 0
|
|
}
|
|
tailSteps := tailLen / dzClearStep
|
|
return -dzClearStep * (dzBlockLen - tailSteps)
|
|
}
|
|
|
|
func zerorange(pp *gc.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog {
|
|
const (
|
|
ax = 1 << iota
|
|
x0
|
|
)
|
|
|
|
if cnt == 0 {
|
|
return p
|
|
}
|
|
|
|
if cnt%int64(gc.Widthreg) != 0 {
|
|
// should only happen with nacl
|
|
if cnt%int64(gc.Widthptr) != 0 {
|
|
gc.Fatalf("zerorange count not a multiple of widthptr %d", cnt)
|
|
}
|
|
if *state&ax == 0 {
|
|
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
|
|
*state |= ax
|
|
}
|
|
p = pp.Appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off)
|
|
off += int64(gc.Widthptr)
|
|
cnt -= int64(gc.Widthptr)
|
|
}
|
|
|
|
if cnt == 8 {
|
|
if *state&ax == 0 {
|
|
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
|
|
*state |= ax
|
|
}
|
|
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off)
|
|
} else if !isPlan9 && cnt <= int64(8*gc.Widthreg) {
|
|
if *state&x0 == 0 {
|
|
p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0)
|
|
*state |= x0
|
|
}
|
|
|
|
for i := int64(0); i < cnt/16; i++ {
|
|
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16)
|
|
}
|
|
|
|
if cnt%16 != 0 {
|
|
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16))
|
|
}
|
|
} else if !isPlan9 && (cnt <= int64(128*gc.Widthreg)) {
|
|
if *state&x0 == 0 {
|
|
p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0)
|
|
*state |= x0
|
|
}
|
|
p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0)
|
|
p = pp.Appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt))
|
|
p.To.Sym = gc.Duffzero
|
|
|
|
if cnt%16 != 0 {
|
|
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8))
|
|
}
|
|
} else {
|
|
if *state&ax == 0 {
|
|
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
|
|
*state |= ax
|
|
}
|
|
|
|
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0)
|
|
p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0)
|
|
p = pp.Appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
|
|
p = pp.Appendpp(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
func ginsnop(pp *gc.Progs) *obj.Prog {
|
|
// This is a hardware nop (1-byte 0x90) instruction,
|
|
// even though we describe it as an explicit XCHGL here.
|
|
// Particularly, this does not zero the high 32 bits
|
|
// like typical *L opcodes.
|
|
// (gas assembles "xchg %eax,%eax" to 0x87 0xc0, which
|
|
// does zero the high 32 bits.)
|
|
p := pp.Prog(x86.AXCHGL)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x86.REG_AX
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x86.REG_AX
|
|
return p
|
|
}
|