mirror of
https://github.com/golang/go.git
synced 2025-05-18 05:44:35 +00:00
Some ARM64 rewriting rules convert 'comparing to zero' conditions of if statements to a simplified version utilizing CMN and CMP instructions to branch over condition flags, in order to save one Add or Sub caculation. Such optimizations lead to wrong branching in case an overflow/underflow occurs when executing CMN or CMP. Fix the issue by introducing new block opcodes that don't honor the overflow/underflow flag, in the following categories: Block-Op Meaning ARM condition codes 1. LTnoov less than MI 2. GEnoov greater than or equal PL 3. LEnoov less than or equal MI || EQ 4. GTnoov greater than NEQ & PL The backend generates two consecutive branch instructions for 'LEnoov' and 'GTnoov' to model their expected behavior. A slight change to 'gc' and amd64/386 backends is made to unify the code generation. Add a test 'TestCondRewrite' as justification, it covers 32 incorrect rules identified on arm64, more might be needed on other arches, like 32-bit arm. Add two benchmarks profiling the aforementioned category 1&2 and category 3&4 separetely, we expect the first two categories will show performance improvement and the second will not result in visible regression compared with the non-optimized version. This change also updates TestFormats to support using %#x. Examples exhibiting where does the issue come from: 1: 'if x + 3 < 0' might be converted to: before: CMN $3, R0 BGE <else branch> // wrong branch is taken if 'x+3' overflows after: CMN $3, R0 BPL <else branch> 2: 'if y - 3 > 0' might be converted to: before: CMP $3, R0 BLE <else branch> // wrong branch is taken if 'y-3' underflows after: CMP $3, R0 BMI <else branch> BEQ <else branch> Benchmark data from different kinds of arm64 servers, 'old' is the non-optimized version (not the parent commit), generally the optimization version outperforms. S1: name old time/op new time/op delta CondRewrite/SoloJump 13.6ns ± 0% 12.9ns ± 0% -5.15% (p=0.000 n=10+10) CondRewrite/CombJump 13.8ns ± 1% 12.9ns ± 0% -6.32% (p=0.000 n=10+10) S2: name old time/op new time/op delta CondRewrite/SoloJump 11.6ns ± 0% 10.9ns ± 0% -6.03% (p=0.000 n=10+10) CondRewrite/CombJump 11.4ns ± 0% 10.8ns ± 1% -5.53% (p=0.000 n=10+10) S3: name old time/op new time/op delta CondRewrite/SoloJump 7.36ns ± 0% 7.50ns ± 0% +1.79% (p=0.000 n=9+10) CondRewrite/CombJump 7.35ns ± 0% 7.75ns ± 0% +5.51% (p=0.000 n=8+9) S4: name old time/op new time/op delta CondRewrite/SoloJump-224 11.5ns ± 1% 10.9ns ± 0% -4.97% (p=0.000 n=10+10) CondRewrite/CombJump-224 11.9ns ± 0% 11.5ns ± 0% -2.95% (p=0.000 n=10+10) S5: name old time/op new time/op delta CondRewrite/SoloJump 10.0ns ± 0% 10.0ns ± 0% -0.45% (p=0.000 n=9+10) CondRewrite/CombJump 9.93ns ± 0% 9.77ns ± 0% -1.53% (p=0.000 n=10+9) Go1 perf. data: name old time/op new time/op delta BinaryTree17 6.29s ± 1% 6.30s ± 1% ~ (p=1.000 n=5+5) Fannkuch11 5.40s ± 0% 5.40s ± 0% ~ (p=0.841 n=5+5) FmtFprintfEmpty 97.9ns ± 0% 98.9ns ± 3% ~ (p=0.937 n=4+5) FmtFprintfString 171ns ± 3% 171ns ± 2% ~ (p=0.754 n=5+5) FmtFprintfInt 212ns ± 0% 217ns ± 6% +2.55% (p=0.008 n=5+5) FmtFprintfIntInt 296ns ± 1% 297ns ± 2% ~ (p=0.516 n=5+5) FmtFprintfPrefixedInt 371ns ± 2% 374ns ± 7% ~ (p=1.000 n=5+5) FmtFprintfFloat 435ns ± 1% 439ns ± 2% ~ (p=0.056 n=5+5) FmtManyArgs 1.37µs ± 1% 1.36µs ± 1% ~ (p=0.730 n=5+5) GobDecode 14.6ms ± 4% 14.4ms ± 4% ~ (p=0.690 n=5+5) GobEncode 11.8ms ±20% 11.6ms ±15% ~ (p=1.000 n=5+5) Gzip 507ms ± 0% 491ms ± 0% -3.22% (p=0.008 n=5+5) Gunzip 73.8ms ± 0% 73.9ms ± 0% ~ (p=0.690 n=5+5) HTTPClientServer 116µs ± 0% 116µs ± 0% ~ (p=0.686 n=4+4) JSONEncode 21.8ms ± 1% 21.6ms ± 2% ~ (p=0.151 n=5+5) JSONDecode 104ms ± 1% 103ms ± 1% -1.08% (p=0.016 n=5+5) Mandelbrot200 9.53ms ± 0% 9.53ms ± 0% ~ (p=0.421 n=5+5) GoParse 7.55ms ± 1% 7.51ms ± 1% ~ (p=0.151 n=5+5) RegexpMatchEasy0_32 158ns ± 0% 158ns ± 0% ~ (all equal) RegexpMatchEasy0_1K 606ns ± 1% 608ns ± 3% ~ (p=0.937 n=5+5) RegexpMatchEasy1_32 143ns ± 0% 144ns ± 1% ~ (p=0.095 n=5+4) RegexpMatchEasy1_1K 927ns ± 2% 944ns ± 2% ~ (p=0.056 n=5+5) RegexpMatchMedium_32 16.0ns ± 0% 16.0ns ± 0% ~ (all equal) RegexpMatchMedium_1K 69.3µs ± 2% 69.7µs ± 0% ~ (p=0.690 n=5+5) RegexpMatchHard_32 3.73µs ± 0% 3.73µs ± 1% ~ (p=0.984 n=5+5) RegexpMatchHard_1K 111µs ± 1% 110µs ± 0% ~ (p=0.151 n=5+5) Revcomp 1.91s ±47% 1.77s ±68% ~ (p=1.000 n=5+5) Template 138ms ± 1% 138ms ± 1% ~ (p=1.000 n=5+5) TimeParse 787ns ± 2% 785ns ± 1% ~ (p=0.540 n=5+5) TimeFormat 729ns ± 1% 726ns ± 1% ~ (p=0.151 n=5+5) Updates #38740 Change-Id: I06c604874acdc1e63e66452dadee5df053045222 Reviewed-on: https://go-review.googlesource.com/c/go/+/233097 Reviewed-by: Keith Randall <khr@golang.org> Run-TryBot: Keith Randall <khr@golang.org>
6908 lines
225 KiB
Go
6908 lines
225 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"html"
|
|
"os"
|
|
"sort"
|
|
|
|
"bufio"
|
|
"bytes"
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/obj/x86"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"cmd/internal/sys"
|
|
)
|
|
|
|
var ssaConfig *ssa.Config
|
|
var ssaCaches []ssa.Cache
|
|
|
|
var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for
|
|
var ssaDumpStdout bool // whether to dump to stdout
|
|
var ssaDumpCFG string // generate CFGs for these phases
|
|
const ssaDumpFile = "ssa.html"
|
|
|
|
// The max number of defers in a function using open-coded defers. We enforce this
|
|
// limit because the deferBits bitmask is currently a single byte (to minimize code size)
|
|
const maxOpenDefers = 8
|
|
|
|
// ssaDumpInlined holds all inlined functions when ssaDump contains a function name.
|
|
var ssaDumpInlined []*Node
|
|
|
|
func initssaconfig() {
|
|
types_ := ssa.NewTypes()
|
|
|
|
if thearch.SoftFloat {
|
|
softfloatInit()
|
|
}
|
|
|
|
// Generate a few pointer types that are uncommon in the frontend but common in the backend.
|
|
// Caching is disabled in the backend, so generating these here avoids allocations.
|
|
_ = types.NewPtr(types.Types[TINTER]) // *interface{}
|
|
_ = types.NewPtr(types.NewPtr(types.Types[TSTRING])) // **string
|
|
_ = types.NewPtr(types.NewPtr(types.Idealstring)) // **string
|
|
_ = types.NewPtr(types.NewSlice(types.Types[TINTER])) // *[]interface{}
|
|
_ = types.NewPtr(types.NewPtr(types.Bytetype)) // **byte
|
|
_ = types.NewPtr(types.NewSlice(types.Bytetype)) // *[]byte
|
|
_ = types.NewPtr(types.NewSlice(types.Types[TSTRING])) // *[]string
|
|
_ = types.NewPtr(types.NewSlice(types.Idealstring)) // *[]string
|
|
_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
|
|
_ = types.NewPtr(types.Types[TINT16]) // *int16
|
|
_ = types.NewPtr(types.Types[TINT64]) // *int64
|
|
_ = types.NewPtr(types.Errortype) // *error
|
|
types.NewPtrCacheEnabled = false
|
|
ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, *types_, Ctxt, Debug['N'] == 0)
|
|
if thearch.LinkArch.Name == "386" {
|
|
ssaConfig.Set387(thearch.Use387)
|
|
}
|
|
ssaConfig.SoftFloat = thearch.SoftFloat
|
|
ssaConfig.Race = flag_race
|
|
ssaCaches = make([]ssa.Cache, nBackendWorkers)
|
|
|
|
// Set up some runtime functions we'll need to call.
|
|
assertE2I = sysfunc("assertE2I")
|
|
assertE2I2 = sysfunc("assertE2I2")
|
|
assertI2I = sysfunc("assertI2I")
|
|
assertI2I2 = sysfunc("assertI2I2")
|
|
deferproc = sysfunc("deferproc")
|
|
deferprocStack = sysfunc("deferprocStack")
|
|
Deferreturn = sysfunc("deferreturn")
|
|
Duffcopy = sysvar("duffcopy") // asm func with special ABI
|
|
Duffzero = sysvar("duffzero") // asm func with special ABI
|
|
gcWriteBarrier = sysvar("gcWriteBarrier") // asm func with special ABI
|
|
goschedguarded = sysfunc("goschedguarded")
|
|
growslice = sysfunc("growslice")
|
|
msanread = sysfunc("msanread")
|
|
msanwrite = sysfunc("msanwrite")
|
|
newobject = sysfunc("newobject")
|
|
newproc = sysfunc("newproc")
|
|
panicdivide = sysfunc("panicdivide")
|
|
panicdottypeE = sysfunc("panicdottypeE")
|
|
panicdottypeI = sysfunc("panicdottypeI")
|
|
panicnildottype = sysfunc("panicnildottype")
|
|
panicoverflow = sysfunc("panicoverflow")
|
|
panicshift = sysfunc("panicshift")
|
|
raceread = sysfunc("raceread")
|
|
racereadrange = sysfunc("racereadrange")
|
|
racewrite = sysfunc("racewrite")
|
|
racewriterange = sysfunc("racewriterange")
|
|
x86HasPOPCNT = sysvar("x86HasPOPCNT") // bool
|
|
x86HasSSE41 = sysvar("x86HasSSE41") // bool
|
|
x86HasFMA = sysvar("x86HasFMA") // bool
|
|
armHasVFPv4 = sysvar("armHasVFPv4") // bool
|
|
arm64HasATOMICS = sysvar("arm64HasATOMICS") // bool
|
|
typedmemclr = sysfunc("typedmemclr")
|
|
typedmemmove = sysfunc("typedmemmove")
|
|
Udiv = sysvar("udiv") // asm func with special ABI
|
|
writeBarrier = sysvar("writeBarrier") // struct { bool; ... }
|
|
zerobaseSym = sysvar("zerobase")
|
|
|
|
// asm funcs with special ABI
|
|
if thearch.LinkArch.Name == "amd64" {
|
|
GCWriteBarrierReg = map[int16]*obj.LSym{
|
|
x86.REG_AX: sysvar("gcWriteBarrier"),
|
|
x86.REG_CX: sysvar("gcWriteBarrierCX"),
|
|
x86.REG_DX: sysvar("gcWriteBarrierDX"),
|
|
x86.REG_BX: sysvar("gcWriteBarrierBX"),
|
|
x86.REG_BP: sysvar("gcWriteBarrierBP"),
|
|
x86.REG_SI: sysvar("gcWriteBarrierSI"),
|
|
x86.REG_R8: sysvar("gcWriteBarrierR8"),
|
|
x86.REG_R9: sysvar("gcWriteBarrierR9"),
|
|
}
|
|
}
|
|
|
|
if thearch.LinkArch.Family == sys.Wasm {
|
|
BoundsCheckFunc[ssa.BoundsIndex] = sysvar("goPanicIndex")
|
|
BoundsCheckFunc[ssa.BoundsIndexU] = sysvar("goPanicIndexU")
|
|
BoundsCheckFunc[ssa.BoundsSliceAlen] = sysvar("goPanicSliceAlen")
|
|
BoundsCheckFunc[ssa.BoundsSliceAlenU] = sysvar("goPanicSliceAlenU")
|
|
BoundsCheckFunc[ssa.BoundsSliceAcap] = sysvar("goPanicSliceAcap")
|
|
BoundsCheckFunc[ssa.BoundsSliceAcapU] = sysvar("goPanicSliceAcapU")
|
|
BoundsCheckFunc[ssa.BoundsSliceB] = sysvar("goPanicSliceB")
|
|
BoundsCheckFunc[ssa.BoundsSliceBU] = sysvar("goPanicSliceBU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3Alen] = sysvar("goPanicSlice3Alen")
|
|
BoundsCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("goPanicSlice3AlenU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3Acap] = sysvar("goPanicSlice3Acap")
|
|
BoundsCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("goPanicSlice3AcapU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3B] = sysvar("goPanicSlice3B")
|
|
BoundsCheckFunc[ssa.BoundsSlice3BU] = sysvar("goPanicSlice3BU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3C] = sysvar("goPanicSlice3C")
|
|
BoundsCheckFunc[ssa.BoundsSlice3CU] = sysvar("goPanicSlice3CU")
|
|
} else {
|
|
BoundsCheckFunc[ssa.BoundsIndex] = sysvar("panicIndex")
|
|
BoundsCheckFunc[ssa.BoundsIndexU] = sysvar("panicIndexU")
|
|
BoundsCheckFunc[ssa.BoundsSliceAlen] = sysvar("panicSliceAlen")
|
|
BoundsCheckFunc[ssa.BoundsSliceAlenU] = sysvar("panicSliceAlenU")
|
|
BoundsCheckFunc[ssa.BoundsSliceAcap] = sysvar("panicSliceAcap")
|
|
BoundsCheckFunc[ssa.BoundsSliceAcapU] = sysvar("panicSliceAcapU")
|
|
BoundsCheckFunc[ssa.BoundsSliceB] = sysvar("panicSliceB")
|
|
BoundsCheckFunc[ssa.BoundsSliceBU] = sysvar("panicSliceBU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3Alen] = sysvar("panicSlice3Alen")
|
|
BoundsCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("panicSlice3AlenU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3Acap] = sysvar("panicSlice3Acap")
|
|
BoundsCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("panicSlice3AcapU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3B] = sysvar("panicSlice3B")
|
|
BoundsCheckFunc[ssa.BoundsSlice3BU] = sysvar("panicSlice3BU")
|
|
BoundsCheckFunc[ssa.BoundsSlice3C] = sysvar("panicSlice3C")
|
|
BoundsCheckFunc[ssa.BoundsSlice3CU] = sysvar("panicSlice3CU")
|
|
}
|
|
if thearch.LinkArch.PtrSize == 4 {
|
|
ExtendCheckFunc[ssa.BoundsIndex] = sysvar("panicExtendIndex")
|
|
ExtendCheckFunc[ssa.BoundsIndexU] = sysvar("panicExtendIndexU")
|
|
ExtendCheckFunc[ssa.BoundsSliceAlen] = sysvar("panicExtendSliceAlen")
|
|
ExtendCheckFunc[ssa.BoundsSliceAlenU] = sysvar("panicExtendSliceAlenU")
|
|
ExtendCheckFunc[ssa.BoundsSliceAcap] = sysvar("panicExtendSliceAcap")
|
|
ExtendCheckFunc[ssa.BoundsSliceAcapU] = sysvar("panicExtendSliceAcapU")
|
|
ExtendCheckFunc[ssa.BoundsSliceB] = sysvar("panicExtendSliceB")
|
|
ExtendCheckFunc[ssa.BoundsSliceBU] = sysvar("panicExtendSliceBU")
|
|
ExtendCheckFunc[ssa.BoundsSlice3Alen] = sysvar("panicExtendSlice3Alen")
|
|
ExtendCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("panicExtendSlice3AlenU")
|
|
ExtendCheckFunc[ssa.BoundsSlice3Acap] = sysvar("panicExtendSlice3Acap")
|
|
ExtendCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("panicExtendSlice3AcapU")
|
|
ExtendCheckFunc[ssa.BoundsSlice3B] = sysvar("panicExtendSlice3B")
|
|
ExtendCheckFunc[ssa.BoundsSlice3BU] = sysvar("panicExtendSlice3BU")
|
|
ExtendCheckFunc[ssa.BoundsSlice3C] = sysvar("panicExtendSlice3C")
|
|
ExtendCheckFunc[ssa.BoundsSlice3CU] = sysvar("panicExtendSlice3CU")
|
|
}
|
|
|
|
// GO386=387 runtime definitions
|
|
ControlWord64trunc = sysvar("controlWord64trunc") // uint16
|
|
ControlWord32 = sysvar("controlWord32") // uint16
|
|
|
|
// Wasm (all asm funcs with special ABIs)
|
|
WasmMove = sysvar("wasmMove")
|
|
WasmZero = sysvar("wasmZero")
|
|
WasmDiv = sysvar("wasmDiv")
|
|
WasmTruncS = sysvar("wasmTruncS")
|
|
WasmTruncU = sysvar("wasmTruncU")
|
|
SigPanic = sysfunc("sigpanic")
|
|
}
|
|
|
|
// getParam returns the Field of ith param of node n (which is a
|
|
// function/method/interface call), where the receiver of a method call is
|
|
// considered as the 0th parameter. This does not include the receiver of an
|
|
// interface call.
|
|
func getParam(n *Node, i int) *types.Field {
|
|
t := n.Left.Type
|
|
if n.Op == OCALLMETH {
|
|
if i == 0 {
|
|
return t.Recv()
|
|
}
|
|
return t.Params().Field(i - 1)
|
|
}
|
|
return t.Params().Field(i)
|
|
}
|
|
|
|
// dvarint writes a varint v to the funcdata in symbol x and returns the new offset
|
|
func dvarint(x *obj.LSym, off int, v int64) int {
|
|
if v < 0 || v > 1e9 {
|
|
panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v))
|
|
}
|
|
if v < 1<<7 {
|
|
return duint8(x, off, uint8(v))
|
|
}
|
|
off = duint8(x, off, uint8((v&127)|128))
|
|
if v < 1<<14 {
|
|
return duint8(x, off, uint8(v>>7))
|
|
}
|
|
off = duint8(x, off, uint8(((v>>7)&127)|128))
|
|
if v < 1<<21 {
|
|
return duint8(x, off, uint8(v>>14))
|
|
}
|
|
off = duint8(x, off, uint8(((v>>14)&127)|128))
|
|
if v < 1<<28 {
|
|
return duint8(x, off, uint8(v>>21))
|
|
}
|
|
off = duint8(x, off, uint8(((v>>21)&127)|128))
|
|
return duint8(x, off, uint8(v>>28))
|
|
}
|
|
|
|
// emitOpenDeferInfo emits FUNCDATA information about the defers in a function
|
|
// that is using open-coded defers. This funcdata is used to determine the active
|
|
// defers in a function and execute those defers during panic processing.
|
|
//
|
|
// The funcdata is all encoded in varints (since values will almost always be less than
|
|
// 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets)
|
|
// for stack variables are specified as the number of bytes below varp (pointer to the
|
|
// top of the local variables) for their starting address. The format is:
|
|
//
|
|
// - Max total argument size among all the defers
|
|
// - Offset of the deferBits variable
|
|
// - Number of defers in the function
|
|
// - Information about each defer call, in reverse order of appearance in the function:
|
|
// - Total argument size of the call
|
|
// - Offset of the closure value to call
|
|
// - Number of arguments (including interface receiver or method receiver as first arg)
|
|
// - Information about each argument
|
|
// - Offset of the stored defer argument in this function's frame
|
|
// - Size of the argument
|
|
// - Offset of where argument should be placed in the args frame when making call
|
|
func (s *state) emitOpenDeferInfo() {
|
|
x := Ctxt.Lookup(s.curfn.Func.lsym.Name + ".opendefer")
|
|
s.curfn.Func.lsym.Func.OpenCodedDeferInfo = x
|
|
off := 0
|
|
|
|
// Compute maxargsize (max size of arguments for all defers)
|
|
// first, so we can output it first to the funcdata
|
|
var maxargsize int64
|
|
for i := len(s.openDefers) - 1; i >= 0; i-- {
|
|
r := s.openDefers[i]
|
|
argsize := r.n.Left.Type.ArgWidth()
|
|
if argsize > maxargsize {
|
|
maxargsize = argsize
|
|
}
|
|
}
|
|
off = dvarint(x, off, maxargsize)
|
|
off = dvarint(x, off, -s.deferBitsTemp.Xoffset)
|
|
off = dvarint(x, off, int64(len(s.openDefers)))
|
|
|
|
// Write in reverse-order, for ease of running in that order at runtime
|
|
for i := len(s.openDefers) - 1; i >= 0; i-- {
|
|
r := s.openDefers[i]
|
|
off = dvarint(x, off, r.n.Left.Type.ArgWidth())
|
|
off = dvarint(x, off, -r.closureNode.Xoffset)
|
|
numArgs := len(r.argNodes)
|
|
if r.rcvrNode != nil {
|
|
// If there's an interface receiver, treat/place it as the first
|
|
// arg. (If there is a method receiver, it's already included as
|
|
// first arg in r.argNodes.)
|
|
numArgs++
|
|
}
|
|
off = dvarint(x, off, int64(numArgs))
|
|
if r.rcvrNode != nil {
|
|
off = dvarint(x, off, -r.rcvrNode.Xoffset)
|
|
off = dvarint(x, off, s.config.PtrSize)
|
|
off = dvarint(x, off, 0)
|
|
}
|
|
for j, arg := range r.argNodes {
|
|
f := getParam(r.n, j)
|
|
off = dvarint(x, off, -arg.Xoffset)
|
|
off = dvarint(x, off, f.Type.Size())
|
|
off = dvarint(x, off, f.Offset)
|
|
}
|
|
}
|
|
}
|
|
|
|
// buildssa builds an SSA function for fn.
|
|
// worker indicates which of the backend workers is doing the processing.
|
|
func buildssa(fn *Node, worker int) *ssa.Func {
|
|
name := fn.funcname()
|
|
printssa := name == ssaDump
|
|
var astBuf *bytes.Buffer
|
|
if printssa {
|
|
astBuf = &bytes.Buffer{}
|
|
fdumplist(astBuf, "buildssa-enter", fn.Func.Enter)
|
|
fdumplist(astBuf, "buildssa-body", fn.Nbody)
|
|
fdumplist(astBuf, "buildssa-exit", fn.Func.Exit)
|
|
if ssaDumpStdout {
|
|
fmt.Println("generating SSA for", name)
|
|
fmt.Print(astBuf.String())
|
|
}
|
|
}
|
|
|
|
var s state
|
|
s.pushLine(fn.Pos)
|
|
defer s.popLine()
|
|
|
|
s.hasdefer = fn.Func.HasDefer()
|
|
if fn.Func.Pragma&CgoUnsafeArgs != 0 {
|
|
s.cgoUnsafeArgs = true
|
|
}
|
|
|
|
fe := ssafn{
|
|
curfn: fn,
|
|
log: printssa && ssaDumpStdout,
|
|
}
|
|
s.curfn = fn
|
|
|
|
s.f = ssa.NewFunc(&fe)
|
|
s.config = ssaConfig
|
|
s.f.Type = fn.Type
|
|
s.f.Config = ssaConfig
|
|
s.f.Cache = &ssaCaches[worker]
|
|
s.f.Cache.Reset()
|
|
s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
|
|
s.f.Name = name
|
|
s.f.PrintOrHtmlSSA = printssa
|
|
if fn.Func.Pragma&Nosplit != 0 {
|
|
s.f.NoSplit = true
|
|
}
|
|
s.panics = map[funcLine]*ssa.Block{}
|
|
s.softFloat = s.config.SoftFloat
|
|
|
|
if printssa {
|
|
s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDumpFile, s.f, ssaDumpCFG)
|
|
// TODO: generate and print a mapping from nodes to values and blocks
|
|
dumpSourcesColumn(s.f.HTMLWriter, fn)
|
|
s.f.HTMLWriter.WriteAST("AST", astBuf)
|
|
}
|
|
|
|
// Allocate starting block
|
|
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// Allocate starting values
|
|
s.labels = map[string]*ssaLabel{}
|
|
s.labeledNodes = map[*Node]*ssaLabel{}
|
|
s.fwdVars = map[*Node]*ssa.Value{}
|
|
s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
|
|
|
|
s.hasOpenDefers = Debug['N'] == 0 && s.hasdefer && !s.curfn.Func.OpenCodedDeferDisallowed()
|
|
switch {
|
|
case s.hasOpenDefers && (Ctxt.Flag_shared || Ctxt.Flag_dynlink) && thearch.LinkArch.Name == "386":
|
|
// Don't support open-coded defers for 386 ONLY when using shared
|
|
// libraries, because there is extra code (added by rewriteToUseGot())
|
|
// preceding the deferreturn/ret code that is generated by gencallret()
|
|
// that we don't track correctly.
|
|
s.hasOpenDefers = false
|
|
}
|
|
if s.hasOpenDefers && s.curfn.Func.Exit.Len() > 0 {
|
|
// Skip doing open defers if there is any extra exit code (likely
|
|
// copying heap-allocated return values or race detection), since
|
|
// we will not generate that code in the case of the extra
|
|
// deferreturn/ret segment.
|
|
s.hasOpenDefers = false
|
|
}
|
|
if s.hasOpenDefers &&
|
|
s.curfn.Func.numReturns*s.curfn.Func.numDefers > 15 {
|
|
// Since we are generating defer calls at every exit for
|
|
// open-coded defers, skip doing open-coded defers if there are
|
|
// too many returns (especially if there are multiple defers).
|
|
// Open-coded defers are most important for improving performance
|
|
// for smaller functions (which don't have many returns).
|
|
s.hasOpenDefers = false
|
|
}
|
|
|
|
s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
|
|
s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
|
|
|
|
s.startBlock(s.f.Entry)
|
|
s.vars[&memVar] = s.startmem
|
|
if s.hasOpenDefers {
|
|
// Create the deferBits variable and stack slot. deferBits is a
|
|
// bitmask showing which of the open-coded defers in this function
|
|
// have been activated.
|
|
deferBitsTemp := tempAt(src.NoXPos, s.curfn, types.Types[TUINT8])
|
|
s.deferBitsTemp = deferBitsTemp
|
|
// For this value, AuxInt is initialized to zero by default
|
|
startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[TUINT8])
|
|
s.vars[&deferBitsVar] = startDeferBits
|
|
s.deferBitsAddr = s.addr(deferBitsTemp)
|
|
s.store(types.Types[TUINT8], s.deferBitsAddr, startDeferBits)
|
|
// Make sure that the deferBits stack slot is kept alive (for use
|
|
// by panics) and stores to deferBits are not eliminated, even if
|
|
// all checking code on deferBits in the function exit can be
|
|
// eliminated, because the defer statements were all
|
|
// unconditional.
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false)
|
|
}
|
|
|
|
// Generate addresses of local declarations
|
|
s.decladdrs = map[*Node]*ssa.Value{}
|
|
for _, n := range fn.Func.Dcl {
|
|
switch n.Class() {
|
|
case PPARAM, PPARAMOUT:
|
|
s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type), n, s.sp, s.startmem)
|
|
if n.Class() == PPARAMOUT && s.canSSA(n) {
|
|
// Save ssa-able PPARAMOUT variables so we can
|
|
// store them back to the stack at the end of
|
|
// the function.
|
|
s.returns = append(s.returns, n)
|
|
}
|
|
case PAUTO:
|
|
// processed at each use, to prevent Addr coming
|
|
// before the decl.
|
|
case PAUTOHEAP:
|
|
// moved to heap - already handled by frontend
|
|
case PFUNC:
|
|
// local function - already handled by frontend
|
|
default:
|
|
s.Fatalf("local variable with class %v unimplemented", n.Class())
|
|
}
|
|
}
|
|
|
|
// Populate SSAable arguments.
|
|
for _, n := range fn.Func.Dcl {
|
|
if n.Class() == PPARAM && s.canSSA(n) {
|
|
v := s.newValue0A(ssa.OpArg, n.Type, n)
|
|
s.vars[n] = v
|
|
s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself.
|
|
}
|
|
}
|
|
|
|
// Convert the AST-based IR to the SSA-based IR
|
|
s.stmtList(fn.Func.Enter)
|
|
s.stmtList(fn.Nbody)
|
|
|
|
// fallthrough to exit
|
|
if s.curBlock != nil {
|
|
s.pushLine(fn.Func.Endlineno)
|
|
s.exit()
|
|
s.popLine()
|
|
}
|
|
|
|
for _, b := range s.f.Blocks {
|
|
if b.Pos != src.NoXPos {
|
|
s.updateUnsetPredPos(b)
|
|
}
|
|
}
|
|
|
|
s.insertPhis()
|
|
|
|
// Main call to ssa package to compile function
|
|
ssa.Compile(s.f)
|
|
|
|
if s.hasOpenDefers {
|
|
s.emitOpenDeferInfo()
|
|
}
|
|
|
|
return s.f
|
|
}
|
|
|
|
func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *Node) {
|
|
// Read sources of target function fn.
|
|
fname := Ctxt.PosTable.Pos(fn.Pos).Filename()
|
|
targetFn, err := readFuncLines(fname, fn.Pos.Line(), fn.Func.Endlineno.Line())
|
|
if err != nil {
|
|
writer.Logf("cannot read sources for function %v: %v", fn, err)
|
|
}
|
|
|
|
// Read sources of inlined functions.
|
|
var inlFns []*ssa.FuncLines
|
|
for _, fi := range ssaDumpInlined {
|
|
var elno src.XPos
|
|
if fi.Name.Defn == nil {
|
|
// Endlineno is filled from exported data.
|
|
elno = fi.Func.Endlineno
|
|
} else {
|
|
elno = fi.Name.Defn.Func.Endlineno
|
|
}
|
|
fname := Ctxt.PosTable.Pos(fi.Pos).Filename()
|
|
fnLines, err := readFuncLines(fname, fi.Pos.Line(), elno.Line())
|
|
if err != nil {
|
|
writer.Logf("cannot read sources for inlined function %v: %v", fi, err)
|
|
continue
|
|
}
|
|
inlFns = append(inlFns, fnLines)
|
|
}
|
|
|
|
sort.Sort(ssa.ByTopo(inlFns))
|
|
if targetFn != nil {
|
|
inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...)
|
|
}
|
|
|
|
writer.WriteSources("sources", inlFns)
|
|
}
|
|
|
|
func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) {
|
|
f, err := os.Open(os.ExpandEnv(file))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
var lines []string
|
|
ln := uint(1)
|
|
scanner := bufio.NewScanner(f)
|
|
for scanner.Scan() && ln <= end {
|
|
if ln >= start {
|
|
lines = append(lines, scanner.Text())
|
|
}
|
|
ln++
|
|
}
|
|
return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil
|
|
}
|
|
|
|
// updateUnsetPredPos propagates the earliest-value position information for b
|
|
// towards all of b's predecessors that need a position, and recurs on that
|
|
// predecessor if its position is updated. B should have a non-empty position.
|
|
func (s *state) updateUnsetPredPos(b *ssa.Block) {
|
|
if b.Pos == src.NoXPos {
|
|
s.Fatalf("Block %s should have a position", b)
|
|
}
|
|
bestPos := src.NoXPos
|
|
for _, e := range b.Preds {
|
|
p := e.Block()
|
|
if !p.LackingPos() {
|
|
continue
|
|
}
|
|
if bestPos == src.NoXPos {
|
|
bestPos = b.Pos
|
|
for _, v := range b.Values {
|
|
if v.LackingPos() {
|
|
continue
|
|
}
|
|
if v.Pos != src.NoXPos {
|
|
// Assume values are still in roughly textual order;
|
|
// TODO: could also seek minimum position?
|
|
bestPos = v.Pos
|
|
break
|
|
}
|
|
}
|
|
}
|
|
p.Pos = bestPos
|
|
s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
|
|
}
|
|
}
|
|
|
|
// Information about each open-coded defer.
|
|
type openDeferInfo struct {
|
|
// The ODEFER node representing the function call of the defer
|
|
n *Node
|
|
// If defer call is closure call, the address of the argtmp where the
|
|
// closure is stored.
|
|
closure *ssa.Value
|
|
// The node representing the argtmp where the closure is stored - used for
|
|
// function, method, or interface call, to store a closure that panic
|
|
// processing can use for this defer.
|
|
closureNode *Node
|
|
// If defer call is interface call, the address of the argtmp where the
|
|
// receiver is stored
|
|
rcvr *ssa.Value
|
|
// The node representing the argtmp where the receiver is stored
|
|
rcvrNode *Node
|
|
// The addresses of the argtmps where the evaluated arguments of the defer
|
|
// function call are stored.
|
|
argVals []*ssa.Value
|
|
// The nodes representing the argtmps where the args of the defer are stored
|
|
argNodes []*Node
|
|
}
|
|
|
|
type state struct {
|
|
// configuration (arch) information
|
|
config *ssa.Config
|
|
|
|
// function we're building
|
|
f *ssa.Func
|
|
|
|
// Node for function
|
|
curfn *Node
|
|
|
|
// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
|
|
labels map[string]*ssaLabel
|
|
labeledNodes map[*Node]*ssaLabel
|
|
|
|
// unlabeled break and continue statement tracking
|
|
breakTo *ssa.Block // current target for plain break statement
|
|
continueTo *ssa.Block // current target for plain continue statement
|
|
|
|
// current location where we're interpreting the AST
|
|
curBlock *ssa.Block
|
|
|
|
// variable assignments in the current block (map from variable symbol to ssa value)
|
|
// *Node is the unique identifier (an ONAME Node) for the variable.
|
|
// TODO: keep a single varnum map, then make all of these maps slices instead?
|
|
vars map[*Node]*ssa.Value
|
|
|
|
// fwdVars are variables that are used before they are defined in the current block.
|
|
// This map exists just to coalesce multiple references into a single FwdRef op.
|
|
// *Node is the unique identifier (an ONAME Node) for the variable.
|
|
fwdVars map[*Node]*ssa.Value
|
|
|
|
// all defined variables at the end of each block. Indexed by block ID.
|
|
defvars []map[*Node]*ssa.Value
|
|
|
|
// addresses of PPARAM and PPARAMOUT variables.
|
|
decladdrs map[*Node]*ssa.Value
|
|
|
|
// starting values. Memory, stack pointer, and globals pointer
|
|
startmem *ssa.Value
|
|
sp *ssa.Value
|
|
sb *ssa.Value
|
|
// value representing address of where deferBits autotmp is stored
|
|
deferBitsAddr *ssa.Value
|
|
deferBitsTemp *Node
|
|
|
|
// line number stack. The current line number is top of stack
|
|
line []src.XPos
|
|
// the last line number processed; it may have been popped
|
|
lastPos src.XPos
|
|
|
|
// list of panic calls by function name and line number.
|
|
// Used to deduplicate panic calls.
|
|
panics map[funcLine]*ssa.Block
|
|
|
|
// list of PPARAMOUT (return) variables.
|
|
returns []*Node
|
|
|
|
cgoUnsafeArgs bool
|
|
hasdefer bool // whether the function contains a defer statement
|
|
softFloat bool
|
|
hasOpenDefers bool // whether we are doing open-coded defers
|
|
|
|
// If doing open-coded defers, list of info about the defer calls in
|
|
// scanning order. Hence, at exit we should run these defers in reverse
|
|
// order of this list
|
|
openDefers []*openDeferInfo
|
|
// For open-coded defers, this is the beginning and end blocks of the last
|
|
// defer exit code that we have generated so far. We use these to share
|
|
// code between exits if the shareDeferExits option (disabled by default)
|
|
// is on.
|
|
lastDeferExit *ssa.Block // Entry block of last defer exit code we generated
|
|
lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated
|
|
lastDeferCount int // Number of defers encountered at that point
|
|
}
|
|
|
|
type funcLine struct {
|
|
f *obj.LSym
|
|
base *src.PosBase
|
|
line uint
|
|
}
|
|
|
|
type ssaLabel struct {
|
|
target *ssa.Block // block identified by this label
|
|
breakTarget *ssa.Block // block to break to in control flow node identified by this label
|
|
continueTarget *ssa.Block // block to continue to in control flow node identified by this label
|
|
}
|
|
|
|
// label returns the label associated with sym, creating it if necessary.
|
|
func (s *state) label(sym *types.Sym) *ssaLabel {
|
|
lab := s.labels[sym.Name]
|
|
if lab == nil {
|
|
lab = new(ssaLabel)
|
|
s.labels[sym.Name] = lab
|
|
}
|
|
return lab
|
|
}
|
|
|
|
func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
|
|
func (s *state) Log() bool { return s.f.Log() }
|
|
func (s *state) Fatalf(msg string, args ...interface{}) {
|
|
s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
|
|
}
|
|
func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
|
|
func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() }
|
|
|
|
var (
|
|
// dummy node for the memory variable
|
|
memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
|
|
|
|
// dummy nodes for temporary variables
|
|
ptrVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
|
|
lenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
|
|
newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
|
|
capVar = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
|
|
typVar = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
|
|
okVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
|
|
deferBitsVar = Node{Op: ONAME, Sym: &types.Sym{Name: "deferBits"}}
|
|
)
|
|
|
|
// startBlock sets the current block we're generating code in to b.
|
|
func (s *state) startBlock(b *ssa.Block) {
|
|
if s.curBlock != nil {
|
|
s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
|
|
}
|
|
s.curBlock = b
|
|
s.vars = map[*Node]*ssa.Value{}
|
|
for n := range s.fwdVars {
|
|
delete(s.fwdVars, n)
|
|
}
|
|
}
|
|
|
|
// endBlock marks the end of generating code for the current block.
|
|
// Returns the (former) current block. Returns nil if there is no current
|
|
// block, i.e. if no code flows to the current execution point.
|
|
func (s *state) endBlock() *ssa.Block {
|
|
b := s.curBlock
|
|
if b == nil {
|
|
return nil
|
|
}
|
|
for len(s.defvars) <= int(b.ID) {
|
|
s.defvars = append(s.defvars, nil)
|
|
}
|
|
s.defvars[b.ID] = s.vars
|
|
s.curBlock = nil
|
|
s.vars = nil
|
|
if b.LackingPos() {
|
|
// Empty plain blocks get the line of their successor (handled after all blocks created),
|
|
// except for increment blocks in For statements (handled in ssa conversion of OFOR),
|
|
// and for blocks ending in GOTO/BREAK/CONTINUE.
|
|
b.Pos = src.NoXPos
|
|
} else {
|
|
b.Pos = s.lastPos
|
|
}
|
|
return b
|
|
}
|
|
|
|
// pushLine pushes a line number on the line number stack.
|
|
func (s *state) pushLine(line src.XPos) {
|
|
if !line.IsKnown() {
|
|
// the frontend may emit node with line number missing,
|
|
// use the parent line number in this case.
|
|
line = s.peekPos()
|
|
if Debug['K'] != 0 {
|
|
Warn("buildssa: unknown position (line 0)")
|
|
}
|
|
} else {
|
|
s.lastPos = line
|
|
}
|
|
|
|
s.line = append(s.line, line)
|
|
}
|
|
|
|
// popLine pops the top of the line number stack.
|
|
func (s *state) popLine() {
|
|
s.line = s.line[:len(s.line)-1]
|
|
}
|
|
|
|
// peekPos peeks the top of the line number stack.
|
|
func (s *state) peekPos() src.XPos {
|
|
return s.line[len(s.line)-1]
|
|
}
|
|
|
|
// newValue0 adds a new value with no arguments to the current block.
|
|
func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
|
|
return s.curBlock.NewValue0(s.peekPos(), op, t)
|
|
}
|
|
|
|
// newValue0A adds a new value with no arguments and an aux value to the current block.
|
|
func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
|
|
return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
|
|
}
|
|
|
|
// newValue0I adds a new value with no arguments and an auxint value to the current block.
|
|
func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
|
|
return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
|
|
}
|
|
|
|
// newValue1 adds a new value with one argument to the current block.
|
|
func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
|
|
}
|
|
|
|
// newValue1A adds a new value with one argument and an aux value to the current block.
|
|
func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue1Apos adds a new value with one argument and an aux value to the current block.
|
|
// isStmt determines whether the created values may be a statement or not
|
|
// (i.e., false means never, yes means maybe).
|
|
func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value, isStmt bool) *ssa.Value {
|
|
if isStmt {
|
|
return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue1I adds a new value with one argument and an auxint value to the current block.
|
|
func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue2 adds a new value with two arguments to the current block.
|
|
func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
|
|
}
|
|
|
|
// newValue2Apos adds a new value with two arguments and an aux value to the current block.
|
|
// isStmt determines whether the created values may be a statement or not
|
|
// (i.e., false means never, yes means maybe).
|
|
func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value {
|
|
if isStmt {
|
|
return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
|
|
}
|
|
return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1)
|
|
}
|
|
|
|
// newValue2I adds a new value with two arguments and an auxint value to the current block.
|
|
func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
|
|
}
|
|
|
|
// newValue3 adds a new value with three arguments to the current block.
|
|
func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue3I adds a new value with three arguments and an auxint value to the current block.
|
|
func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue3A adds a new value with three arguments and an aux value to the current block.
|
|
func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue3Apos adds a new value with three arguments and an aux value to the current block.
|
|
// isStmt determines whether the created values may be a statement or not
|
|
// (i.e., false means never, yes means maybe).
|
|
func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value {
|
|
if isStmt {
|
|
return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
|
|
}
|
|
return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue4 adds a new value with four arguments to the current block.
|
|
func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
|
|
}
|
|
|
|
// newValue4 adds a new value with four arguments and an auxint value to the current block.
|
|
func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3)
|
|
}
|
|
|
|
// entryNewValue0 adds a new value with no arguments to the entry block.
|
|
func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
|
|
return s.f.Entry.NewValue0(src.NoXPos, op, t)
|
|
}
|
|
|
|
// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
|
|
func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
|
|
return s.f.Entry.NewValue0A(src.NoXPos, op, t, aux)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument to the entry block.
|
|
func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1(src.NoXPos, op, t, arg)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
|
|
func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1I(src.NoXPos, op, t, auxint, arg)
|
|
}
|
|
|
|
// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
|
|
func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1A(src.NoXPos, op, t, aux, arg)
|
|
}
|
|
|
|
// entryNewValue2 adds a new value with two arguments to the entry block.
|
|
func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue2(src.NoXPos, op, t, arg0, arg1)
|
|
}
|
|
|
|
// entryNewValue2A adds a new value with two arguments and an aux value to the entry block.
|
|
func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue2A(src.NoXPos, op, t, aux, arg0, arg1)
|
|
}
|
|
|
|
// const* routines add a new const value to the entry block.
|
|
func (s *state) constSlice(t *types.Type) *ssa.Value {
|
|
return s.f.ConstSlice(t)
|
|
}
|
|
func (s *state) constInterface(t *types.Type) *ssa.Value {
|
|
return s.f.ConstInterface(t)
|
|
}
|
|
func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) }
|
|
func (s *state) constEmptyString(t *types.Type) *ssa.Value {
|
|
return s.f.ConstEmptyString(t)
|
|
}
|
|
func (s *state) constBool(c bool) *ssa.Value {
|
|
return s.f.ConstBool(types.Types[TBOOL], c)
|
|
}
|
|
func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
|
|
return s.f.ConstInt8(t, c)
|
|
}
|
|
func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
|
|
return s.f.ConstInt16(t, c)
|
|
}
|
|
func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
|
|
return s.f.ConstInt32(t, c)
|
|
}
|
|
func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
|
|
return s.f.ConstInt64(t, c)
|
|
}
|
|
func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
|
|
return s.f.ConstFloat32(t, c)
|
|
}
|
|
func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
|
|
return s.f.ConstFloat64(t, c)
|
|
}
|
|
func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
|
|
if s.config.PtrSize == 8 {
|
|
return s.constInt64(t, c)
|
|
}
|
|
if int64(int32(c)) != c {
|
|
s.Fatalf("integer constant too big %d", c)
|
|
}
|
|
return s.constInt32(t, int32(c))
|
|
}
|
|
func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
|
|
return s.f.ConstOffPtrSP(t, c, s.sp)
|
|
}
|
|
|
|
// newValueOrSfCall* are wrappers around newValue*, which may create a call to a
|
|
// soft-float runtime function instead (when emitting soft-float code).
|
|
func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
|
|
if s.softFloat {
|
|
if c, ok := s.sfcall(op, arg); ok {
|
|
return c
|
|
}
|
|
}
|
|
return s.newValue1(op, t, arg)
|
|
}
|
|
func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
if s.softFloat {
|
|
if c, ok := s.sfcall(op, arg0, arg1); ok {
|
|
return c
|
|
}
|
|
}
|
|
return s.newValue2(op, t, arg0, arg1)
|
|
}
|
|
|
|
func (s *state) instrument(t *types.Type, addr *ssa.Value, wr bool) {
|
|
if !s.curfn.Func.InstrumentBody() {
|
|
return
|
|
}
|
|
|
|
w := t.Size()
|
|
if w == 0 {
|
|
return // can't race on zero-sized things
|
|
}
|
|
|
|
if ssa.IsSanitizerSafeAddr(addr) {
|
|
return
|
|
}
|
|
|
|
var fn *obj.LSym
|
|
needWidth := false
|
|
|
|
if flag_msan {
|
|
fn = msanread
|
|
if wr {
|
|
fn = msanwrite
|
|
}
|
|
needWidth = true
|
|
} else if flag_race && t.NumComponents(types.CountBlankFields) > 1 {
|
|
// for composite objects we have to write every address
|
|
// because a write might happen to any subobject.
|
|
// composites with only one element don't have subobjects, though.
|
|
fn = racereadrange
|
|
if wr {
|
|
fn = racewriterange
|
|
}
|
|
needWidth = true
|
|
} else if flag_race {
|
|
// for non-composite objects we can write just the start
|
|
// address, as any write must write the first byte.
|
|
fn = raceread
|
|
if wr {
|
|
fn = racewrite
|
|
}
|
|
} else {
|
|
panic("unreachable")
|
|
}
|
|
|
|
args := []*ssa.Value{addr}
|
|
if needWidth {
|
|
args = append(args, s.constInt(types.Types[TUINTPTR], w))
|
|
}
|
|
s.rtcall(fn, true, nil, args...)
|
|
}
|
|
|
|
func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value {
|
|
s.instrument(t, src, false)
|
|
return s.rawLoad(t, src)
|
|
}
|
|
|
|
func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpLoad, t, src, s.mem())
|
|
}
|
|
|
|
func (s *state) store(t *types.Type, dst, val *ssa.Value) {
|
|
s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem())
|
|
}
|
|
|
|
func (s *state) zero(t *types.Type, dst *ssa.Value) {
|
|
s.instrument(t, dst, true)
|
|
store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem())
|
|
store.Aux = t
|
|
s.vars[&memVar] = store
|
|
}
|
|
|
|
func (s *state) move(t *types.Type, dst, src *ssa.Value) {
|
|
s.instrument(t, src, false)
|
|
s.instrument(t, dst, true)
|
|
store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem())
|
|
store.Aux = t
|
|
s.vars[&memVar] = store
|
|
}
|
|
|
|
// stmtList converts the statement list n to SSA and adds it to s.
|
|
func (s *state) stmtList(l Nodes) {
|
|
for _, n := range l.Slice() {
|
|
s.stmt(n)
|
|
}
|
|
}
|
|
|
|
// stmt converts the statement n to SSA and adds it to s.
|
|
func (s *state) stmt(n *Node) {
|
|
if !(n.Op == OVARKILL || n.Op == OVARLIVE || n.Op == OVARDEF) {
|
|
// OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
|
|
s.pushLine(n.Pos)
|
|
defer s.popLine()
|
|
}
|
|
|
|
// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
|
|
// then this code is dead. Stop here.
|
|
if s.curBlock == nil && n.Op != OLABEL {
|
|
return
|
|
}
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
|
|
case OBLOCK:
|
|
s.stmtList(n.List)
|
|
|
|
// No-ops
|
|
case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
|
|
|
|
// Expression statements
|
|
case OCALLFUNC:
|
|
if isIntrinsicCall(n) {
|
|
s.intrinsicCall(n)
|
|
return
|
|
}
|
|
fallthrough
|
|
|
|
case OCALLMETH, OCALLINTER:
|
|
s.call(n, callNormal)
|
|
if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
|
|
if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
|
|
n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") {
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(m)
|
|
// TODO: never rewrite OPANIC to OCALLFUNC in the
|
|
// first place. Need to wait until all backends
|
|
// go through SSA.
|
|
}
|
|
}
|
|
case ODEFER:
|
|
if Debug_defer > 0 {
|
|
var defertype string
|
|
if s.hasOpenDefers {
|
|
defertype = "open-coded"
|
|
} else if n.Esc == EscNever {
|
|
defertype = "stack-allocated"
|
|
} else {
|
|
defertype = "heap-allocated"
|
|
}
|
|
Warnl(n.Pos, "%s defer", defertype)
|
|
}
|
|
if s.hasOpenDefers {
|
|
s.openDeferRecord(n.Left)
|
|
} else {
|
|
d := callDefer
|
|
if n.Esc == EscNever {
|
|
d = callDeferStack
|
|
}
|
|
s.call(n.Left, d)
|
|
}
|
|
case OGO:
|
|
s.call(n.Left, callGo)
|
|
|
|
case OAS2DOTTYPE:
|
|
res, resok := s.dottype(n.Right, true)
|
|
deref := false
|
|
if !canSSAType(n.Right.Type) {
|
|
if res.Op != ssa.OpLoad {
|
|
s.Fatalf("dottype of non-load")
|
|
}
|
|
mem := s.mem()
|
|
if mem.Op == ssa.OpVarKill {
|
|
mem = mem.Args[0]
|
|
}
|
|
if res.Args[1] != mem {
|
|
s.Fatalf("memory no longer live from 2-result dottype load")
|
|
}
|
|
deref = true
|
|
res = res.Args[0]
|
|
}
|
|
s.assign(n.List.First(), res, deref, 0)
|
|
s.assign(n.List.Second(), resok, false, 0)
|
|
return
|
|
|
|
case OAS2FUNC:
|
|
// We come here only when it is an intrinsic call returning two values.
|
|
if !isIntrinsicCall(n.Right) {
|
|
s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Right)
|
|
}
|
|
v := s.intrinsicCall(n.Right)
|
|
v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
|
|
v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
|
|
s.assign(n.List.First(), v1, false, 0)
|
|
s.assign(n.List.Second(), v2, false, 0)
|
|
return
|
|
|
|
case ODCL:
|
|
if n.Left.Class() == PAUTOHEAP {
|
|
s.Fatalf("DCL %v", n)
|
|
}
|
|
|
|
case OLABEL:
|
|
sym := n.Sym
|
|
lab := s.label(sym)
|
|
|
|
// Associate label with its control flow node, if any
|
|
if ctl := n.labeledControl(); ctl != nil {
|
|
s.labeledNodes[ctl] = lab
|
|
}
|
|
|
|
// The label might already have a target block via a goto.
|
|
if lab.target == nil {
|
|
lab.target = s.f.NewBlock(ssa.BlockPlain)
|
|
}
|
|
|
|
// Go to that label.
|
|
// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
|
|
if s.curBlock != nil {
|
|
b := s.endBlock()
|
|
b.AddEdgeTo(lab.target)
|
|
}
|
|
s.startBlock(lab.target)
|
|
|
|
case OGOTO:
|
|
sym := n.Sym
|
|
|
|
lab := s.label(sym)
|
|
if lab.target == nil {
|
|
lab.target = s.f.NewBlock(ssa.BlockPlain)
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
|
|
b.AddEdgeTo(lab.target)
|
|
|
|
case OAS:
|
|
if n.Left == n.Right && n.Left.Op == ONAME {
|
|
// An x=x assignment. No point in doing anything
|
|
// here. In addition, skipping this assignment
|
|
// prevents generating:
|
|
// VARDEF x
|
|
// COPY x -> x
|
|
// which is bad because x is incorrectly considered
|
|
// dead before the vardef. See issue #14904.
|
|
return
|
|
}
|
|
|
|
// Evaluate RHS.
|
|
rhs := n.Right
|
|
if rhs != nil {
|
|
switch rhs.Op {
|
|
case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !isZero(rhs) {
|
|
s.Fatalf("literal with nonzero value in SSA: %v", rhs)
|
|
}
|
|
rhs = nil
|
|
case OAPPEND:
|
|
// Check whether we're writing the result of an append back to the same slice.
|
|
// If so, we handle it specially to avoid write barriers on the fast
|
|
// (non-growth) path.
|
|
if !samesafeexpr(n.Left, rhs.List.First()) || Debug['N'] != 0 {
|
|
break
|
|
}
|
|
// If the slice can be SSA'd, it'll be on the stack,
|
|
// so there will be no write barriers,
|
|
// so there's no need to attempt to prevent them.
|
|
if s.canSSA(n.Left) {
|
|
if Debug_append > 0 { // replicating old diagnostic message
|
|
Warnl(n.Pos, "append: len-only update (in local slice)")
|
|
}
|
|
break
|
|
}
|
|
if Debug_append > 0 {
|
|
Warnl(n.Pos, "append: len-only update")
|
|
}
|
|
s.append(rhs, true)
|
|
return
|
|
}
|
|
}
|
|
|
|
if n.Left.isBlank() {
|
|
// _ = rhs
|
|
// Just evaluate rhs for side-effects.
|
|
if rhs != nil {
|
|
s.expr(rhs)
|
|
}
|
|
return
|
|
}
|
|
|
|
var t *types.Type
|
|
if n.Right != nil {
|
|
t = n.Right.Type
|
|
} else {
|
|
t = n.Left.Type
|
|
}
|
|
|
|
var r *ssa.Value
|
|
deref := !canSSAType(t)
|
|
if deref {
|
|
if rhs == nil {
|
|
r = nil // Signal assign to use OpZero.
|
|
} else {
|
|
r = s.addr(rhs)
|
|
}
|
|
} else {
|
|
if rhs == nil {
|
|
r = s.zeroVal(t)
|
|
} else {
|
|
r = s.expr(rhs)
|
|
}
|
|
}
|
|
|
|
var skip skipMask
|
|
if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
|
|
// We're assigning a slicing operation back to its source.
|
|
// Don't write back fields we aren't changing. See issue #14855.
|
|
i, j, k := rhs.SliceBounds()
|
|
if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
|
|
// [0:...] is the same as [:...]
|
|
i = nil
|
|
}
|
|
// TODO: detect defaults for len/cap also.
|
|
// Currently doesn't really work because (*p)[:len(*p)] appears here as:
|
|
// tmp = len(*p)
|
|
// (*p)[:tmp]
|
|
//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
|
|
// j = nil
|
|
//}
|
|
//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
|
|
// k = nil
|
|
//}
|
|
if i == nil {
|
|
skip |= skipPtr
|
|
if j == nil {
|
|
skip |= skipLen
|
|
}
|
|
if k == nil {
|
|
skip |= skipCap
|
|
}
|
|
}
|
|
}
|
|
|
|
s.assign(n.Left, r, deref, skip)
|
|
|
|
case OIF:
|
|
if Isconst(n.Left, CTBOOL) {
|
|
s.stmtList(n.Left.Ninit)
|
|
if n.Left.Bool() {
|
|
s.stmtList(n.Nbody)
|
|
} else {
|
|
s.stmtList(n.Rlist)
|
|
}
|
|
break
|
|
}
|
|
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
var likely int8
|
|
if n.Likely() {
|
|
likely = 1
|
|
}
|
|
var bThen *ssa.Block
|
|
if n.Nbody.Len() != 0 {
|
|
bThen = s.f.NewBlock(ssa.BlockPlain)
|
|
} else {
|
|
bThen = bEnd
|
|
}
|
|
var bElse *ssa.Block
|
|
if n.Rlist.Len() != 0 {
|
|
bElse = s.f.NewBlock(ssa.BlockPlain)
|
|
} else {
|
|
bElse = bEnd
|
|
}
|
|
s.condBranch(n.Left, bThen, bElse, likely)
|
|
|
|
if n.Nbody.Len() != 0 {
|
|
s.startBlock(bThen)
|
|
s.stmtList(n.Nbody)
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bEnd)
|
|
}
|
|
}
|
|
if n.Rlist.Len() != 0 {
|
|
s.startBlock(bElse)
|
|
s.stmtList(n.Rlist)
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bEnd)
|
|
}
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case ORETURN:
|
|
s.stmtList(n.List)
|
|
b := s.exit()
|
|
b.Pos = s.lastPos.WithIsStmt()
|
|
|
|
case ORETJMP:
|
|
s.stmtList(n.List)
|
|
b := s.exit()
|
|
b.Kind = ssa.BlockRetJmp // override BlockRet
|
|
b.Aux = n.Sym.Linksym()
|
|
|
|
case OCONTINUE, OBREAK:
|
|
var to *ssa.Block
|
|
if n.Sym == nil {
|
|
// plain break/continue
|
|
switch n.Op {
|
|
case OCONTINUE:
|
|
to = s.continueTo
|
|
case OBREAK:
|
|
to = s.breakTo
|
|
}
|
|
} else {
|
|
// labeled break/continue; look up the target
|
|
sym := n.Sym
|
|
lab := s.label(sym)
|
|
switch n.Op {
|
|
case OCONTINUE:
|
|
to = lab.continueTarget
|
|
case OBREAK:
|
|
to = lab.breakTarget
|
|
}
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
|
|
b.AddEdgeTo(to)
|
|
|
|
case OFOR, OFORUNTIL:
|
|
// OFOR: for Ninit; Left; Right { Nbody }
|
|
// cond (Left); body (Nbody); incr (Right)
|
|
//
|
|
// OFORUNTIL: for Ninit; Left; Right; List { Nbody }
|
|
// => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end:
|
|
bCond := s.f.NewBlock(ssa.BlockPlain)
|
|
bBody := s.f.NewBlock(ssa.BlockPlain)
|
|
bIncr := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// ensure empty for loops have correct position; issue #30167
|
|
bBody.Pos = n.Pos
|
|
|
|
// first, jump to condition test (OFOR) or body (OFORUNTIL)
|
|
b := s.endBlock()
|
|
if n.Op == OFOR {
|
|
b.AddEdgeTo(bCond)
|
|
// generate code to test condition
|
|
s.startBlock(bCond)
|
|
if n.Left != nil {
|
|
s.condBranch(n.Left, bBody, bEnd, 1)
|
|
} else {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockPlain
|
|
b.AddEdgeTo(bBody)
|
|
}
|
|
|
|
} else {
|
|
b.AddEdgeTo(bBody)
|
|
}
|
|
|
|
// set up for continue/break in body
|
|
prevContinue := s.continueTo
|
|
prevBreak := s.breakTo
|
|
s.continueTo = bIncr
|
|
s.breakTo = bEnd
|
|
lab := s.labeledNodes[n]
|
|
if lab != nil {
|
|
// labeled for loop
|
|
lab.continueTarget = bIncr
|
|
lab.breakTarget = bEnd
|
|
}
|
|
|
|
// generate body
|
|
s.startBlock(bBody)
|
|
s.stmtList(n.Nbody)
|
|
|
|
// tear down continue/break
|
|
s.continueTo = prevContinue
|
|
s.breakTo = prevBreak
|
|
if lab != nil {
|
|
lab.continueTarget = nil
|
|
lab.breakTarget = nil
|
|
}
|
|
|
|
// done with body, goto incr
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bIncr)
|
|
}
|
|
|
|
// generate incr (and, for OFORUNTIL, condition)
|
|
s.startBlock(bIncr)
|
|
if n.Right != nil {
|
|
s.stmt(n.Right)
|
|
}
|
|
if n.Op == OFOR {
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bCond)
|
|
// It can happen that bIncr ends in a block containing only VARKILL,
|
|
// and that muddles the debugging experience.
|
|
if n.Op != OFORUNTIL && b.Pos == src.NoXPos {
|
|
b.Pos = bCond.Pos
|
|
}
|
|
}
|
|
} else {
|
|
// bCond is unused in OFORUNTIL, so repurpose it.
|
|
bLateIncr := bCond
|
|
// test condition
|
|
s.condBranch(n.Left, bLateIncr, bEnd, 1)
|
|
// generate late increment
|
|
s.startBlock(bLateIncr)
|
|
s.stmtList(n.List)
|
|
s.endBlock().AddEdgeTo(bBody)
|
|
}
|
|
|
|
s.startBlock(bEnd)
|
|
|
|
case OSWITCH, OSELECT:
|
|
// These have been mostly rewritten by the front end into their Nbody fields.
|
|
// Our main task is to correctly hook up any break statements.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
prevBreak := s.breakTo
|
|
s.breakTo = bEnd
|
|
lab := s.labeledNodes[n]
|
|
if lab != nil {
|
|
// labeled
|
|
lab.breakTarget = bEnd
|
|
}
|
|
|
|
// generate body code
|
|
s.stmtList(n.Nbody)
|
|
|
|
s.breakTo = prevBreak
|
|
if lab != nil {
|
|
lab.breakTarget = nil
|
|
}
|
|
|
|
// walk adds explicit OBREAK nodes to the end of all reachable code paths.
|
|
// If we still have a current block here, then mark it unreachable.
|
|
if s.curBlock != nil {
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(m)
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case OVARDEF:
|
|
if !s.canSSA(n.Left) {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.Left, s.mem(), false)
|
|
}
|
|
case OVARKILL:
|
|
// Insert a varkill op to record that a variable is no longer live.
|
|
// We only care about liveness info at call sites, so putting the
|
|
// varkill in the store chain is enough to keep it correctly ordered
|
|
// with respect to call ops.
|
|
if !s.canSSA(n.Left) {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.Left, s.mem(), false)
|
|
}
|
|
|
|
case OVARLIVE:
|
|
// Insert a varlive op to record that a variable is still live.
|
|
if !n.Left.Name.Addrtaken() {
|
|
s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
|
|
}
|
|
switch n.Left.Class() {
|
|
case PAUTO, PPARAM, PPARAMOUT:
|
|
default:
|
|
s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left)
|
|
}
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem())
|
|
|
|
case OCHECKNIL:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
|
|
case OINLMARK:
|
|
s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Xoffset, s.mem())
|
|
|
|
default:
|
|
s.Fatalf("unhandled stmt %v", n.Op)
|
|
}
|
|
}
|
|
|
|
// If true, share as many open-coded defer exits as possible (with the downside of
|
|
// worse line-number information)
|
|
const shareDeferExits = false
|
|
|
|
// exit processes any code that needs to be generated just before returning.
|
|
// It returns a BlockRet block that ends the control flow. Its control value
|
|
// will be set to the final memory state.
|
|
func (s *state) exit() *ssa.Block {
|
|
if s.hasdefer {
|
|
if s.hasOpenDefers {
|
|
if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount {
|
|
if s.curBlock.Kind != ssa.BlockPlain {
|
|
panic("Block for an exit should be BlockPlain")
|
|
}
|
|
s.curBlock.AddEdgeTo(s.lastDeferExit)
|
|
s.endBlock()
|
|
return s.lastDeferFinalBlock
|
|
}
|
|
s.openDeferExit()
|
|
} else {
|
|
s.rtcall(Deferreturn, true, nil)
|
|
}
|
|
}
|
|
|
|
// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
|
|
// variables back to the stack.
|
|
s.stmtList(s.curfn.Func.Exit)
|
|
|
|
// Store SSAable PPARAMOUT variables back to stack locations.
|
|
for _, n := range s.returns {
|
|
addr := s.decladdrs[n]
|
|
val := s.variable(n, n.Type)
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
|
|
s.store(n.Type, addr, val)
|
|
// TODO: if val is ever spilled, we'd like to use the
|
|
// PPARAMOUT slot for spilling it. That won't happen
|
|
// currently.
|
|
}
|
|
|
|
// Do actual return.
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockRet
|
|
b.SetControl(m)
|
|
if s.hasdefer && s.hasOpenDefers {
|
|
s.lastDeferFinalBlock = b
|
|
}
|
|
return b
|
|
}
|
|
|
|
type opAndType struct {
|
|
op Op
|
|
etype types.EType
|
|
}
|
|
|
|
var opToSSA = map[opAndType]ssa.Op{
|
|
opAndType{OADD, TINT8}: ssa.OpAdd8,
|
|
opAndType{OADD, TUINT8}: ssa.OpAdd8,
|
|
opAndType{OADD, TINT16}: ssa.OpAdd16,
|
|
opAndType{OADD, TUINT16}: ssa.OpAdd16,
|
|
opAndType{OADD, TINT32}: ssa.OpAdd32,
|
|
opAndType{OADD, TUINT32}: ssa.OpAdd32,
|
|
opAndType{OADD, TINT64}: ssa.OpAdd64,
|
|
opAndType{OADD, TUINT64}: ssa.OpAdd64,
|
|
opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
|
|
opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
|
|
|
|
opAndType{OSUB, TINT8}: ssa.OpSub8,
|
|
opAndType{OSUB, TUINT8}: ssa.OpSub8,
|
|
opAndType{OSUB, TINT16}: ssa.OpSub16,
|
|
opAndType{OSUB, TUINT16}: ssa.OpSub16,
|
|
opAndType{OSUB, TINT32}: ssa.OpSub32,
|
|
opAndType{OSUB, TUINT32}: ssa.OpSub32,
|
|
opAndType{OSUB, TINT64}: ssa.OpSub64,
|
|
opAndType{OSUB, TUINT64}: ssa.OpSub64,
|
|
opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
|
|
opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
|
|
|
|
opAndType{ONOT, TBOOL}: ssa.OpNot,
|
|
|
|
opAndType{ONEG, TINT8}: ssa.OpNeg8,
|
|
opAndType{ONEG, TUINT8}: ssa.OpNeg8,
|
|
opAndType{ONEG, TINT16}: ssa.OpNeg16,
|
|
opAndType{ONEG, TUINT16}: ssa.OpNeg16,
|
|
opAndType{ONEG, TINT32}: ssa.OpNeg32,
|
|
opAndType{ONEG, TUINT32}: ssa.OpNeg32,
|
|
opAndType{ONEG, TINT64}: ssa.OpNeg64,
|
|
opAndType{ONEG, TUINT64}: ssa.OpNeg64,
|
|
opAndType{ONEG, TFLOAT32}: ssa.OpNeg32F,
|
|
opAndType{ONEG, TFLOAT64}: ssa.OpNeg64F,
|
|
|
|
opAndType{OBITNOT, TINT8}: ssa.OpCom8,
|
|
opAndType{OBITNOT, TUINT8}: ssa.OpCom8,
|
|
opAndType{OBITNOT, TINT16}: ssa.OpCom16,
|
|
opAndType{OBITNOT, TUINT16}: ssa.OpCom16,
|
|
opAndType{OBITNOT, TINT32}: ssa.OpCom32,
|
|
opAndType{OBITNOT, TUINT32}: ssa.OpCom32,
|
|
opAndType{OBITNOT, TINT64}: ssa.OpCom64,
|
|
opAndType{OBITNOT, TUINT64}: ssa.OpCom64,
|
|
|
|
opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag,
|
|
opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
|
|
opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal,
|
|
opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
|
|
|
|
opAndType{OMUL, TINT8}: ssa.OpMul8,
|
|
opAndType{OMUL, TUINT8}: ssa.OpMul8,
|
|
opAndType{OMUL, TINT16}: ssa.OpMul16,
|
|
opAndType{OMUL, TUINT16}: ssa.OpMul16,
|
|
opAndType{OMUL, TINT32}: ssa.OpMul32,
|
|
opAndType{OMUL, TUINT32}: ssa.OpMul32,
|
|
opAndType{OMUL, TINT64}: ssa.OpMul64,
|
|
opAndType{OMUL, TUINT64}: ssa.OpMul64,
|
|
opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
|
|
opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
|
|
|
|
opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
|
|
opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
|
|
|
|
opAndType{ODIV, TINT8}: ssa.OpDiv8,
|
|
opAndType{ODIV, TUINT8}: ssa.OpDiv8u,
|
|
opAndType{ODIV, TINT16}: ssa.OpDiv16,
|
|
opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
|
|
opAndType{ODIV, TINT32}: ssa.OpDiv32,
|
|
opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
|
|
opAndType{ODIV, TINT64}: ssa.OpDiv64,
|
|
opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
|
|
|
|
opAndType{OMOD, TINT8}: ssa.OpMod8,
|
|
opAndType{OMOD, TUINT8}: ssa.OpMod8u,
|
|
opAndType{OMOD, TINT16}: ssa.OpMod16,
|
|
opAndType{OMOD, TUINT16}: ssa.OpMod16u,
|
|
opAndType{OMOD, TINT32}: ssa.OpMod32,
|
|
opAndType{OMOD, TUINT32}: ssa.OpMod32u,
|
|
opAndType{OMOD, TINT64}: ssa.OpMod64,
|
|
opAndType{OMOD, TUINT64}: ssa.OpMod64u,
|
|
|
|
opAndType{OAND, TINT8}: ssa.OpAnd8,
|
|
opAndType{OAND, TUINT8}: ssa.OpAnd8,
|
|
opAndType{OAND, TINT16}: ssa.OpAnd16,
|
|
opAndType{OAND, TUINT16}: ssa.OpAnd16,
|
|
opAndType{OAND, TINT32}: ssa.OpAnd32,
|
|
opAndType{OAND, TUINT32}: ssa.OpAnd32,
|
|
opAndType{OAND, TINT64}: ssa.OpAnd64,
|
|
opAndType{OAND, TUINT64}: ssa.OpAnd64,
|
|
|
|
opAndType{OOR, TINT8}: ssa.OpOr8,
|
|
opAndType{OOR, TUINT8}: ssa.OpOr8,
|
|
opAndType{OOR, TINT16}: ssa.OpOr16,
|
|
opAndType{OOR, TUINT16}: ssa.OpOr16,
|
|
opAndType{OOR, TINT32}: ssa.OpOr32,
|
|
opAndType{OOR, TUINT32}: ssa.OpOr32,
|
|
opAndType{OOR, TINT64}: ssa.OpOr64,
|
|
opAndType{OOR, TUINT64}: ssa.OpOr64,
|
|
|
|
opAndType{OXOR, TINT8}: ssa.OpXor8,
|
|
opAndType{OXOR, TUINT8}: ssa.OpXor8,
|
|
opAndType{OXOR, TINT16}: ssa.OpXor16,
|
|
opAndType{OXOR, TUINT16}: ssa.OpXor16,
|
|
opAndType{OXOR, TINT32}: ssa.OpXor32,
|
|
opAndType{OXOR, TUINT32}: ssa.OpXor32,
|
|
opAndType{OXOR, TINT64}: ssa.OpXor64,
|
|
opAndType{OXOR, TUINT64}: ssa.OpXor64,
|
|
|
|
opAndType{OEQ, TBOOL}: ssa.OpEqB,
|
|
opAndType{OEQ, TINT8}: ssa.OpEq8,
|
|
opAndType{OEQ, TUINT8}: ssa.OpEq8,
|
|
opAndType{OEQ, TINT16}: ssa.OpEq16,
|
|
opAndType{OEQ, TUINT16}: ssa.OpEq16,
|
|
opAndType{OEQ, TINT32}: ssa.OpEq32,
|
|
opAndType{OEQ, TUINT32}: ssa.OpEq32,
|
|
opAndType{OEQ, TINT64}: ssa.OpEq64,
|
|
opAndType{OEQ, TUINT64}: ssa.OpEq64,
|
|
opAndType{OEQ, TINTER}: ssa.OpEqInter,
|
|
opAndType{OEQ, TSLICE}: ssa.OpEqSlice,
|
|
opAndType{OEQ, TFUNC}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TMAP}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TCHAN}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TPTR}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TFLOAT64}: ssa.OpEq64F,
|
|
opAndType{OEQ, TFLOAT32}: ssa.OpEq32F,
|
|
|
|
opAndType{ONE, TBOOL}: ssa.OpNeqB,
|
|
opAndType{ONE, TINT8}: ssa.OpNeq8,
|
|
opAndType{ONE, TUINT8}: ssa.OpNeq8,
|
|
opAndType{ONE, TINT16}: ssa.OpNeq16,
|
|
opAndType{ONE, TUINT16}: ssa.OpNeq16,
|
|
opAndType{ONE, TINT32}: ssa.OpNeq32,
|
|
opAndType{ONE, TUINT32}: ssa.OpNeq32,
|
|
opAndType{ONE, TINT64}: ssa.OpNeq64,
|
|
opAndType{ONE, TUINT64}: ssa.OpNeq64,
|
|
opAndType{ONE, TINTER}: ssa.OpNeqInter,
|
|
opAndType{ONE, TSLICE}: ssa.OpNeqSlice,
|
|
opAndType{ONE, TFUNC}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TMAP}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TCHAN}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TPTR}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TFLOAT64}: ssa.OpNeq64F,
|
|
opAndType{ONE, TFLOAT32}: ssa.OpNeq32F,
|
|
|
|
opAndType{OLT, TINT8}: ssa.OpLess8,
|
|
opAndType{OLT, TUINT8}: ssa.OpLess8U,
|
|
opAndType{OLT, TINT16}: ssa.OpLess16,
|
|
opAndType{OLT, TUINT16}: ssa.OpLess16U,
|
|
opAndType{OLT, TINT32}: ssa.OpLess32,
|
|
opAndType{OLT, TUINT32}: ssa.OpLess32U,
|
|
opAndType{OLT, TINT64}: ssa.OpLess64,
|
|
opAndType{OLT, TUINT64}: ssa.OpLess64U,
|
|
opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
|
|
opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
|
|
|
|
opAndType{OLE, TINT8}: ssa.OpLeq8,
|
|
opAndType{OLE, TUINT8}: ssa.OpLeq8U,
|
|
opAndType{OLE, TINT16}: ssa.OpLeq16,
|
|
opAndType{OLE, TUINT16}: ssa.OpLeq16U,
|
|
opAndType{OLE, TINT32}: ssa.OpLeq32,
|
|
opAndType{OLE, TUINT32}: ssa.OpLeq32U,
|
|
opAndType{OLE, TINT64}: ssa.OpLeq64,
|
|
opAndType{OLE, TUINT64}: ssa.OpLeq64U,
|
|
opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
|
|
opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
|
|
}
|
|
|
|
func (s *state) concreteEtype(t *types.Type) types.EType {
|
|
e := t.Etype
|
|
switch e {
|
|
default:
|
|
return e
|
|
case TINT:
|
|
if s.config.PtrSize == 8 {
|
|
return TINT64
|
|
}
|
|
return TINT32
|
|
case TUINT:
|
|
if s.config.PtrSize == 8 {
|
|
return TUINT64
|
|
}
|
|
return TUINT32
|
|
case TUINTPTR:
|
|
if s.config.PtrSize == 8 {
|
|
return TUINT64
|
|
}
|
|
return TUINT32
|
|
}
|
|
}
|
|
|
|
func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
|
|
etype := s.concreteEtype(t)
|
|
x, ok := opToSSA[opAndType{op, etype}]
|
|
if !ok {
|
|
s.Fatalf("unhandled binary op %v %s", op, etype)
|
|
}
|
|
return x
|
|
}
|
|
|
|
func floatForComplex(t *types.Type) *types.Type {
|
|
switch t.Etype {
|
|
case TCOMPLEX64:
|
|
return types.Types[TFLOAT32]
|
|
case TCOMPLEX128:
|
|
return types.Types[TFLOAT64]
|
|
}
|
|
Fatalf("unexpected type: %v", t)
|
|
return nil
|
|
}
|
|
|
|
func complexForFloat(t *types.Type) *types.Type {
|
|
switch t.Etype {
|
|
case TFLOAT32:
|
|
return types.Types[TCOMPLEX64]
|
|
case TFLOAT64:
|
|
return types.Types[TCOMPLEX128]
|
|
}
|
|
Fatalf("unexpected type: %v", t)
|
|
return nil
|
|
}
|
|
|
|
type opAndTwoTypes struct {
|
|
op Op
|
|
etype1 types.EType
|
|
etype2 types.EType
|
|
}
|
|
|
|
type twoTypes struct {
|
|
etype1 types.EType
|
|
etype2 types.EType
|
|
}
|
|
|
|
type twoOpsAndType struct {
|
|
op1 ssa.Op
|
|
op2 ssa.Op
|
|
intermediateType types.EType
|
|
}
|
|
|
|
var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
|
|
|
|
twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
|
|
|
|
twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
|
|
|
|
twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
|
|
twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
|
|
|
|
twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
|
|
twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
|
|
// unsigned
|
|
twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead
|
|
|
|
twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead
|
|
|
|
twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead
|
|
|
|
twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead
|
|
|
|
// float
|
|
twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
|
|
twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
|
|
twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
|
|
twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
|
|
}
|
|
|
|
// this map is used only for 32-bit arch, and only includes the difference
|
|
// on 32-bit arch, don't use int64<->float conversion for uint32
|
|
var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
|
|
twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
|
|
twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
|
|
twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
|
|
twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
|
|
}
|
|
|
|
// uint64<->float conversions, only on machines that have instructions for that
|
|
var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
|
|
twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
|
|
twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
|
|
twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
|
|
twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
|
|
}
|
|
|
|
var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
|
|
opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
|
|
|
|
opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
|
|
}
|
|
|
|
func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
|
|
etype1 := s.concreteEtype(t)
|
|
etype2 := s.concreteEtype(u)
|
|
x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
|
|
if !ok {
|
|
s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
|
|
}
|
|
return x
|
|
}
|
|
|
|
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
|
|
func (s *state) expr(n *Node) *ssa.Value {
|
|
if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
|
|
// ONAMEs and named OLITERALs have the line number
|
|
// of the decl, not the use. See issue 14742.
|
|
s.pushLine(n.Pos)
|
|
defer s.popLine()
|
|
}
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
case OBYTES2STRTMP:
|
|
slice := s.expr(n.Left)
|
|
ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
|
|
len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
|
|
return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
|
|
case OSTR2BYTESTMP:
|
|
str := s.expr(n.Left)
|
|
ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
|
|
len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
|
|
case OCFUNC:
|
|
aux := n.Left.Sym.Linksym()
|
|
return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
|
|
case ONAME:
|
|
if n.Class() == PFUNC {
|
|
// "value" of a function is the address of the function's closure
|
|
sym := funcsym(n.Sym).Linksym()
|
|
return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb)
|
|
}
|
|
if s.canSSA(n) {
|
|
return s.variable(n, n.Type)
|
|
}
|
|
addr := s.addr(n)
|
|
return s.load(n.Type, addr)
|
|
case OCLOSUREVAR:
|
|
addr := s.addr(n)
|
|
return s.load(n.Type, addr)
|
|
case OLITERAL:
|
|
switch u := n.Val().U.(type) {
|
|
case *Mpint:
|
|
i := u.Int64()
|
|
switch n.Type.Size() {
|
|
case 1:
|
|
return s.constInt8(n.Type, int8(i))
|
|
case 2:
|
|
return s.constInt16(n.Type, int16(i))
|
|
case 4:
|
|
return s.constInt32(n.Type, int32(i))
|
|
case 8:
|
|
return s.constInt64(n.Type, i)
|
|
default:
|
|
s.Fatalf("bad integer size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
case string:
|
|
if u == "" {
|
|
return s.constEmptyString(n.Type)
|
|
}
|
|
return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
|
|
case bool:
|
|
return s.constBool(u)
|
|
case *NilVal:
|
|
t := n.Type
|
|
switch {
|
|
case t.IsSlice():
|
|
return s.constSlice(t)
|
|
case t.IsInterface():
|
|
return s.constInterface(t)
|
|
default:
|
|
return s.constNil(t)
|
|
}
|
|
case *Mpflt:
|
|
switch n.Type.Size() {
|
|
case 4:
|
|
return s.constFloat32(n.Type, u.Float32())
|
|
case 8:
|
|
return s.constFloat64(n.Type, u.Float64())
|
|
default:
|
|
s.Fatalf("bad float size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
case *Mpcplx:
|
|
r := &u.Real
|
|
i := &u.Imag
|
|
switch n.Type.Size() {
|
|
case 8:
|
|
pt := types.Types[TFLOAT32]
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.constFloat32(pt, r.Float32()),
|
|
s.constFloat32(pt, i.Float32()))
|
|
case 16:
|
|
pt := types.Types[TFLOAT64]
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.constFloat64(pt, r.Float64()),
|
|
s.constFloat64(pt, i.Float64()))
|
|
default:
|
|
s.Fatalf("bad float size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
|
|
default:
|
|
s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
|
|
return nil
|
|
}
|
|
case OCONVNOP:
|
|
to := n.Type
|
|
from := n.Left.Type
|
|
|
|
// Assume everything will work out, so set up our return value.
|
|
// Anything interesting that happens from here is a fatal.
|
|
x := s.expr(n.Left)
|
|
|
|
// Special case for not confusing GC and liveness.
|
|
// We don't want pointers accidentally classified
|
|
// as not-pointers or vice-versa because of copy
|
|
// elision.
|
|
if to.IsPtrShaped() != from.IsPtrShaped() {
|
|
return s.newValue2(ssa.OpConvert, to, x, s.mem())
|
|
}
|
|
|
|
v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
|
|
|
|
// CONVNOP closure
|
|
if to.Etype == TFUNC && from.IsPtrShaped() {
|
|
return v
|
|
}
|
|
|
|
// named <--> unnamed type or typed <--> untyped const
|
|
if from.Etype == to.Etype {
|
|
return v
|
|
}
|
|
|
|
// unsafe.Pointer <--> *T
|
|
if to.Etype == TUNSAFEPTR && from.IsPtrShaped() || from.Etype == TUNSAFEPTR && to.IsPtrShaped() {
|
|
return v
|
|
}
|
|
|
|
// map <--> *hmap
|
|
if to.Etype == TMAP && from.IsPtr() &&
|
|
to.MapType().Hmap == from.Elem() {
|
|
return v
|
|
}
|
|
|
|
dowidth(from)
|
|
dowidth(to)
|
|
if from.Width != to.Width {
|
|
s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
|
|
return nil
|
|
}
|
|
if etypesign(from.Etype) != etypesign(to.Etype) {
|
|
s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
|
|
return nil
|
|
}
|
|
|
|
if instrumenting {
|
|
// These appear to be fine, but they fail the
|
|
// integer constraint below, so okay them here.
|
|
// Sample non-integer conversion: map[string]string -> *uint8
|
|
return v
|
|
}
|
|
|
|
if etypesign(from.Etype) == 0 {
|
|
s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
|
|
return nil
|
|
}
|
|
|
|
// integer, same width, same sign
|
|
return v
|
|
|
|
case OCONV:
|
|
x := s.expr(n.Left)
|
|
ft := n.Left.Type // from type
|
|
tt := n.Type // to type
|
|
if ft.IsBoolean() && tt.IsKind(TUINT8) {
|
|
// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
|
|
return s.newValue1(ssa.OpCopy, n.Type, x)
|
|
}
|
|
if ft.IsInteger() && tt.IsInteger() {
|
|
var op ssa.Op
|
|
if tt.Size() == ft.Size() {
|
|
op = ssa.OpCopy
|
|
} else if tt.Size() < ft.Size() {
|
|
// truncation
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 21:
|
|
op = ssa.OpTrunc16to8
|
|
case 41:
|
|
op = ssa.OpTrunc32to8
|
|
case 42:
|
|
op = ssa.OpTrunc32to16
|
|
case 81:
|
|
op = ssa.OpTrunc64to8
|
|
case 82:
|
|
op = ssa.OpTrunc64to16
|
|
case 84:
|
|
op = ssa.OpTrunc64to32
|
|
default:
|
|
s.Fatalf("weird integer truncation %v -> %v", ft, tt)
|
|
}
|
|
} else if ft.IsSigned() {
|
|
// sign extension
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 12:
|
|
op = ssa.OpSignExt8to16
|
|
case 14:
|
|
op = ssa.OpSignExt8to32
|
|
case 18:
|
|
op = ssa.OpSignExt8to64
|
|
case 24:
|
|
op = ssa.OpSignExt16to32
|
|
case 28:
|
|
op = ssa.OpSignExt16to64
|
|
case 48:
|
|
op = ssa.OpSignExt32to64
|
|
default:
|
|
s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
|
|
}
|
|
} else {
|
|
// zero extension
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 12:
|
|
op = ssa.OpZeroExt8to16
|
|
case 14:
|
|
op = ssa.OpZeroExt8to32
|
|
case 18:
|
|
op = ssa.OpZeroExt8to64
|
|
case 24:
|
|
op = ssa.OpZeroExt16to32
|
|
case 28:
|
|
op = ssa.OpZeroExt16to64
|
|
case 48:
|
|
op = ssa.OpZeroExt32to64
|
|
default:
|
|
s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
|
|
}
|
|
}
|
|
return s.newValue1(op, n.Type, x)
|
|
}
|
|
|
|
if ft.IsFloat() || tt.IsFloat() {
|
|
conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
|
|
if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat {
|
|
if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
|
|
conv = conv1
|
|
}
|
|
}
|
|
if thearch.LinkArch.Family == sys.ARM64 || thearch.LinkArch.Family == sys.Wasm || thearch.LinkArch.Family == sys.S390X || s.softFloat {
|
|
if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
|
|
conv = conv1
|
|
}
|
|
}
|
|
|
|
if thearch.LinkArch.Family == sys.MIPS && !s.softFloat {
|
|
if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
|
|
// tt is float32 or float64, and ft is also unsigned
|
|
if tt.Size() == 4 {
|
|
return s.uint32Tofloat32(n, x, ft, tt)
|
|
}
|
|
if tt.Size() == 8 {
|
|
return s.uint32Tofloat64(n, x, ft, tt)
|
|
}
|
|
} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
|
|
// ft is float32 or float64, and tt is unsigned integer
|
|
if ft.Size() == 4 {
|
|
return s.float32ToUint32(n, x, ft, tt)
|
|
}
|
|
if ft.Size() == 8 {
|
|
return s.float64ToUint32(n, x, ft, tt)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !ok {
|
|
s.Fatalf("weird float conversion %v -> %v", ft, tt)
|
|
}
|
|
op1, op2, it := conv.op1, conv.op2, conv.intermediateType
|
|
|
|
if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
|
|
// normal case, not tripping over unsigned 64
|
|
if op1 == ssa.OpCopy {
|
|
if op2 == ssa.OpCopy {
|
|
return x
|
|
}
|
|
return s.newValueOrSfCall1(op2, n.Type, x)
|
|
}
|
|
if op2 == ssa.OpCopy {
|
|
return s.newValueOrSfCall1(op1, n.Type, x)
|
|
}
|
|
return s.newValueOrSfCall1(op2, n.Type, s.newValueOrSfCall1(op1, types.Types[it], x))
|
|
}
|
|
// Tricky 64-bit unsigned cases.
|
|
if ft.IsInteger() {
|
|
// tt is float32 or float64, and ft is also unsigned
|
|
if tt.Size() == 4 {
|
|
return s.uint64Tofloat32(n, x, ft, tt)
|
|
}
|
|
if tt.Size() == 8 {
|
|
return s.uint64Tofloat64(n, x, ft, tt)
|
|
}
|
|
s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
|
|
}
|
|
// ft is float32 or float64, and tt is unsigned integer
|
|
if ft.Size() == 4 {
|
|
return s.float32ToUint64(n, x, ft, tt)
|
|
}
|
|
if ft.Size() == 8 {
|
|
return s.float64ToUint64(n, x, ft, tt)
|
|
}
|
|
s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
|
|
return nil
|
|
}
|
|
|
|
if ft.IsComplex() && tt.IsComplex() {
|
|
var op ssa.Op
|
|
if ft.Size() == tt.Size() {
|
|
switch ft.Size() {
|
|
case 8:
|
|
op = ssa.OpRound32F
|
|
case 16:
|
|
op = ssa.OpRound64F
|
|
default:
|
|
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
|
|
}
|
|
} else if ft.Size() == 8 && tt.Size() == 16 {
|
|
op = ssa.OpCvt32Fto64F
|
|
} else if ft.Size() == 16 && tt.Size() == 8 {
|
|
op = ssa.OpCvt64Fto32F
|
|
} else {
|
|
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
|
|
}
|
|
ftp := floatForComplex(ft)
|
|
ttp := floatForComplex(tt)
|
|
return s.newValue2(ssa.OpComplexMake, tt,
|
|
s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
|
|
s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
|
|
}
|
|
|
|
s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
|
|
return nil
|
|
|
|
case ODOTTYPE:
|
|
res, _ := s.dottype(n, false)
|
|
return res
|
|
|
|
// binary ops
|
|
case OLT, OEQ, ONE, OLE, OGE, OGT:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Left.Type.IsComplex() {
|
|
pt := floatForComplex(n.Left.Type)
|
|
op := s.ssaOp(OEQ, pt)
|
|
r := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
|
|
i := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
|
|
c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
|
|
switch n.Op {
|
|
case OEQ:
|
|
return c
|
|
case ONE:
|
|
return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
|
|
default:
|
|
s.Fatalf("ordered complex compare %v", n.Op)
|
|
}
|
|
}
|
|
|
|
// Convert OGE and OGT into OLE and OLT.
|
|
op := n.Op
|
|
switch op {
|
|
case OGE:
|
|
op, a, b = OLE, b, a
|
|
case OGT:
|
|
op, a, b = OLT, b, a
|
|
}
|
|
if n.Left.Type.IsFloat() {
|
|
// float comparison
|
|
return s.newValueOrSfCall2(s.ssaOp(op, n.Left.Type), types.Types[TBOOL], a, b)
|
|
}
|
|
// integer comparison
|
|
return s.newValue2(s.ssaOp(op, n.Left.Type), types.Types[TBOOL], a, b)
|
|
case OMUL:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
mulop := ssa.OpMul64F
|
|
addop := ssa.OpAdd64F
|
|
subop := ssa.OpSub64F
|
|
pt := floatForComplex(n.Type) // Could be Float32 or Float64
|
|
wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancellation error
|
|
|
|
areal := s.newValue1(ssa.OpComplexReal, pt, a)
|
|
breal := s.newValue1(ssa.OpComplexReal, pt, b)
|
|
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
|
|
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
|
|
|
|
if pt != wt { // Widen for calculation
|
|
areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
|
|
breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
|
|
aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
|
|
bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
|
|
}
|
|
|
|
xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
|
|
ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal))
|
|
|
|
if pt != wt { // Narrow to store back
|
|
xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
|
|
ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
|
|
}
|
|
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
|
|
}
|
|
|
|
if n.Type.IsFloat() {
|
|
return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
|
|
case ODIV:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
// TODO this is not executed because the front-end substitutes a runtime call.
|
|
// That probably ought to change; with modest optimization the widen/narrow
|
|
// conversions could all be elided in larger expression trees.
|
|
mulop := ssa.OpMul64F
|
|
addop := ssa.OpAdd64F
|
|
subop := ssa.OpSub64F
|
|
divop := ssa.OpDiv64F
|
|
pt := floatForComplex(n.Type) // Could be Float32 or Float64
|
|
wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancellation error
|
|
|
|
areal := s.newValue1(ssa.OpComplexReal, pt, a)
|
|
breal := s.newValue1(ssa.OpComplexReal, pt, b)
|
|
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
|
|
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
|
|
|
|
if pt != wt { // Widen for calculation
|
|
areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
|
|
breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
|
|
aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
|
|
bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
|
|
}
|
|
|
|
denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag))
|
|
xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
|
|
ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag))
|
|
|
|
// TODO not sure if this is best done in wide precision or narrow
|
|
// Double-rounding might be an issue.
|
|
// Note that the pre-SSA implementation does the entire calculation
|
|
// in wide format, so wide is compatible.
|
|
xreal = s.newValueOrSfCall2(divop, wt, xreal, denom)
|
|
ximag = s.newValueOrSfCall2(divop, wt, ximag, denom)
|
|
|
|
if pt != wt { // Narrow to store back
|
|
xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
|
|
ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
|
|
}
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
|
|
}
|
|
if n.Type.IsFloat() {
|
|
return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
return s.intDivide(n, a, b)
|
|
case OMOD:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.intDivide(n, a, b)
|
|
case OADD, OSUB:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
pt := floatForComplex(n.Type)
|
|
op := s.ssaOp(n.Op, pt)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
|
|
s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
|
|
}
|
|
if n.Type.IsFloat() {
|
|
return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
case OAND, OOR, OXOR:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
case OLSH, ORSH:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
bt := b.Type
|
|
if bt.IsSigned() {
|
|
cmp := s.newValue2(s.ssaOp(OLE, bt), types.Types[TBOOL], s.zeroVal(bt), b)
|
|
s.check(cmp, panicshift)
|
|
bt = bt.ToUnsigned()
|
|
}
|
|
return s.newValue2(s.ssaShiftOp(n.Op, n.Type, bt), a.Type, a, b)
|
|
case OANDAND, OOROR:
|
|
// To implement OANDAND (and OOROR), we introduce a
|
|
// new temporary variable to hold the result. The
|
|
// variable is associated with the OANDAND node in the
|
|
// s.vars table (normally variables are only
|
|
// associated with ONAME nodes). We convert
|
|
// A && B
|
|
// to
|
|
// var = A
|
|
// if var {
|
|
// var = B
|
|
// }
|
|
// Using var in the subsequent block introduces the
|
|
// necessary phi variable.
|
|
el := s.expr(n.Left)
|
|
s.vars[n] = el
|
|
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(el)
|
|
// In theory, we should set b.Likely here based on context.
|
|
// However, gc only gives us likeliness hints
|
|
// in a single place, for plain OIF statements,
|
|
// and passing around context is finnicky, so don't bother for now.
|
|
|
|
bRight := s.f.NewBlock(ssa.BlockPlain)
|
|
bResult := s.f.NewBlock(ssa.BlockPlain)
|
|
if n.Op == OANDAND {
|
|
b.AddEdgeTo(bRight)
|
|
b.AddEdgeTo(bResult)
|
|
} else if n.Op == OOROR {
|
|
b.AddEdgeTo(bResult)
|
|
b.AddEdgeTo(bRight)
|
|
}
|
|
|
|
s.startBlock(bRight)
|
|
er := s.expr(n.Right)
|
|
s.vars[n] = er
|
|
|
|
b = s.endBlock()
|
|
b.AddEdgeTo(bResult)
|
|
|
|
s.startBlock(bResult)
|
|
return s.variable(n, types.Types[TBOOL])
|
|
case OCOMPLEX:
|
|
r := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
|
|
|
|
// unary ops
|
|
case ONEG:
|
|
a := s.expr(n.Left)
|
|
if n.Type.IsComplex() {
|
|
tp := floatForComplex(n.Type)
|
|
negop := s.ssaOp(n.Op, tp)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
|
|
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
|
|
}
|
|
return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
|
|
case ONOT, OBITNOT:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
|
|
case OIMAG, OREAL:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
|
|
case OPLUS:
|
|
return s.expr(n.Left)
|
|
|
|
case OADDR:
|
|
return s.addr(n.Left)
|
|
|
|
case ORESULT:
|
|
addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
|
|
return s.load(n.Type, addr)
|
|
|
|
case ODEREF:
|
|
p := s.exprPtr(n.Left, n.Bounded(), n.Pos)
|
|
return s.load(n.Type, p)
|
|
|
|
case ODOT:
|
|
if n.Left.Op == OSTRUCTLIT {
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !isZero(n.Left) {
|
|
s.Fatalf("literal with nonzero value in SSA: %v", n.Left)
|
|
}
|
|
return s.zeroVal(n.Type)
|
|
}
|
|
// If n is addressable and can't be represented in
|
|
// SSA, then load just the selected field. This
|
|
// prevents false memory dependencies in race/msan
|
|
// instrumentation.
|
|
if islvalue(n) && !s.canSSA(n) {
|
|
p := s.addr(n)
|
|
return s.load(n.Type, p)
|
|
}
|
|
v := s.expr(n.Left)
|
|
return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
|
|
|
|
case ODOTPTR:
|
|
p := s.exprPtr(n.Left, n.Bounded(), n.Pos)
|
|
p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
|
|
return s.load(n.Type, p)
|
|
|
|
case OINDEX:
|
|
switch {
|
|
case n.Left.Type.IsString():
|
|
if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
|
|
// Replace "abc"[1] with 'b'.
|
|
// Delayed until now because "abc"[1] is not an ideal constant.
|
|
// See test/fixedbugs/issue11370.go.
|
|
return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(strlit(n.Left)[n.Right.Int64()])))
|
|
}
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
|
|
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
|
|
ptrtyp := s.f.Config.Types.BytePtr
|
|
ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
|
|
if Isconst(n.Right, CTINT) {
|
|
ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
|
|
} else {
|
|
ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
|
|
}
|
|
return s.load(types.Types[TUINT8], ptr)
|
|
case n.Left.Type.IsSlice():
|
|
p := s.addr(n)
|
|
return s.load(n.Left.Type.Elem(), p)
|
|
case n.Left.Type.IsArray():
|
|
if canSSAType(n.Left.Type) {
|
|
// SSA can handle arrays of length at most 1.
|
|
bound := n.Left.Type.NumElem()
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
if bound == 0 {
|
|
// Bounds check will never succeed. Might as well
|
|
// use constants for the bounds check.
|
|
z := s.constInt(types.Types[TINT], 0)
|
|
s.boundsCheck(z, z, ssa.BoundsIndex, false)
|
|
// The return value won't be live, return junk.
|
|
return s.newValue0(ssa.OpUnknown, n.Type)
|
|
}
|
|
len := s.constInt(types.Types[TINT], bound)
|
|
s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) // checks i == 0
|
|
return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
|
|
}
|
|
p := s.addr(n)
|
|
return s.load(n.Left.Type.Elem(), p)
|
|
default:
|
|
s.Fatalf("bad type for index %v", n.Left.Type)
|
|
return nil
|
|
}
|
|
|
|
case OLEN, OCAP:
|
|
switch {
|
|
case n.Left.Type.IsSlice():
|
|
op := ssa.OpSliceLen
|
|
if n.Op == OCAP {
|
|
op = ssa.OpSliceCap
|
|
}
|
|
return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
|
|
case n.Left.Type.IsString(): // string; not reachable for OCAP
|
|
return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
|
|
case n.Left.Type.IsMap(), n.Left.Type.IsChan():
|
|
return s.referenceTypeBuiltin(n, s.expr(n.Left))
|
|
default: // array
|
|
return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
|
|
}
|
|
|
|
case OSPTR:
|
|
a := s.expr(n.Left)
|
|
if n.Left.Type.IsSlice() {
|
|
return s.newValue1(ssa.OpSlicePtr, n.Type, a)
|
|
} else {
|
|
return s.newValue1(ssa.OpStringPtr, n.Type, a)
|
|
}
|
|
|
|
case OITAB:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpITab, n.Type, a)
|
|
|
|
case OIDATA:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpIData, n.Type, a)
|
|
|
|
case OEFACE:
|
|
tab := s.expr(n.Left)
|
|
data := s.expr(n.Right)
|
|
return s.newValue2(ssa.OpIMake, n.Type, tab, data)
|
|
|
|
case OSLICEHEADER:
|
|
p := s.expr(n.Left)
|
|
l := s.expr(n.List.First())
|
|
c := s.expr(n.List.Second())
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
|
|
|
|
case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
|
|
v := s.expr(n.Left)
|
|
var i, j, k *ssa.Value
|
|
low, high, max := n.SliceBounds()
|
|
if low != nil {
|
|
i = s.expr(low)
|
|
}
|
|
if high != nil {
|
|
j = s.expr(high)
|
|
}
|
|
if max != nil {
|
|
k = s.expr(max)
|
|
}
|
|
p, l, c := s.slice(v, i, j, k, n.Bounded())
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
|
|
|
|
case OSLICESTR:
|
|
v := s.expr(n.Left)
|
|
var i, j *ssa.Value
|
|
low, high, _ := n.SliceBounds()
|
|
if low != nil {
|
|
i = s.expr(low)
|
|
}
|
|
if high != nil {
|
|
j = s.expr(high)
|
|
}
|
|
p, l, _ := s.slice(v, i, j, nil, n.Bounded())
|
|
return s.newValue2(ssa.OpStringMake, n.Type, p, l)
|
|
|
|
case OCALLFUNC:
|
|
if isIntrinsicCall(n) {
|
|
return s.intrinsicCall(n)
|
|
}
|
|
fallthrough
|
|
|
|
case OCALLINTER, OCALLMETH:
|
|
a := s.call(n, callNormal)
|
|
return s.load(n.Type, a)
|
|
|
|
case OGETG:
|
|
return s.newValue1(ssa.OpGetG, n.Type, s.mem())
|
|
|
|
case OAPPEND:
|
|
return s.append(n, false)
|
|
|
|
case OSTRUCTLIT, OARRAYLIT:
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !isZero(n) {
|
|
s.Fatalf("literal with nonzero value in SSA: %v", n)
|
|
}
|
|
return s.zeroVal(n.Type)
|
|
|
|
case ONEWOBJ:
|
|
if n.Type.Elem().Size() == 0 {
|
|
return s.newValue1A(ssa.OpAddr, n.Type, zerobaseSym, s.sb)
|
|
}
|
|
typ := s.expr(n.Left)
|
|
vv := s.rtcall(newobject, true, []*types.Type{n.Type}, typ)
|
|
return vv[0]
|
|
|
|
default:
|
|
s.Fatalf("unhandled expr %v", n.Op)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// append converts an OAPPEND node to SSA.
|
|
// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
|
|
// adds it to s, and returns the Value.
|
|
// If inplace is true, it writes the result of the OAPPEND expression n
|
|
// back to the slice being appended to, and returns nil.
|
|
// inplace MUST be set to false if the slice can be SSA'd.
|
|
func (s *state) append(n *Node, inplace bool) *ssa.Value {
|
|
// If inplace is false, process as expression "append(s, e1, e2, e3)":
|
|
//
|
|
// ptr, len, cap := s
|
|
// newlen := len + 3
|
|
// if newlen > cap {
|
|
// ptr, len, cap = growslice(s, newlen)
|
|
// newlen = len + 3 // recalculate to avoid a spill
|
|
// }
|
|
// // with write barriers, if needed:
|
|
// *(ptr+len) = e1
|
|
// *(ptr+len+1) = e2
|
|
// *(ptr+len+2) = e3
|
|
// return makeslice(ptr, newlen, cap)
|
|
//
|
|
//
|
|
// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
|
|
//
|
|
// a := &s
|
|
// ptr, len, cap := s
|
|
// newlen := len + 3
|
|
// if uint(newlen) > uint(cap) {
|
|
// newptr, len, newcap = growslice(ptr, len, cap, newlen)
|
|
// vardef(a) // if necessary, advise liveness we are writing a new a
|
|
// *a.cap = newcap // write before ptr to avoid a spill
|
|
// *a.ptr = newptr // with write barrier
|
|
// }
|
|
// newlen = len + 3 // recalculate to avoid a spill
|
|
// *a.len = newlen
|
|
// // with write barriers, if needed:
|
|
// *(ptr+len) = e1
|
|
// *(ptr+len+1) = e2
|
|
// *(ptr+len+2) = e3
|
|
|
|
et := n.Type.Elem()
|
|
pt := types.NewPtr(et)
|
|
|
|
// Evaluate slice
|
|
sn := n.List.First() // the slice node is the first in the list
|
|
|
|
var slice, addr *ssa.Value
|
|
if inplace {
|
|
addr = s.addr(sn)
|
|
slice = s.load(n.Type, addr)
|
|
} else {
|
|
slice = s.expr(sn)
|
|
}
|
|
|
|
// Allocate new blocks
|
|
grow := s.f.NewBlock(ssa.BlockPlain)
|
|
assign := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// Decide if we need to grow
|
|
nargs := int64(n.List.Len() - 1)
|
|
p := s.newValue1(ssa.OpSlicePtr, pt, slice)
|
|
l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
|
|
c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
|
|
nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
|
|
|
|
cmp := s.newValue2(s.ssaOp(OLT, types.Types[TUINT]), types.Types[TBOOL], c, nl)
|
|
s.vars[&ptrVar] = p
|
|
|
|
if !inplace {
|
|
s.vars[&newlenVar] = nl
|
|
s.vars[&capVar] = c
|
|
} else {
|
|
s.vars[&lenVar] = l
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Likely = ssa.BranchUnlikely
|
|
b.SetControl(cmp)
|
|
b.AddEdgeTo(grow)
|
|
b.AddEdgeTo(assign)
|
|
|
|
// Call growslice
|
|
s.startBlock(grow)
|
|
taddr := s.expr(n.Left)
|
|
r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
|
|
|
|
if inplace {
|
|
if sn.Op == ONAME && sn.Class() != PEXTERN {
|
|
// Tell liveness we're about to build a new slice
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
|
|
}
|
|
capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, sliceCapOffset, addr)
|
|
s.store(types.Types[TINT], capaddr, r[2])
|
|
s.store(pt, addr, r[0])
|
|
// load the value we just stored to avoid having to spill it
|
|
s.vars[&ptrVar] = s.load(pt, addr)
|
|
s.vars[&lenVar] = r[1] // avoid a spill in the fast path
|
|
} else {
|
|
s.vars[&ptrVar] = r[0]
|
|
s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
|
|
s.vars[&capVar] = r[2]
|
|
}
|
|
|
|
b = s.endBlock()
|
|
b.AddEdgeTo(assign)
|
|
|
|
// assign new elements to slots
|
|
s.startBlock(assign)
|
|
|
|
if inplace {
|
|
l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
|
|
nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
|
|
lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, sliceLenOffset, addr)
|
|
s.store(types.Types[TINT], lenaddr, nl)
|
|
}
|
|
|
|
// Evaluate args
|
|
type argRec struct {
|
|
// if store is true, we're appending the value v. If false, we're appending the
|
|
// value at *v.
|
|
v *ssa.Value
|
|
store bool
|
|
}
|
|
args := make([]argRec, 0, nargs)
|
|
for _, n := range n.List.Slice()[1:] {
|
|
if canSSAType(n.Type) {
|
|
args = append(args, argRec{v: s.expr(n), store: true})
|
|
} else {
|
|
v := s.addr(n)
|
|
args = append(args, argRec{v: v})
|
|
}
|
|
}
|
|
|
|
p = s.variable(&ptrVar, pt) // generates phi for ptr
|
|
if !inplace {
|
|
nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
|
|
c = s.variable(&capVar, types.Types[TINT]) // generates phi for cap
|
|
}
|
|
p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
|
|
for i, arg := range args {
|
|
addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
|
|
if arg.store {
|
|
s.storeType(et, addr, arg.v, 0, true)
|
|
} else {
|
|
s.move(et, addr, arg.v)
|
|
}
|
|
}
|
|
|
|
delete(s.vars, &ptrVar)
|
|
if inplace {
|
|
delete(s.vars, &lenVar)
|
|
return nil
|
|
}
|
|
delete(s.vars, &newlenVar)
|
|
delete(s.vars, &capVar)
|
|
// make result
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
|
|
}
|
|
|
|
// condBranch evaluates the boolean expression cond and branches to yes
|
|
// if cond is true and no if cond is false.
|
|
// This function is intended to handle && and || better than just calling
|
|
// s.expr(cond) and branching on the result.
|
|
func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
|
|
switch cond.Op {
|
|
case OANDAND:
|
|
mid := s.f.NewBlock(ssa.BlockPlain)
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, mid, no, max8(likely, 0))
|
|
s.startBlock(mid)
|
|
s.condBranch(cond.Right, yes, no, likely)
|
|
return
|
|
// Note: if likely==1, then both recursive calls pass 1.
|
|
// If likely==-1, then we don't have enough information to decide
|
|
// whether the first branch is likely or not. So we pass 0 for
|
|
// the likeliness of the first branch.
|
|
// TODO: have the frontend give us branch prediction hints for
|
|
// OANDAND and OOROR nodes (if it ever has such info).
|
|
case OOROR:
|
|
mid := s.f.NewBlock(ssa.BlockPlain)
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, yes, mid, min8(likely, 0))
|
|
s.startBlock(mid)
|
|
s.condBranch(cond.Right, yes, no, likely)
|
|
return
|
|
// Note: if likely==-1, then both recursive calls pass -1.
|
|
// If likely==1, then we don't have enough info to decide
|
|
// the likelihood of the first branch.
|
|
case ONOT:
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, no, yes, -likely)
|
|
return
|
|
}
|
|
c := s.expr(cond)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(c)
|
|
b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
|
|
b.AddEdgeTo(yes)
|
|
b.AddEdgeTo(no)
|
|
}
|
|
|
|
type skipMask uint8
|
|
|
|
const (
|
|
skipPtr skipMask = 1 << iota
|
|
skipLen
|
|
skipCap
|
|
)
|
|
|
|
// assign does left = right.
|
|
// Right has already been evaluated to ssa, left has not.
|
|
// If deref is true, then we do left = *right instead (and right has already been nil-checked).
|
|
// If deref is true and right == nil, just do left = 0.
|
|
// skip indicates assignments (at the top level) that can be avoided.
|
|
func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
|
|
if left.Op == ONAME && left.isBlank() {
|
|
return
|
|
}
|
|
t := left.Type
|
|
dowidth(t)
|
|
if s.canSSA(left) {
|
|
if deref {
|
|
s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
|
|
}
|
|
if left.Op == ODOT {
|
|
// We're assigning to a field of an ssa-able value.
|
|
// We need to build a new structure with the new value for the
|
|
// field we're assigning and the old values for the other fields.
|
|
// For instance:
|
|
// type T struct {a, b, c int}
|
|
// var T x
|
|
// x.b = 5
|
|
// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
|
|
|
|
// Grab information about the structure type.
|
|
t := left.Left.Type
|
|
nf := t.NumFields()
|
|
idx := fieldIdx(left)
|
|
|
|
// Grab old value of structure.
|
|
old := s.expr(left.Left)
|
|
|
|
// Make new structure.
|
|
new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
|
|
|
|
// Add fields as args.
|
|
for i := 0; i < nf; i++ {
|
|
if i == idx {
|
|
new.AddArg(right)
|
|
} else {
|
|
new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
|
|
}
|
|
}
|
|
|
|
// Recursively assign the new value we've made to the base of the dot op.
|
|
s.assign(left.Left, new, false, 0)
|
|
// TODO: do we need to update named values here?
|
|
return
|
|
}
|
|
if left.Op == OINDEX && left.Left.Type.IsArray() {
|
|
s.pushLine(left.Pos)
|
|
defer s.popLine()
|
|
// We're assigning to an element of an ssa-able array.
|
|
// a[i] = v
|
|
t := left.Left.Type
|
|
n := t.NumElem()
|
|
|
|
i := s.expr(left.Right) // index
|
|
if n == 0 {
|
|
// The bounds check must fail. Might as well
|
|
// ignore the actual index and just use zeros.
|
|
z := s.constInt(types.Types[TINT], 0)
|
|
s.boundsCheck(z, z, ssa.BoundsIndex, false)
|
|
return
|
|
}
|
|
if n != 1 {
|
|
s.Fatalf("assigning to non-1-length array")
|
|
}
|
|
// Rewrite to a = [1]{v}
|
|
len := s.constInt(types.Types[TINT], 1)
|
|
s.boundsCheck(i, len, ssa.BoundsIndex, false) // checks i == 0
|
|
v := s.newValue1(ssa.OpArrayMake1, t, right)
|
|
s.assign(left.Left, v, false, 0)
|
|
return
|
|
}
|
|
// Update variable assignment.
|
|
s.vars[left] = right
|
|
s.addNamedValue(left, right)
|
|
return
|
|
}
|
|
|
|
// If this assignment clobbers an entire local variable, then emit
|
|
// OpVarDef so liveness analysis knows the variable is redefined.
|
|
if base := clobberBase(left); base.Op == ONAME && base.Class() != PEXTERN && skip == 0 {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !base.IsAutoTmp())
|
|
}
|
|
|
|
// Left is not ssa-able. Compute its address.
|
|
addr := s.addr(left)
|
|
if isReflectHeaderDataField(left) {
|
|
// Package unsafe's documentation says storing pointers into
|
|
// reflect.SliceHeader and reflect.StringHeader's Data fields
|
|
// is valid, even though they have type uintptr (#19168).
|
|
// Mark it pointer type to signal the writebarrier pass to
|
|
// insert a write barrier.
|
|
t = types.Types[TUNSAFEPTR]
|
|
}
|
|
if deref {
|
|
// Treat as a mem->mem move.
|
|
if right == nil {
|
|
s.zero(t, addr)
|
|
} else {
|
|
s.move(t, addr, right)
|
|
}
|
|
return
|
|
}
|
|
// Treat as a store.
|
|
s.storeType(t, addr, right, skip, !left.IsAutoTmp())
|
|
}
|
|
|
|
// zeroVal returns the zero value for type t.
|
|
func (s *state) zeroVal(t *types.Type) *ssa.Value {
|
|
switch {
|
|
case t.IsInteger():
|
|
switch t.Size() {
|
|
case 1:
|
|
return s.constInt8(t, 0)
|
|
case 2:
|
|
return s.constInt16(t, 0)
|
|
case 4:
|
|
return s.constInt32(t, 0)
|
|
case 8:
|
|
return s.constInt64(t, 0)
|
|
default:
|
|
s.Fatalf("bad sized integer type %v", t)
|
|
}
|
|
case t.IsFloat():
|
|
switch t.Size() {
|
|
case 4:
|
|
return s.constFloat32(t, 0)
|
|
case 8:
|
|
return s.constFloat64(t, 0)
|
|
default:
|
|
s.Fatalf("bad sized float type %v", t)
|
|
}
|
|
case t.IsComplex():
|
|
switch t.Size() {
|
|
case 8:
|
|
z := s.constFloat32(types.Types[TFLOAT32], 0)
|
|
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
|
|
case 16:
|
|
z := s.constFloat64(types.Types[TFLOAT64], 0)
|
|
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
|
|
default:
|
|
s.Fatalf("bad sized complex type %v", t)
|
|
}
|
|
|
|
case t.IsString():
|
|
return s.constEmptyString(t)
|
|
case t.IsPtrShaped():
|
|
return s.constNil(t)
|
|
case t.IsBoolean():
|
|
return s.constBool(false)
|
|
case t.IsInterface():
|
|
return s.constInterface(t)
|
|
case t.IsSlice():
|
|
return s.constSlice(t)
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
|
|
for i := 0; i < n; i++ {
|
|
v.AddArg(s.zeroVal(t.FieldType(i)))
|
|
}
|
|
return v
|
|
case t.IsArray():
|
|
switch t.NumElem() {
|
|
case 0:
|
|
return s.entryNewValue0(ssa.OpArrayMake0, t)
|
|
case 1:
|
|
return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
|
|
}
|
|
}
|
|
s.Fatalf("zero for type %v not implemented", t)
|
|
return nil
|
|
}
|
|
|
|
type callKind int8
|
|
|
|
const (
|
|
callNormal callKind = iota
|
|
callDefer
|
|
callDeferStack
|
|
callGo
|
|
)
|
|
|
|
type sfRtCallDef struct {
|
|
rtfn *obj.LSym
|
|
rtype types.EType
|
|
}
|
|
|
|
var softFloatOps map[ssa.Op]sfRtCallDef
|
|
|
|
func softfloatInit() {
|
|
// Some of these operations get transformed by sfcall.
|
|
softFloatOps = map[ssa.Op]sfRtCallDef{
|
|
ssa.OpAdd32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
|
|
ssa.OpAdd64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
|
|
ssa.OpSub32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32},
|
|
ssa.OpSub64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64},
|
|
ssa.OpMul32F: sfRtCallDef{sysfunc("fmul32"), TFLOAT32},
|
|
ssa.OpMul64F: sfRtCallDef{sysfunc("fmul64"), TFLOAT64},
|
|
ssa.OpDiv32F: sfRtCallDef{sysfunc("fdiv32"), TFLOAT32},
|
|
ssa.OpDiv64F: sfRtCallDef{sysfunc("fdiv64"), TFLOAT64},
|
|
|
|
ssa.OpEq64F: sfRtCallDef{sysfunc("feq64"), TBOOL},
|
|
ssa.OpEq32F: sfRtCallDef{sysfunc("feq32"), TBOOL},
|
|
ssa.OpNeq64F: sfRtCallDef{sysfunc("feq64"), TBOOL},
|
|
ssa.OpNeq32F: sfRtCallDef{sysfunc("feq32"), TBOOL},
|
|
ssa.OpLess64F: sfRtCallDef{sysfunc("fgt64"), TBOOL},
|
|
ssa.OpLess32F: sfRtCallDef{sysfunc("fgt32"), TBOOL},
|
|
ssa.OpLeq64F: sfRtCallDef{sysfunc("fge64"), TBOOL},
|
|
ssa.OpLeq32F: sfRtCallDef{sysfunc("fge32"), TBOOL},
|
|
|
|
ssa.OpCvt32to32F: sfRtCallDef{sysfunc("fint32to32"), TFLOAT32},
|
|
ssa.OpCvt32Fto32: sfRtCallDef{sysfunc("f32toint32"), TINT32},
|
|
ssa.OpCvt64to32F: sfRtCallDef{sysfunc("fint64to32"), TFLOAT32},
|
|
ssa.OpCvt32Fto64: sfRtCallDef{sysfunc("f32toint64"), TINT64},
|
|
ssa.OpCvt64Uto32F: sfRtCallDef{sysfunc("fuint64to32"), TFLOAT32},
|
|
ssa.OpCvt32Fto64U: sfRtCallDef{sysfunc("f32touint64"), TUINT64},
|
|
ssa.OpCvt32to64F: sfRtCallDef{sysfunc("fint32to64"), TFLOAT64},
|
|
ssa.OpCvt64Fto32: sfRtCallDef{sysfunc("f64toint32"), TINT32},
|
|
ssa.OpCvt64to64F: sfRtCallDef{sysfunc("fint64to64"), TFLOAT64},
|
|
ssa.OpCvt64Fto64: sfRtCallDef{sysfunc("f64toint64"), TINT64},
|
|
ssa.OpCvt64Uto64F: sfRtCallDef{sysfunc("fuint64to64"), TFLOAT64},
|
|
ssa.OpCvt64Fto64U: sfRtCallDef{sysfunc("f64touint64"), TUINT64},
|
|
ssa.OpCvt32Fto64F: sfRtCallDef{sysfunc("f32to64"), TFLOAT64},
|
|
ssa.OpCvt64Fto32F: sfRtCallDef{sysfunc("f64to32"), TFLOAT32},
|
|
}
|
|
}
|
|
|
|
// TODO: do not emit sfcall if operation can be optimized to constant in later
|
|
// opt phase
|
|
func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) {
|
|
if callDef, ok := softFloatOps[op]; ok {
|
|
switch op {
|
|
case ssa.OpLess32F,
|
|
ssa.OpLess64F,
|
|
ssa.OpLeq32F,
|
|
ssa.OpLeq64F:
|
|
args[0], args[1] = args[1], args[0]
|
|
case ssa.OpSub32F,
|
|
ssa.OpSub64F:
|
|
args[1] = s.newValue1(s.ssaOp(ONEG, types.Types[callDef.rtype]), args[1].Type, args[1])
|
|
}
|
|
|
|
result := s.rtcall(callDef.rtfn, true, []*types.Type{types.Types[callDef.rtype]}, args...)[0]
|
|
if op == ssa.OpNeq32F || op == ssa.OpNeq64F {
|
|
result = s.newValue1(ssa.OpNot, result.Type, result)
|
|
}
|
|
return result, true
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
var intrinsics map[intrinsicKey]intrinsicBuilder
|
|
|
|
// An intrinsicBuilder converts a call node n into an ssa value that
|
|
// implements that call as an intrinsic. args is a list of arguments to the func.
|
|
type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
|
|
|
|
type intrinsicKey struct {
|
|
arch *sys.Arch
|
|
pkg string
|
|
fn string
|
|
}
|
|
|
|
func init() {
|
|
intrinsics = map[intrinsicKey]intrinsicBuilder{}
|
|
|
|
var all []*sys.Arch
|
|
var p4 []*sys.Arch
|
|
var p8 []*sys.Arch
|
|
var lwatomics []*sys.Arch
|
|
for _, a := range &sys.Archs {
|
|
all = append(all, a)
|
|
if a.PtrSize == 4 {
|
|
p4 = append(p4, a)
|
|
} else {
|
|
p8 = append(p8, a)
|
|
}
|
|
if a.Family != sys.PPC64 {
|
|
lwatomics = append(lwatomics, a)
|
|
}
|
|
}
|
|
|
|
// add adds the intrinsic b for pkg.fn for the given list of architectures.
|
|
add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
|
|
for _, a := range archs {
|
|
intrinsics[intrinsicKey{a, pkg, fn}] = b
|
|
}
|
|
}
|
|
// addF does the same as add but operates on architecture families.
|
|
addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
|
|
m := 0
|
|
for _, f := range archFamilies {
|
|
if f >= 32 {
|
|
panic("too many architecture families")
|
|
}
|
|
m |= 1 << uint(f)
|
|
}
|
|
for _, a := range all {
|
|
if m>>uint(a.Family)&1 != 0 {
|
|
intrinsics[intrinsicKey{a, pkg, fn}] = b
|
|
}
|
|
}
|
|
}
|
|
// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
|
|
alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
|
|
aliased := false
|
|
for _, a := range archs {
|
|
if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
|
|
intrinsics[intrinsicKey{a, pkg, fn}] = b
|
|
aliased = true
|
|
}
|
|
}
|
|
if !aliased {
|
|
panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn))
|
|
}
|
|
}
|
|
|
|
/******** runtime ********/
|
|
if !instrumenting {
|
|
add("runtime", "slicebytetostringtmp",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
// Compiler frontend optimizations emit OBYTES2STRTMP nodes
|
|
// for the backend instead of slicebytetostringtmp calls
|
|
// when not instrumenting.
|
|
return s.newValue2(ssa.OpStringMake, n.Type, args[0], args[1])
|
|
},
|
|
all...)
|
|
}
|
|
addF("runtime/internal/math", "MulUintptr",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1])
|
|
}
|
|
return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1])
|
|
},
|
|
sys.AMD64, sys.I386, sys.MIPS64)
|
|
add("runtime", "KeepAlive",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
|
|
s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
|
|
return nil
|
|
},
|
|
all...)
|
|
add("runtime", "getclosureptr",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
|
|
},
|
|
all...)
|
|
|
|
add("runtime", "getcallerpc",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
|
|
},
|
|
all...)
|
|
|
|
add("runtime", "getcallersp",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
|
|
},
|
|
all...)
|
|
|
|
/******** runtime/internal/sys ********/
|
|
addF("runtime/internal/sys", "Ctz32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
|
|
addF("runtime/internal/sys", "Ctz64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
|
|
addF("runtime/internal/sys", "Bswap32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
|
|
addF("runtime/internal/sys", "Bswap64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
|
|
|
|
/******** runtime/internal/atomic ********/
|
|
addF("runtime/internal/atomic", "Load",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Load8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[TUINT8], types.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT8], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Load64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "LoadAcq",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
|
|
},
|
|
sys.PPC64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Loadp",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
|
|
addF("runtime/internal/atomic", "Store",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Store8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Store64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "StorepNoWB",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "StoreRel",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.PPC64, sys.S390X)
|
|
|
|
addF("runtime/internal/atomic", "Xchg",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Xchg64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
|
|
addF("runtime/internal/atomic", "Xadd",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
|
|
},
|
|
sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Xadd64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
|
|
},
|
|
sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
|
|
makeXaddARM64 := func(op0 ssa.Op, op1 ssa.Op, ty types.EType) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
// Target Atomic feature is identified by dynamic detection
|
|
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), arm64HasATOMICS, s.sb)
|
|
v := s.load(types.Types[TBOOL], addr)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(v)
|
|
bTrue := s.f.NewBlock(ssa.BlockPlain)
|
|
bFalse := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bTrue)
|
|
b.AddEdgeTo(bFalse)
|
|
b.Likely = ssa.BranchUnlikely // most machines don't have Atomics nowadays
|
|
|
|
// We have atomic instructions - use it directly.
|
|
s.startBlock(bTrue)
|
|
v0 := s.newValue3(op1, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v0)
|
|
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v0)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Use original instruction sequence.
|
|
s.startBlock(bFalse)
|
|
v1 := s.newValue3(op0, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v1)
|
|
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v1)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Merge results.
|
|
s.startBlock(bEnd)
|
|
return s.variable(n, types.Types[ty])
|
|
}
|
|
}
|
|
|
|
addF("runtime/internal/atomic", "Xadd",
|
|
makeXaddARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, TUINT32),
|
|
sys.ARM64)
|
|
addF("runtime/internal/atomic", "Xadd64",
|
|
makeXaddARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, TUINT64),
|
|
sys.ARM64)
|
|
|
|
addF("runtime/internal/atomic", "Cas",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Cas64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
|
|
addF("runtime/internal/atomic", "CasRel",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
|
|
},
|
|
sys.PPC64)
|
|
|
|
addF("runtime/internal/atomic", "And8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
|
|
addF("runtime/internal/atomic", "Or8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
|
|
|
|
alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
|
|
alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
|
|
alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
|
|
alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
|
|
alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
|
|
alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
|
|
alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...)
|
|
alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
|
|
alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
|
|
alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...)
|
|
alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
|
|
alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
|
|
alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
|
|
alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
|
|
alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
|
|
alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
|
|
alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
|
|
alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
|
|
alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...)
|
|
|
|
/******** math ********/
|
|
addF("math", "Sqrt",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
|
|
addF("math", "Trunc",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
|
|
addF("math", "Ceil",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
|
|
addF("math", "Floor",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
|
|
addF("math", "Round",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.PPC64, sys.S390X)
|
|
addF("math", "RoundToEven",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.S390X, sys.Wasm)
|
|
addF("math", "Abs",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0])
|
|
},
|
|
sys.ARM64, sys.ARM, sys.PPC64, sys.Wasm)
|
|
addF("math", "Copysign",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1])
|
|
},
|
|
sys.PPC64, sys.Wasm)
|
|
addF("math", "FMA",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2])
|
|
},
|
|
sys.ARM64, sys.PPC64, sys.S390X)
|
|
addF("math", "FMA",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if !s.config.UseFMA {
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TFLOAT64], a)
|
|
return s.variable(n, types.Types[TFLOAT64])
|
|
}
|
|
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[TBOOL], x86HasFMA)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(v)
|
|
bTrue := s.f.NewBlock(ssa.BlockPlain)
|
|
bFalse := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bTrue)
|
|
b.AddEdgeTo(bFalse)
|
|
b.Likely = ssa.BranchLikely // >= haswell cpus are common
|
|
|
|
// We have the intrinsic - use it directly.
|
|
s.startBlock(bTrue)
|
|
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2])
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Call the pure Go version.
|
|
s.startBlock(bFalse)
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TFLOAT64], a)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Merge results.
|
|
s.startBlock(bEnd)
|
|
return s.variable(n, types.Types[TFLOAT64])
|
|
},
|
|
sys.AMD64)
|
|
addF("math", "FMA",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if !s.config.UseFMA {
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TFLOAT64], a)
|
|
return s.variable(n, types.Types[TFLOAT64])
|
|
}
|
|
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), armHasVFPv4, s.sb)
|
|
v := s.load(types.Types[TBOOL], addr)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(v)
|
|
bTrue := s.f.NewBlock(ssa.BlockPlain)
|
|
bFalse := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bTrue)
|
|
b.AddEdgeTo(bFalse)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
// We have the intrinsic - use it directly.
|
|
s.startBlock(bTrue)
|
|
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2])
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Call the pure Go version.
|
|
s.startBlock(bFalse)
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TFLOAT64], a)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Merge results.
|
|
s.startBlock(bEnd)
|
|
return s.variable(n, types.Types[TFLOAT64])
|
|
},
|
|
sys.ARM)
|
|
|
|
makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[TBOOL], x86HasSSE41)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(v)
|
|
bTrue := s.f.NewBlock(ssa.BlockPlain)
|
|
bFalse := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bTrue)
|
|
b.AddEdgeTo(bFalse)
|
|
b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
|
|
|
|
// We have the intrinsic - use it directly.
|
|
s.startBlock(bTrue)
|
|
s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0])
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Call the pure Go version.
|
|
s.startBlock(bFalse)
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TFLOAT64], a)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Merge results.
|
|
s.startBlock(bEnd)
|
|
return s.variable(n, types.Types[TFLOAT64])
|
|
}
|
|
}
|
|
addF("math", "RoundToEven",
|
|
makeRoundAMD64(ssa.OpRoundToEven),
|
|
sys.AMD64)
|
|
addF("math", "Floor",
|
|
makeRoundAMD64(ssa.OpFloor),
|
|
sys.AMD64)
|
|
addF("math", "Ceil",
|
|
makeRoundAMD64(ssa.OpCeil),
|
|
sys.AMD64)
|
|
addF("math", "Trunc",
|
|
makeRoundAMD64(ssa.OpTrunc),
|
|
sys.AMD64)
|
|
|
|
/******** math/bits ********/
|
|
addF("math/bits", "TrailingZeros64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "TrailingZeros32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "TrailingZeros16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
|
|
c := s.constInt32(types.Types[TUINT32], 1<<16)
|
|
y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
|
|
return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
|
|
},
|
|
sys.MIPS)
|
|
addF("math/bits", "TrailingZeros16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz16, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm)
|
|
addF("math/bits", "TrailingZeros16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
|
|
c := s.constInt64(types.Types[TUINT64], 1<<16)
|
|
y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
|
|
return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
|
|
},
|
|
sys.S390X, sys.PPC64)
|
|
addF("math/bits", "TrailingZeros8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
|
|
c := s.constInt32(types.Types[TUINT32], 1<<8)
|
|
y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
|
|
return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
|
|
},
|
|
sys.MIPS)
|
|
addF("math/bits", "TrailingZeros8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz8, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM, sys.ARM64, sys.Wasm)
|
|
addF("math/bits", "TrailingZeros8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
|
|
c := s.constInt64(types.Types[TUINT64], 1<<8)
|
|
y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
|
|
return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
|
|
},
|
|
sys.S390X)
|
|
alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
|
|
alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
|
|
// ReverseBytes inlines correctly, no need to intrinsify it.
|
|
// ReverseBytes16 lowers to a rotate, no need for anything special here.
|
|
addF("math/bits", "Len64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "Len32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64)
|
|
addF("math/bits", "Len32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
|
|
}
|
|
x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
|
|
return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
|
|
},
|
|
sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "Len16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
|
|
return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
|
|
}
|
|
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
|
|
return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
|
|
},
|
|
sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "Len16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitLen16, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64)
|
|
addF("math/bits", "Len8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
|
|
return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
|
|
}
|
|
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
|
|
return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
|
|
},
|
|
sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "Len8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitLen8, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64)
|
|
addF("math/bits", "Len",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
|
|
}
|
|
return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
|
|
// LeadingZeros is handled because it trivially calls Len.
|
|
addF("math/bits", "Reverse64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64)
|
|
addF("math/bits", "Reverse32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64)
|
|
addF("math/bits", "Reverse16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64)
|
|
addF("math/bits", "Reverse8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64)
|
|
addF("math/bits", "Reverse",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
if s.config.PtrSize == 4 {
|
|
return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
|
|
}
|
|
return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64)
|
|
addF("math/bits", "RotateLeft8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpRotateLeft8, types.Types[TUINT8], args[0], args[1])
|
|
},
|
|
sys.AMD64)
|
|
addF("math/bits", "RotateLeft16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpRotateLeft16, types.Types[TUINT16], args[0], args[1])
|
|
},
|
|
sys.AMD64)
|
|
addF("math/bits", "RotateLeft32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpRotateLeft32, types.Types[TUINT32], args[0], args[1])
|
|
},
|
|
sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "RotateLeft64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpRotateLeft64, types.Types[TUINT64], args[0], args[1])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
|
|
alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...)
|
|
|
|
makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[TBOOL], x86HasPOPCNT)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(v)
|
|
bTrue := s.f.NewBlock(ssa.BlockPlain)
|
|
bFalse := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bTrue)
|
|
b.AddEdgeTo(bFalse)
|
|
b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
|
|
|
|
// We have the intrinsic - use it directly.
|
|
s.startBlock(bTrue)
|
|
op := op64
|
|
if s.config.PtrSize == 4 {
|
|
op = op32
|
|
}
|
|
s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Call the pure Go version.
|
|
s.startBlock(bFalse)
|
|
a := s.call(n, callNormal)
|
|
s.vars[n] = s.load(types.Types[TINT], a)
|
|
s.endBlock().AddEdgeTo(bEnd)
|
|
|
|
// Merge results.
|
|
s.startBlock(bEnd)
|
|
return s.variable(n, types.Types[TINT])
|
|
}
|
|
}
|
|
addF("math/bits", "OnesCount64",
|
|
makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64),
|
|
sys.AMD64)
|
|
addF("math/bits", "OnesCount64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0])
|
|
},
|
|
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
|
|
addF("math/bits", "OnesCount32",
|
|
makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32),
|
|
sys.AMD64)
|
|
addF("math/bits", "OnesCount32",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0])
|
|
},
|
|
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
|
|
addF("math/bits", "OnesCount16",
|
|
makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16),
|
|
sys.AMD64)
|
|
addF("math/bits", "OnesCount16",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpPopCount16, types.Types[TINT], args[0])
|
|
},
|
|
sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "OnesCount8",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpPopCount8, types.Types[TINT], args[0])
|
|
},
|
|
sys.S390X, sys.PPC64, sys.Wasm)
|
|
addF("math/bits", "OnesCount",
|
|
makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32),
|
|
sys.AMD64)
|
|
addF("math/bits", "Mul64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64)
|
|
alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE)
|
|
addF("math/bits", "Add64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X)
|
|
alias("math/bits", "Add", "math/bits", "Add64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchS390X)
|
|
addF("math/bits", "Sub64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
|
|
},
|
|
sys.AMD64, sys.ARM64, sys.S390X)
|
|
alias("math/bits", "Sub", "math/bits", "Sub64", sys.ArchAMD64, sys.ArchARM64, sys.ArchS390X)
|
|
addF("math/bits", "Div64",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
// check for divide-by-zero/overflow and panic with appropriate message
|
|
cmpZero := s.newValue2(s.ssaOp(ONE, types.Types[TUINT64]), types.Types[TBOOL], args[2], s.zeroVal(types.Types[TUINT64]))
|
|
s.check(cmpZero, panicdivide)
|
|
cmpOverflow := s.newValue2(s.ssaOp(OLT, types.Types[TUINT64]), types.Types[TBOOL], args[0], args[2])
|
|
s.check(cmpOverflow, panicoverflow)
|
|
return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
|
|
},
|
|
sys.AMD64)
|
|
alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64)
|
|
|
|
alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...)
|
|
alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...)
|
|
alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...)
|
|
alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...)
|
|
alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...)
|
|
alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...)
|
|
|
|
/******** sync/atomic ********/
|
|
|
|
// Note: these are disabled by flag_race in findIntrinsic below.
|
|
alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
|
|
alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
|
|
alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
|
|
alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
|
|
alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
|
|
alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
|
|
alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
|
|
|
|
alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
|
|
alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
|
|
// Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap.
|
|
alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
|
|
alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
|
|
alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
|
|
alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
|
|
|
|
alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
|
|
alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
|
|
alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
|
|
alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
|
|
alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
|
|
alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
|
|
|
|
alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
|
|
alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
|
|
alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
|
|
alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
|
|
alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
|
|
alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
|
|
|
|
alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
|
|
alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
|
|
alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
|
|
alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
|
|
alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
|
|
alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
|
|
|
|
/******** math/big ********/
|
|
add("math/big", "mulWW",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
|
|
},
|
|
sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64, sys.ArchS390X)
|
|
add("math/big", "divWW",
|
|
func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
|
|
},
|
|
sys.ArchAMD64)
|
|
}
|
|
|
|
// findIntrinsic returns a function which builds the SSA equivalent of the
|
|
// function identified by the symbol sym. If sym is not an intrinsic call, returns nil.
|
|
func findIntrinsic(sym *types.Sym) intrinsicBuilder {
|
|
if sym == nil || sym.Pkg == nil {
|
|
return nil
|
|
}
|
|
pkg := sym.Pkg.Path
|
|
if sym.Pkg == localpkg {
|
|
pkg = myimportpath
|
|
}
|
|
if flag_race && pkg == "sync/atomic" {
|
|
// The race detector needs to be able to intercept these calls.
|
|
// We can't intrinsify them.
|
|
return nil
|
|
}
|
|
// Skip intrinsifying math functions (which may contain hard-float
|
|
// instructions) when soft-float
|
|
if thearch.SoftFloat && pkg == "math" {
|
|
return nil
|
|
}
|
|
|
|
fn := sym.Name
|
|
if ssa.IntrinsicsDisable {
|
|
if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") {
|
|
// These runtime functions don't have definitions, must be intrinsics.
|
|
} else {
|
|
return nil
|
|
}
|
|
}
|
|
return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
|
|
}
|
|
|
|
func isIntrinsicCall(n *Node) bool {
|
|
if n == nil || n.Left == nil {
|
|
return false
|
|
}
|
|
return findIntrinsic(n.Left.Sym) != nil
|
|
}
|
|
|
|
// intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
|
|
func (s *state) intrinsicCall(n *Node) *ssa.Value {
|
|
v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
|
|
if ssa.IntrinsicsDebug > 0 {
|
|
x := v
|
|
if x == nil {
|
|
x = s.mem()
|
|
}
|
|
if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
|
|
x = x.Args[0]
|
|
}
|
|
Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
|
|
}
|
|
return v
|
|
}
|
|
|
|
// intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
|
|
func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
|
|
// Construct map of temps; see comments in s.call about the structure of n.
|
|
temps := map[*Node]*ssa.Value{}
|
|
for _, a := range n.List.Slice() {
|
|
if a.Op != OAS {
|
|
s.Fatalf("non-assignment as a temp function argument %v", a.Op)
|
|
}
|
|
l, r := a.Left, a.Right
|
|
if l.Op != ONAME {
|
|
s.Fatalf("non-ONAME temp function argument %v", a.Op)
|
|
}
|
|
// Evaluate and store to "temporary".
|
|
// Walk ensures these temporaries are dead outside of n.
|
|
temps[l] = s.expr(r)
|
|
}
|
|
args := make([]*ssa.Value, n.Rlist.Len())
|
|
for i, n := range n.Rlist.Slice() {
|
|
// Store a value to an argument slot.
|
|
if x, ok := temps[n]; ok {
|
|
// This is a previously computed temporary.
|
|
args[i] = x
|
|
continue
|
|
}
|
|
// This is an explicit value; evaluate it.
|
|
args[i] = s.expr(n)
|
|
}
|
|
return args
|
|
}
|
|
|
|
// openDeferRecord adds code to evaluate and store the args for an open-code defer
|
|
// call, and records info about the defer, so we can generate proper code on the
|
|
// exit paths. n is the sub-node of the defer node that is the actual function
|
|
// call. We will also record funcdata information on where the args are stored
|
|
// (as well as the deferBits variable), and this will enable us to run the proper
|
|
// defer calls during panics.
|
|
func (s *state) openDeferRecord(n *Node) {
|
|
// Do any needed expression evaluation for the args (including the
|
|
// receiver, if any). This may be evaluating something like 'autotmp_3 =
|
|
// once.mutex'. Such a statement will create a mapping in s.vars[] from
|
|
// the autotmp name to the evaluated SSA arg value, but won't do any
|
|
// stores to the stack.
|
|
s.stmtList(n.List)
|
|
|
|
var args []*ssa.Value
|
|
var argNodes []*Node
|
|
|
|
opendefer := &openDeferInfo{
|
|
n: n,
|
|
}
|
|
fn := n.Left
|
|
if n.Op == OCALLFUNC {
|
|
// We must always store the function value in a stack slot for the
|
|
// runtime panic code to use. But in the defer exit code, we will
|
|
// call the function directly if it is a static function.
|
|
closureVal := s.expr(fn)
|
|
closure := s.openDeferSave(nil, fn.Type, closureVal)
|
|
opendefer.closureNode = closure.Aux.(*Node)
|
|
if !(fn.Op == ONAME && fn.Class() == PFUNC) {
|
|
opendefer.closure = closure
|
|
}
|
|
} else if n.Op == OCALLMETH {
|
|
if fn.Op != ODOTMETH {
|
|
Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
|
|
}
|
|
closureVal := s.getMethodClosure(fn)
|
|
// We must always store the function value in a stack slot for the
|
|
// runtime panic code to use. But in the defer exit code, we will
|
|
// call the method directly.
|
|
closure := s.openDeferSave(nil, fn.Type, closureVal)
|
|
opendefer.closureNode = closure.Aux.(*Node)
|
|
} else {
|
|
if fn.Op != ODOTINTER {
|
|
Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
|
|
}
|
|
closure, rcvr := s.getClosureAndRcvr(fn)
|
|
opendefer.closure = s.openDeferSave(nil, closure.Type, closure)
|
|
// Important to get the receiver type correct, so it is recognized
|
|
// as a pointer for GC purposes.
|
|
opendefer.rcvr = s.openDeferSave(nil, fn.Type.Recv().Type, rcvr)
|
|
opendefer.closureNode = opendefer.closure.Aux.(*Node)
|
|
opendefer.rcvrNode = opendefer.rcvr.Aux.(*Node)
|
|
}
|
|
for _, argn := range n.Rlist.Slice() {
|
|
var v *ssa.Value
|
|
if canSSAType(argn.Type) {
|
|
v = s.openDeferSave(nil, argn.Type, s.expr(argn))
|
|
} else {
|
|
v = s.openDeferSave(argn, argn.Type, nil)
|
|
}
|
|
args = append(args, v)
|
|
argNodes = append(argNodes, v.Aux.(*Node))
|
|
}
|
|
opendefer.argVals = args
|
|
opendefer.argNodes = argNodes
|
|
index := len(s.openDefers)
|
|
s.openDefers = append(s.openDefers, opendefer)
|
|
|
|
// Update deferBits only after evaluation and storage to stack of
|
|
// args/receiver/interface is successful.
|
|
bitvalue := s.constInt8(types.Types[TUINT8], 1<<uint(index))
|
|
newDeferBits := s.newValue2(ssa.OpOr8, types.Types[TUINT8], s.variable(&deferBitsVar, types.Types[TUINT8]), bitvalue)
|
|
s.vars[&deferBitsVar] = newDeferBits
|
|
s.store(types.Types[TUINT8], s.deferBitsAddr, newDeferBits)
|
|
}
|
|
|
|
// openDeferSave generates SSA nodes to store a value (with type t) for an
|
|
// open-coded defer at an explicit autotmp location on the stack, so it can be
|
|
// reloaded and used for the appropriate call on exit. If type t is SSAable, then
|
|
// val must be non-nil (and n should be nil) and val is the value to be stored. If
|
|
// type t is non-SSAable, then n must be non-nil (and val should be nil) and n is
|
|
// evaluated (via s.addr() below) to get the value that is to be stored. The
|
|
// function returns an SSA value representing a pointer to the autotmp location.
|
|
func (s *state) openDeferSave(n *Node, t *types.Type, val *ssa.Value) *ssa.Value {
|
|
canSSA := canSSAType(t)
|
|
var pos src.XPos
|
|
if canSSA {
|
|
pos = val.Pos
|
|
} else {
|
|
pos = n.Pos
|
|
}
|
|
argTemp := tempAt(pos.WithNotStmt(), s.curfn, t)
|
|
argTemp.Name.SetOpenDeferSlot(true)
|
|
var addrArgTemp *ssa.Value
|
|
// Use OpVarLive to make sure stack slots for the args, etc. are not
|
|
// removed by dead-store elimination
|
|
if s.curBlock.ID != s.f.Entry.ID {
|
|
// Force the argtmp storing this defer function/receiver/arg to be
|
|
// declared in the entry block, so that it will be live for the
|
|
// defer exit code (which will actually access it only if the
|
|
// associated defer call has been activated).
|
|
s.defvars[s.f.Entry.ID][&memVar] = s.entryNewValue1A(ssa.OpVarDef, types.TypeMem, argTemp, s.defvars[s.f.Entry.ID][&memVar])
|
|
s.defvars[s.f.Entry.ID][&memVar] = s.entryNewValue1A(ssa.OpVarLive, types.TypeMem, argTemp, s.defvars[s.f.Entry.ID][&memVar])
|
|
addrArgTemp = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(argTemp.Type), argTemp, s.sp, s.defvars[s.f.Entry.ID][&memVar])
|
|
} else {
|
|
// Special case if we're still in the entry block. We can't use
|
|
// the above code, since s.defvars[s.f.Entry.ID] isn't defined
|
|
// until we end the entry block with s.endBlock().
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, argTemp, s.mem(), false)
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, argTemp, s.mem(), false)
|
|
addrArgTemp = s.newValue2Apos(ssa.OpLocalAddr, types.NewPtr(argTemp.Type), argTemp, s.sp, s.mem(), false)
|
|
}
|
|
if types.Haspointers(t) {
|
|
// Since we may use this argTemp during exit depending on the
|
|
// deferBits, we must define it unconditionally on entry.
|
|
// Therefore, we must make sure it is zeroed out in the entry
|
|
// block if it contains pointers, else GC may wrongly follow an
|
|
// uninitialized pointer value.
|
|
argTemp.Name.SetNeedzero(true)
|
|
}
|
|
if !canSSA {
|
|
a := s.addr(n)
|
|
s.move(t, addrArgTemp, a)
|
|
return addrArgTemp
|
|
}
|
|
// We are storing to the stack, hence we can avoid the full checks in
|
|
// storeType() (no write barrier) and do a simple store().
|
|
s.store(t, addrArgTemp, val)
|
|
return addrArgTemp
|
|
}
|
|
|
|
// openDeferExit generates SSA for processing all the open coded defers at exit.
|
|
// The code involves loading deferBits, and checking each of the bits to see if
|
|
// the corresponding defer statement was executed. For each bit that is turned
|
|
// on, the associated defer call is made.
|
|
func (s *state) openDeferExit() {
|
|
deferExit := s.f.NewBlock(ssa.BlockPlain)
|
|
s.endBlock().AddEdgeTo(deferExit)
|
|
s.startBlock(deferExit)
|
|
s.lastDeferExit = deferExit
|
|
s.lastDeferCount = len(s.openDefers)
|
|
zeroval := s.constInt8(types.Types[TUINT8], 0)
|
|
// Test for and run defers in reverse order
|
|
for i := len(s.openDefers) - 1; i >= 0; i-- {
|
|
r := s.openDefers[i]
|
|
bCond := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
deferBits := s.variable(&deferBitsVar, types.Types[TUINT8])
|
|
// Generate code to check if the bit associated with the current
|
|
// defer is set.
|
|
bitval := s.constInt8(types.Types[TUINT8], 1<<uint(i))
|
|
andval := s.newValue2(ssa.OpAnd8, types.Types[TUINT8], deferBits, bitval)
|
|
eqVal := s.newValue2(ssa.OpEq8, types.Types[TBOOL], andval, zeroval)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(eqVal)
|
|
b.AddEdgeTo(bEnd)
|
|
b.AddEdgeTo(bCond)
|
|
bCond.AddEdgeTo(bEnd)
|
|
s.startBlock(bCond)
|
|
|
|
// Clear this bit in deferBits and force store back to stack, so
|
|
// we will not try to re-run this defer call if this defer call panics.
|
|
nbitval := s.newValue1(ssa.OpCom8, types.Types[TUINT8], bitval)
|
|
maskedval := s.newValue2(ssa.OpAnd8, types.Types[TUINT8], deferBits, nbitval)
|
|
s.store(types.Types[TUINT8], s.deferBitsAddr, maskedval)
|
|
// Use this value for following tests, so we keep previous
|
|
// bits cleared.
|
|
s.vars[&deferBitsVar] = maskedval
|
|
|
|
// Generate code to call the function call of the defer, using the
|
|
// closure/receiver/args that were stored in argtmps at the point
|
|
// of the defer statement.
|
|
argStart := Ctxt.FixedFrameSize()
|
|
fn := r.n.Left
|
|
stksize := fn.Type.ArgWidth()
|
|
if r.rcvr != nil {
|
|
// rcvr in case of OCALLINTER
|
|
v := s.load(r.rcvr.Type.Elem(), r.rcvr)
|
|
addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
|
|
s.store(types.Types[TUINTPTR], addr, v)
|
|
}
|
|
for j, argAddrVal := range r.argVals {
|
|
f := getParam(r.n, j)
|
|
pt := types.NewPtr(f.Type)
|
|
addr := s.constOffPtrSP(pt, argStart+f.Offset)
|
|
if !canSSAType(f.Type) {
|
|
s.move(f.Type, addr, argAddrVal)
|
|
} else {
|
|
argVal := s.load(f.Type, argAddrVal)
|
|
s.storeType(f.Type, addr, argVal, 0, false)
|
|
}
|
|
}
|
|
var call *ssa.Value
|
|
if r.closure != nil {
|
|
v := s.load(r.closure.Type.Elem(), r.closure)
|
|
s.maybeNilCheckClosure(v, callDefer)
|
|
codeptr := s.rawLoad(types.Types[TUINTPTR], v)
|
|
call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, v, s.mem())
|
|
} else {
|
|
// Do a static call if the original call was a static function or method
|
|
call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn.Sym.Linksym(), s.mem())
|
|
}
|
|
call.AuxInt = stksize
|
|
s.vars[&memVar] = call
|
|
// Make sure that the stack slots with pointers are kept live
|
|
// through the call (which is a pre-emption point). Also, we will
|
|
// use the first call of the last defer exit to compute liveness
|
|
// for the deferreturn, so we want all stack slots to be live.
|
|
if r.closureNode != nil {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.closureNode, s.mem(), false)
|
|
}
|
|
if r.rcvrNode != nil {
|
|
if types.Haspointers(r.rcvrNode.Type) {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.rcvrNode, s.mem(), false)
|
|
}
|
|
}
|
|
for _, argNode := range r.argNodes {
|
|
if types.Haspointers(argNode.Type) {
|
|
s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, argNode, s.mem(), false)
|
|
}
|
|
}
|
|
|
|
if i == len(s.openDefers)-1 {
|
|
// Record the call of the first defer. This will be used
|
|
// to set liveness info for the deferreturn (which is also
|
|
// used for any location that causes a runtime panic)
|
|
s.f.LastDeferExit = call
|
|
}
|
|
s.endBlock()
|
|
s.startBlock(bEnd)
|
|
}
|
|
}
|
|
|
|
// Calls the function n using the specified call type.
|
|
// Returns the address of the return value (or nil if none).
|
|
func (s *state) call(n *Node, k callKind) *ssa.Value {
|
|
var sym *types.Sym // target symbol (if static)
|
|
var closure *ssa.Value // ptr to closure to run (if dynamic)
|
|
var codeptr *ssa.Value // ptr to target code (if dynamic)
|
|
var rcvr *ssa.Value // receiver to set
|
|
fn := n.Left
|
|
switch n.Op {
|
|
case OCALLFUNC:
|
|
if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
|
|
sym = fn.Sym
|
|
break
|
|
}
|
|
closure = s.expr(fn)
|
|
if k != callDefer && k != callDeferStack {
|
|
// Deferred nil function needs to panic when the function is invoked,
|
|
// not the point of defer statement.
|
|
s.maybeNilCheckClosure(closure, k)
|
|
}
|
|
case OCALLMETH:
|
|
if fn.Op != ODOTMETH {
|
|
s.Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
|
|
}
|
|
if k == callNormal {
|
|
sym = fn.Sym
|
|
break
|
|
}
|
|
closure = s.getMethodClosure(fn)
|
|
// Note: receiver is already present in n.Rlist, so we don't
|
|
// want to set it here.
|
|
case OCALLINTER:
|
|
if fn.Op != ODOTINTER {
|
|
s.Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
|
|
}
|
|
var iclosure *ssa.Value
|
|
iclosure, rcvr = s.getClosureAndRcvr(fn)
|
|
if k == callNormal {
|
|
codeptr = s.load(types.Types[TUINTPTR], iclosure)
|
|
} else {
|
|
closure = iclosure
|
|
}
|
|
}
|
|
dowidth(fn.Type)
|
|
stksize := fn.Type.ArgWidth() // includes receiver, args, and results
|
|
|
|
// Run all assignments of temps.
|
|
// The temps are introduced to avoid overwriting argument
|
|
// slots when arguments themselves require function calls.
|
|
s.stmtList(n.List)
|
|
|
|
var call *ssa.Value
|
|
if k == callDeferStack {
|
|
// Make a defer struct d on the stack.
|
|
t := deferstruct(stksize)
|
|
d := tempAt(n.Pos, s.curfn, t)
|
|
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, d, s.mem())
|
|
addr := s.addr(d)
|
|
|
|
// Must match reflect.go:deferstruct and src/runtime/runtime2.go:_defer.
|
|
// 0: siz
|
|
s.store(types.Types[TUINT32],
|
|
s.newValue1I(ssa.OpOffPtr, types.Types[TUINT32].PtrTo(), t.FieldOff(0), addr),
|
|
s.constInt32(types.Types[TUINT32], int32(stksize)))
|
|
// 1: started, set in deferprocStack
|
|
// 2: heap, set in deferprocStack
|
|
// 3: openDefer
|
|
// 4: sp, set in deferprocStack
|
|
// 5: pc, set in deferprocStack
|
|
// 6: fn
|
|
s.store(closure.Type,
|
|
s.newValue1I(ssa.OpOffPtr, closure.Type.PtrTo(), t.FieldOff(6), addr),
|
|
closure)
|
|
// 7: panic, set in deferprocStack
|
|
// 8: link, set in deferprocStack
|
|
// 9: framepc
|
|
// 10: varp
|
|
// 11: fd
|
|
|
|
// Then, store all the arguments of the defer call.
|
|
ft := fn.Type
|
|
off := t.FieldOff(12)
|
|
args := n.Rlist.Slice()
|
|
|
|
// Set receiver (for interface calls). Always a pointer.
|
|
if rcvr != nil {
|
|
p := s.newValue1I(ssa.OpOffPtr, ft.Recv().Type.PtrTo(), off, addr)
|
|
s.store(types.Types[TUINTPTR], p, rcvr)
|
|
}
|
|
// Set receiver (for method calls).
|
|
if n.Op == OCALLMETH {
|
|
f := ft.Recv()
|
|
s.storeArgWithBase(args[0], f.Type, addr, off+f.Offset)
|
|
args = args[1:]
|
|
}
|
|
// Set other args.
|
|
for _, f := range ft.Params().Fields().Slice() {
|
|
s.storeArgWithBase(args[0], f.Type, addr, off+f.Offset)
|
|
args = args[1:]
|
|
}
|
|
|
|
// Call runtime.deferprocStack with pointer to _defer record.
|
|
arg0 := s.constOffPtrSP(types.Types[TUINTPTR], Ctxt.FixedFrameSize())
|
|
s.store(types.Types[TUINTPTR], arg0, addr)
|
|
call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferprocStack, s.mem())
|
|
if stksize < int64(Widthptr) {
|
|
// We need room for both the call to deferprocStack and the call to
|
|
// the deferred function.
|
|
stksize = int64(Widthptr)
|
|
}
|
|
call.AuxInt = stksize
|
|
} else {
|
|
// Store arguments to stack, including defer/go arguments and receiver for method calls.
|
|
// These are written in SP-offset order.
|
|
argStart := Ctxt.FixedFrameSize()
|
|
// Defer/go args.
|
|
if k != callNormal {
|
|
// Write argsize and closure (args to newproc/deferproc).
|
|
argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
|
|
addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
|
|
s.store(types.Types[TUINT32], addr, argsize)
|
|
addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
|
|
s.store(types.Types[TUINTPTR], addr, closure)
|
|
stksize += 2 * int64(Widthptr)
|
|
argStart += 2 * int64(Widthptr)
|
|
}
|
|
|
|
// Set receiver (for interface calls).
|
|
if rcvr != nil {
|
|
addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
|
|
s.store(types.Types[TUINTPTR], addr, rcvr)
|
|
}
|
|
|
|
// Write args.
|
|
t := n.Left.Type
|
|
args := n.Rlist.Slice()
|
|
if n.Op == OCALLMETH {
|
|
f := t.Recv()
|
|
s.storeArg(args[0], f.Type, argStart+f.Offset)
|
|
args = args[1:]
|
|
}
|
|
for i, n := range args {
|
|
f := t.Params().Field(i)
|
|
s.storeArg(n, f.Type, argStart+f.Offset)
|
|
}
|
|
|
|
// call target
|
|
switch {
|
|
case k == callDefer:
|
|
call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferproc, s.mem())
|
|
case k == callGo:
|
|
call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, newproc, s.mem())
|
|
case closure != nil:
|
|
// rawLoad because loading the code pointer from a
|
|
// closure is always safe, but IsSanitizerSafeAddr
|
|
// can't always figure that out currently, and it's
|
|
// critical that we not clobber any arguments already
|
|
// stored onto the stack.
|
|
codeptr = s.rawLoad(types.Types[TUINTPTR], closure)
|
|
call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem())
|
|
case codeptr != nil:
|
|
call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem())
|
|
case sym != nil:
|
|
call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem())
|
|
default:
|
|
s.Fatalf("bad call type %v %v", n.Op, n)
|
|
}
|
|
call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
|
|
}
|
|
s.vars[&memVar] = call
|
|
|
|
// Finish block for defers
|
|
if k == callDefer || k == callDeferStack {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockDefer
|
|
b.SetControl(call)
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bNext)
|
|
// Add recover edge to exit code.
|
|
r := s.f.NewBlock(ssa.BlockPlain)
|
|
s.startBlock(r)
|
|
s.exit()
|
|
b.AddEdgeTo(r)
|
|
b.Likely = ssa.BranchLikely
|
|
s.startBlock(bNext)
|
|
}
|
|
|
|
res := n.Left.Type.Results()
|
|
if res.NumFields() == 0 || k != callNormal {
|
|
// call has no return value. Continue with the next statement.
|
|
return nil
|
|
}
|
|
fp := res.Field(0)
|
|
return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
|
|
}
|
|
|
|
// maybeNilCheckClosure checks if a nil check of a closure is needed in some
|
|
// architecture-dependent situations and, if so, emits the nil check.
|
|
func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) {
|
|
if thearch.LinkArch.Family == sys.Wasm || objabi.GOOS == "aix" && k != callGo {
|
|
// On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error.
|
|
// TODO(neelance): On other architectures this should be eliminated by the optimization steps
|
|
s.nilCheck(closure)
|
|
}
|
|
}
|
|
|
|
// getMethodClosure returns a value representing the closure for a method call
|
|
func (s *state) getMethodClosure(fn *Node) *ssa.Value {
|
|
// Make a name n2 for the function.
|
|
// fn.Sym might be sync.(*Mutex).Unlock.
|
|
// Make a PFUNC node out of that, then evaluate it.
|
|
// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
|
|
// We can then pass that to defer or go.
|
|
n2 := newnamel(fn.Pos, fn.Sym)
|
|
n2.Name.Curfn = s.curfn
|
|
n2.SetClass(PFUNC)
|
|
// n2.Sym already existed, so it's already marked as a function.
|
|
n2.Pos = fn.Pos
|
|
n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
|
|
return s.expr(n2)
|
|
}
|
|
|
|
// getClosureAndRcvr returns values for the appropriate closure and receiver of an
|
|
// interface call
|
|
func (s *state) getClosureAndRcvr(fn *Node) (*ssa.Value, *ssa.Value) {
|
|
i := s.expr(fn.Left)
|
|
itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
|
|
s.nilCheck(itab)
|
|
itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
|
|
closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
|
|
rcvr := s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
|
|
return closure, rcvr
|
|
}
|
|
|
|
// etypesign returns the signed-ness of e, for integer/pointer etypes.
|
|
// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
|
|
func etypesign(e types.EType) int8 {
|
|
switch e {
|
|
case TINT8, TINT16, TINT32, TINT64, TINT:
|
|
return -1
|
|
case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
|
|
return +1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
|
|
// The value that the returned Value represents is guaranteed to be non-nil.
|
|
func (s *state) addr(n *Node) *ssa.Value {
|
|
if n.Op != ONAME {
|
|
s.pushLine(n.Pos)
|
|
defer s.popLine()
|
|
}
|
|
|
|
t := types.NewPtr(n.Type)
|
|
switch n.Op {
|
|
case ONAME:
|
|
switch n.Class() {
|
|
case PEXTERN:
|
|
// global variable
|
|
v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb)
|
|
// TODO: Make OpAddr use AuxInt as well as Aux.
|
|
if n.Xoffset != 0 {
|
|
v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
|
|
}
|
|
return v
|
|
case PPARAM:
|
|
// parameter slot
|
|
v := s.decladdrs[n]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
if n == nodfp {
|
|
// Special arg that points to the frame pointer (Used by ORECOVER).
|
|
return s.entryNewValue2A(ssa.OpLocalAddr, t, n, s.sp, s.startmem)
|
|
}
|
|
s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
|
|
return nil
|
|
case PAUTO:
|
|
return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !n.IsAutoTmp())
|
|
|
|
case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
|
|
// ensure that we reuse symbols for out parameters so
|
|
// that cse works on their addresses
|
|
return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true)
|
|
default:
|
|
s.Fatalf("variable address class %v not implemented", n.Class())
|
|
return nil
|
|
}
|
|
case ORESULT:
|
|
// load return from callee
|
|
return s.constOffPtrSP(t, n.Xoffset)
|
|
case OINDEX:
|
|
if n.Left.Type.IsSlice() {
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
|
|
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
|
|
p := s.newValue1(ssa.OpSlicePtr, t, a)
|
|
return s.newValue2(ssa.OpPtrIndex, t, p, i)
|
|
} else { // array
|
|
a := s.addr(n.Left)
|
|
i := s.expr(n.Right)
|
|
len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
|
|
i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
|
|
return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
|
|
}
|
|
case ODEREF:
|
|
return s.exprPtr(n.Left, n.Bounded(), n.Pos)
|
|
case ODOT:
|
|
p := s.addr(n.Left)
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
|
|
case ODOTPTR:
|
|
p := s.exprPtr(n.Left, n.Bounded(), n.Pos)
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
|
|
case OCLOSUREVAR:
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
|
|
s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
|
|
case OCONVNOP:
|
|
addr := s.addr(n.Left)
|
|
return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
|
|
case OCALLFUNC, OCALLINTER, OCALLMETH:
|
|
return s.call(n, callNormal)
|
|
case ODOTTYPE:
|
|
v, _ := s.dottype(n, false)
|
|
if v.Op != ssa.OpLoad {
|
|
s.Fatalf("dottype of non-load")
|
|
}
|
|
if v.Args[1] != s.mem() {
|
|
s.Fatalf("memory no longer live from dottype load")
|
|
}
|
|
return v.Args[0]
|
|
default:
|
|
s.Fatalf("unhandled addr %v", n.Op)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// canSSA reports whether n is SSA-able.
|
|
// n must be an ONAME (or an ODOT sequence with an ONAME base).
|
|
func (s *state) canSSA(n *Node) bool {
|
|
if Debug['N'] != 0 {
|
|
return false
|
|
}
|
|
for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
|
|
n = n.Left
|
|
}
|
|
if n.Op != ONAME {
|
|
return false
|
|
}
|
|
if n.Name.Addrtaken() {
|
|
return false
|
|
}
|
|
if n.isParamHeapCopy() {
|
|
return false
|
|
}
|
|
if n.Class() == PAUTOHEAP {
|
|
s.Fatalf("canSSA of PAUTOHEAP %v", n)
|
|
}
|
|
switch n.Class() {
|
|
case PEXTERN:
|
|
return false
|
|
case PPARAMOUT:
|
|
if s.hasdefer {
|
|
// TODO: handle this case? Named return values must be
|
|
// in memory so that the deferred function can see them.
|
|
// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
|
|
// Or maybe not, see issue 18860. Even unnamed return values
|
|
// must be written back so if a defer recovers, the caller can see them.
|
|
return false
|
|
}
|
|
if s.cgoUnsafeArgs {
|
|
// Cgo effectively takes the address of all result args,
|
|
// but the compiler can't see that.
|
|
return false
|
|
}
|
|
}
|
|
if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
|
|
// wrappers generated by genwrapper need to update
|
|
// the .this pointer in place.
|
|
// TODO: treat as a PPARMOUT?
|
|
return false
|
|
}
|
|
return canSSAType(n.Type)
|
|
// TODO: try to make more variables SSAable?
|
|
}
|
|
|
|
// canSSA reports whether variables of type t are SSA-able.
|
|
func canSSAType(t *types.Type) bool {
|
|
dowidth(t)
|
|
if t.Width > int64(4*Widthptr) {
|
|
// 4*Widthptr is an arbitrary constant. We want it
|
|
// to be at least 3*Widthptr so slices can be registerized.
|
|
// Too big and we'll introduce too much register pressure.
|
|
return false
|
|
}
|
|
switch t.Etype {
|
|
case TARRAY:
|
|
// We can't do larger arrays because dynamic indexing is
|
|
// not supported on SSA variables.
|
|
// TODO: allow if all indexes are constant.
|
|
if t.NumElem() <= 1 {
|
|
return canSSAType(t.Elem())
|
|
}
|
|
return false
|
|
case TSTRUCT:
|
|
if t.NumFields() > ssa.MaxStruct {
|
|
return false
|
|
}
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if !canSSAType(t1.Type) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// exprPtr evaluates n to a pointer and nil-checks it.
|
|
func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
|
|
p := s.expr(n)
|
|
if bounded || n.NonNil() {
|
|
if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
|
|
s.f.Warnl(lineno, "removed nil check")
|
|
}
|
|
return p
|
|
}
|
|
s.nilCheck(p)
|
|
return p
|
|
}
|
|
|
|
// nilCheck generates nil pointer checking code.
|
|
// Used only for automatically inserted nil checks,
|
|
// not for user code like 'x != nil'.
|
|
func (s *state) nilCheck(ptr *ssa.Value) {
|
|
if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() {
|
|
return
|
|
}
|
|
s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
|
|
}
|
|
|
|
// boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not.
|
|
// Starts a new block on return.
|
|
// On input, len must be converted to full int width and be nonnegative.
|
|
// Returns idx converted to full int width.
|
|
// If bounded is true then caller guarantees the index is not out of bounds
|
|
// (but boundsCheck will still extend the index to full int width).
|
|
func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
|
|
idx = s.extendIndex(idx, len, kind, bounded)
|
|
|
|
if bounded || Debug['B'] != 0 {
|
|
// If bounded or bounds checking is flag-disabled, then no check necessary,
|
|
// just return the extended index.
|
|
//
|
|
// Here, bounded == true if the compiler generated the index itself,
|
|
// such as in the expansion of a slice initializer. These indexes are
|
|
// compiler-generated, not Go program variables, so they cannot be
|
|
// attacker-controlled, so we can omit Spectre masking as well.
|
|
//
|
|
// Note that we do not want to omit Spectre masking in code like:
|
|
//
|
|
// if 0 <= i && i < len(x) {
|
|
// use(x[i])
|
|
// }
|
|
//
|
|
// Lucky for us, bounded==false for that code.
|
|
// In that case (handled below), we emit a bound check (and Spectre mask)
|
|
// and then the prove pass will remove the bounds check.
|
|
// In theory the prove pass could potentially remove certain
|
|
// Spectre masks, but it's very delicate and probably better
|
|
// to be conservative and leave them all in.
|
|
return idx
|
|
}
|
|
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
bPanic := s.f.NewBlock(ssa.BlockExit)
|
|
|
|
if !idx.Type.IsSigned() {
|
|
switch kind {
|
|
case ssa.BoundsIndex:
|
|
kind = ssa.BoundsIndexU
|
|
case ssa.BoundsSliceAlen:
|
|
kind = ssa.BoundsSliceAlenU
|
|
case ssa.BoundsSliceAcap:
|
|
kind = ssa.BoundsSliceAcapU
|
|
case ssa.BoundsSliceB:
|
|
kind = ssa.BoundsSliceBU
|
|
case ssa.BoundsSlice3Alen:
|
|
kind = ssa.BoundsSlice3AlenU
|
|
case ssa.BoundsSlice3Acap:
|
|
kind = ssa.BoundsSlice3AcapU
|
|
case ssa.BoundsSlice3B:
|
|
kind = ssa.BoundsSlice3BU
|
|
case ssa.BoundsSlice3C:
|
|
kind = ssa.BoundsSlice3CU
|
|
}
|
|
}
|
|
|
|
var cmp *ssa.Value
|
|
if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU {
|
|
cmp = s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
|
|
} else {
|
|
cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
|
|
}
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
b.AddEdgeTo(bNext)
|
|
b.AddEdgeTo(bPanic)
|
|
|
|
s.startBlock(bPanic)
|
|
if thearch.LinkArch.Family == sys.Wasm {
|
|
// TODO(khr): figure out how to do "register" based calling convention for bounds checks.
|
|
// Should be similar to gcWriteBarrier, but I can't make it work.
|
|
s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len)
|
|
} else {
|
|
mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem())
|
|
s.endBlock().SetControl(mem)
|
|
}
|
|
s.startBlock(bNext)
|
|
|
|
// In Spectre index mode, apply an appropriate mask to avoid speculative out-of-bounds accesses.
|
|
if spectreIndex {
|
|
op := ssa.OpSpectreIndex
|
|
if kind != ssa.BoundsIndex && kind != ssa.BoundsIndexU {
|
|
op = ssa.OpSpectreSliceIndex
|
|
}
|
|
idx = s.newValue2(op, types.Types[TINT], idx, len)
|
|
}
|
|
|
|
return idx
|
|
}
|
|
|
|
// If cmp (a bool) is false, panic using the given function.
|
|
func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
line := s.peekPos()
|
|
pos := Ctxt.PosTable.Pos(line)
|
|
fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
|
|
bPanic := s.panics[fl]
|
|
if bPanic == nil {
|
|
bPanic = s.f.NewBlock(ssa.BlockPlain)
|
|
s.panics[fl] = bPanic
|
|
s.startBlock(bPanic)
|
|
// The panic call takes/returns memory to ensure that the right
|
|
// memory state is observed if the panic happens.
|
|
s.rtcall(fn, false, nil)
|
|
}
|
|
b.AddEdgeTo(bNext)
|
|
b.AddEdgeTo(bPanic)
|
|
s.startBlock(bNext)
|
|
}
|
|
|
|
func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
|
|
needcheck := true
|
|
switch b.Op {
|
|
case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
|
|
if b.AuxInt != 0 {
|
|
needcheck = false
|
|
}
|
|
}
|
|
if needcheck {
|
|
// do a size-appropriate check for zero
|
|
cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
|
|
s.check(cmp, panicdivide)
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
|
|
// rtcall issues a call to the given runtime function fn with the listed args.
|
|
// Returns a slice of results of the given result types.
|
|
// The call is added to the end of the current block.
|
|
// If returns is false, the block is marked as an exit block.
|
|
func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
|
|
// Write args to the stack
|
|
off := Ctxt.FixedFrameSize()
|
|
for _, arg := range args {
|
|
t := arg.Type
|
|
off = Rnd(off, t.Alignment())
|
|
ptr := s.constOffPtrSP(t.PtrTo(), off)
|
|
size := t.Size()
|
|
s.store(t, ptr, arg)
|
|
off += size
|
|
}
|
|
off = Rnd(off, int64(Widthreg))
|
|
|
|
// Issue call
|
|
call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem())
|
|
s.vars[&memVar] = call
|
|
|
|
if !returns {
|
|
// Finish block
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(call)
|
|
call.AuxInt = off - Ctxt.FixedFrameSize()
|
|
if len(results) > 0 {
|
|
s.Fatalf("panic call can't have results")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Load results
|
|
res := make([]*ssa.Value, len(results))
|
|
for i, t := range results {
|
|
off = Rnd(off, t.Alignment())
|
|
ptr := s.constOffPtrSP(types.NewPtr(t), off)
|
|
res[i] = s.load(t, ptr)
|
|
off += t.Size()
|
|
}
|
|
off = Rnd(off, int64(Widthptr))
|
|
|
|
// Remember how much callee stack space we needed.
|
|
call.AuxInt = off
|
|
|
|
return res
|
|
}
|
|
|
|
// do *left = right for type t.
|
|
func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) {
|
|
s.instrument(t, left, true)
|
|
|
|
if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
|
|
// Known to not have write barrier. Store the whole type.
|
|
s.vars[&memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt)
|
|
return
|
|
}
|
|
|
|
// store scalar fields first, so write barrier stores for
|
|
// pointer fields can be grouped together, and scalar values
|
|
// don't need to be live across the write barrier call.
|
|
// TODO: if the writebarrier pass knows how to reorder stores,
|
|
// we can do a single store here as long as skip==0.
|
|
s.storeTypeScalars(t, left, right, skip)
|
|
if skip&skipPtr == 0 && types.Haspointers(t) {
|
|
s.storeTypePtrs(t, left, right)
|
|
}
|
|
}
|
|
|
|
// do *left = right for all scalar (non-pointer) parts of t.
|
|
func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
|
|
switch {
|
|
case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
|
|
s.store(t, left, right)
|
|
case t.IsPtrShaped():
|
|
// no scalar fields.
|
|
case t.IsString():
|
|
if skip&skipLen != 0 {
|
|
return
|
|
}
|
|
len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
|
|
lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
|
|
s.store(types.Types[TINT], lenAddr, len)
|
|
case t.IsSlice():
|
|
if skip&skipLen == 0 {
|
|
len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
|
|
lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
|
|
s.store(types.Types[TINT], lenAddr, len)
|
|
}
|
|
if skip&skipCap == 0 {
|
|
cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
|
|
capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
|
|
s.store(types.Types[TINT], capAddr, cap)
|
|
}
|
|
case t.IsInterface():
|
|
// itab field doesn't need a write barrier (even though it is a pointer).
|
|
itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
|
|
s.store(types.Types[TUINTPTR], left, itab)
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
for i := 0; i < n; i++ {
|
|
ft := t.FieldType(i)
|
|
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
|
|
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
|
|
s.storeTypeScalars(ft, addr, val, 0)
|
|
}
|
|
case t.IsArray() && t.NumElem() == 0:
|
|
// nothing
|
|
case t.IsArray() && t.NumElem() == 1:
|
|
s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
|
|
default:
|
|
s.Fatalf("bad write barrier type %v", t)
|
|
}
|
|
}
|
|
|
|
// do *left = right for all pointer parts of t.
|
|
func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
|
|
switch {
|
|
case t.IsPtrShaped():
|
|
s.store(t, left, right)
|
|
case t.IsString():
|
|
ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
|
|
s.store(s.f.Config.Types.BytePtr, left, ptr)
|
|
case t.IsSlice():
|
|
elType := types.NewPtr(t.Elem())
|
|
ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
|
|
s.store(elType, left, ptr)
|
|
case t.IsInterface():
|
|
// itab field is treated as a scalar.
|
|
idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
|
|
idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
|
|
s.store(s.f.Config.Types.BytePtr, idataAddr, idata)
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
for i := 0; i < n; i++ {
|
|
ft := t.FieldType(i)
|
|
if !types.Haspointers(ft) {
|
|
continue
|
|
}
|
|
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
|
|
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
|
|
s.storeTypePtrs(ft, addr, val)
|
|
}
|
|
case t.IsArray() && t.NumElem() == 0:
|
|
// nothing
|
|
case t.IsArray() && t.NumElem() == 1:
|
|
s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
|
|
default:
|
|
s.Fatalf("bad write barrier type %v", t)
|
|
}
|
|
}
|
|
|
|
func (s *state) storeArg(n *Node, t *types.Type, off int64) {
|
|
s.storeArgWithBase(n, t, s.sp, off)
|
|
}
|
|
|
|
func (s *state) storeArgWithBase(n *Node, t *types.Type, base *ssa.Value, off int64) {
|
|
pt := types.NewPtr(t)
|
|
var addr *ssa.Value
|
|
if base == s.sp {
|
|
// Use special routine that avoids allocation on duplicate offsets.
|
|
addr = s.constOffPtrSP(pt, off)
|
|
} else {
|
|
addr = s.newValue1I(ssa.OpOffPtr, pt, off, base)
|
|
}
|
|
|
|
if !canSSAType(t) {
|
|
a := s.addr(n)
|
|
s.move(t, addr, a)
|
|
return
|
|
}
|
|
|
|
a := s.expr(n)
|
|
s.storeType(t, addr, a, 0, false)
|
|
}
|
|
|
|
// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
|
|
// i,j,k may be nil, in which case they are set to their default value.
|
|
// v may be a slice, string or pointer to an array.
|
|
func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) {
|
|
t := v.Type
|
|
var ptr, len, cap *ssa.Value
|
|
switch {
|
|
case t.IsSlice():
|
|
ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v)
|
|
len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
|
|
cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
|
|
case t.IsString():
|
|
ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[TUINT8]), v)
|
|
len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
|
|
cap = len
|
|
case t.IsPtr():
|
|
if !t.Elem().IsArray() {
|
|
s.Fatalf("bad ptr to array in slice %v\n", t)
|
|
}
|
|
s.nilCheck(v)
|
|
ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), v)
|
|
len = s.constInt(types.Types[TINT], t.Elem().NumElem())
|
|
cap = len
|
|
default:
|
|
s.Fatalf("bad type in slice %v\n", t)
|
|
}
|
|
|
|
// Set default values
|
|
if i == nil {
|
|
i = s.constInt(types.Types[TINT], 0)
|
|
}
|
|
if j == nil {
|
|
j = len
|
|
}
|
|
three := true
|
|
if k == nil {
|
|
three = false
|
|
k = cap
|
|
}
|
|
|
|
// Panic if slice indices are not in bounds.
|
|
// Make sure we check these in reverse order so that we're always
|
|
// comparing against a value known to be nonnegative. See issue 28797.
|
|
if three {
|
|
if k != cap {
|
|
kind := ssa.BoundsSlice3Alen
|
|
if t.IsSlice() {
|
|
kind = ssa.BoundsSlice3Acap
|
|
}
|
|
k = s.boundsCheck(k, cap, kind, bounded)
|
|
}
|
|
if j != k {
|
|
j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded)
|
|
}
|
|
i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded)
|
|
} else {
|
|
if j != k {
|
|
kind := ssa.BoundsSliceAlen
|
|
if t.IsSlice() {
|
|
kind = ssa.BoundsSliceAcap
|
|
}
|
|
j = s.boundsCheck(j, k, kind, bounded)
|
|
}
|
|
i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded)
|
|
}
|
|
|
|
// Word-sized integer operations.
|
|
subOp := s.ssaOp(OSUB, types.Types[TINT])
|
|
mulOp := s.ssaOp(OMUL, types.Types[TINT])
|
|
andOp := s.ssaOp(OAND, types.Types[TINT])
|
|
|
|
// Calculate the length (rlen) and capacity (rcap) of the new slice.
|
|
// For strings the capacity of the result is unimportant. However,
|
|
// we use rcap to test if we've generated a zero-length slice.
|
|
// Use length of strings for that.
|
|
rlen := s.newValue2(subOp, types.Types[TINT], j, i)
|
|
rcap := rlen
|
|
if j != k && !t.IsString() {
|
|
rcap = s.newValue2(subOp, types.Types[TINT], k, i)
|
|
}
|
|
|
|
if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
|
|
// No pointer arithmetic necessary.
|
|
return ptr, rlen, rcap
|
|
}
|
|
|
|
// Calculate the base pointer (rptr) for the new slice.
|
|
//
|
|
// Generate the following code assuming that indexes are in bounds.
|
|
// The masking is to make sure that we don't generate a slice
|
|
// that points to the next object in memory. We cannot just set
|
|
// the pointer to nil because then we would create a nil slice or
|
|
// string.
|
|
//
|
|
// rcap = k - i
|
|
// rlen = j - i
|
|
// rptr = ptr + (mask(rcap) & (i * stride))
|
|
//
|
|
// Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width
|
|
// of the element type.
|
|
stride := s.constInt(types.Types[TINT], ptr.Type.Elem().Width)
|
|
|
|
// The delta is the number of bytes to offset ptr by.
|
|
delta := s.newValue2(mulOp, types.Types[TINT], i, stride)
|
|
|
|
// If we're slicing to the point where the capacity is zero,
|
|
// zero out the delta.
|
|
mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
|
|
delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
|
|
|
|
// Compute rptr = ptr + delta.
|
|
rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta)
|
|
|
|
return rptr, rlen, rcap
|
|
}
|
|
|
|
type u642fcvtTab struct {
|
|
leq, cvt2F, and, rsh, or, add ssa.Op
|
|
one func(*state, *types.Type, int64) *ssa.Value
|
|
}
|
|
|
|
var u64_f64 = u642fcvtTab{
|
|
leq: ssa.OpLeq64,
|
|
cvt2F: ssa.OpCvt64to64F,
|
|
and: ssa.OpAnd64,
|
|
rsh: ssa.OpRsh64Ux64,
|
|
or: ssa.OpOr64,
|
|
add: ssa.OpAdd64F,
|
|
one: (*state).constInt64,
|
|
}
|
|
|
|
var u64_f32 = u642fcvtTab{
|
|
leq: ssa.OpLeq64,
|
|
cvt2F: ssa.OpCvt64to32F,
|
|
and: ssa.OpAnd64,
|
|
rsh: ssa.OpRsh64Ux64,
|
|
or: ssa.OpOr64,
|
|
add: ssa.OpAdd32F,
|
|
one: (*state).constInt64,
|
|
}
|
|
|
|
func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
// if x >= 0 {
|
|
// result = (floatY) x
|
|
// } else {
|
|
// y = uintX(x) ; y = x & 1
|
|
// z = uintX(x) ; z = z >> 1
|
|
// z = z >> 1
|
|
// z = z | y
|
|
// result = floatY(z)
|
|
// result = result + result
|
|
// }
|
|
//
|
|
// Code borrowed from old code generator.
|
|
// What's going on: large 64-bit "unsigned" looks like
|
|
// negative number to hardware's integer-to-float
|
|
// conversion. However, because the mantissa is only
|
|
// 63 bits, we don't need the LSB, so instead we do an
|
|
// unsigned right shift (divide by two), convert, and
|
|
// double. However, before we do that, we need to be
|
|
// sure that we do not lose a "1" if that made the
|
|
// difference in the resulting rounding. Therefore, we
|
|
// preserve it, and OR (not ADD) it back in. The case
|
|
// that matters is when the eleven discarded bits are
|
|
// equal to 10000000001; that rounds up, and the 1 cannot
|
|
// be lost else it would round down if the LSB of the
|
|
// candidate mantissa is 0.
|
|
cmp := s.newValue2(cvttab.leq, types.Types[TBOOL], s.zeroVal(ft), x)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvt2F, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
one := cvttab.one(s, ft, 1)
|
|
y := s.newValue2(cvttab.and, ft, x, one)
|
|
z := s.newValue2(cvttab.rsh, ft, x, one)
|
|
z = s.newValue2(cvttab.or, ft, z, y)
|
|
a := s.newValue1(cvttab.cvt2F, tt, z)
|
|
a1 := s.newValue2(cvttab.add, tt, a, a)
|
|
s.vars[n] = a1
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
type u322fcvtTab struct {
|
|
cvtI2F, cvtF2F ssa.Op
|
|
}
|
|
|
|
var u32_f64 = u322fcvtTab{
|
|
cvtI2F: ssa.OpCvt32to64F,
|
|
cvtF2F: ssa.OpCopy,
|
|
}
|
|
|
|
var u32_f32 = u322fcvtTab{
|
|
cvtI2F: ssa.OpCvt32to32F,
|
|
cvtF2F: ssa.OpCvt64Fto32F,
|
|
}
|
|
|
|
func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
// if x >= 0 {
|
|
// result = floatY(x)
|
|
// } else {
|
|
// result = floatY(float64(x) + (1<<32))
|
|
// }
|
|
cmp := s.newValue2(ssa.OpLeq32, types.Types[TBOOL], s.zeroVal(ft), x)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvtI2F, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
|
|
twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
|
|
a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
|
|
a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
|
|
|
|
s.vars[n] = a3
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
|
|
func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
|
|
if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
|
|
s.Fatalf("node must be a map or a channel")
|
|
}
|
|
// if n == nil {
|
|
// return 0
|
|
// } else {
|
|
// // len
|
|
// return *((*int)n)
|
|
// // cap
|
|
// return *(((*int)n)+1)
|
|
// }
|
|
lenType := n.Type
|
|
nilValue := s.constNil(types.Types[TUINTPTR])
|
|
cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchUnlikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// length/capacity of a nil map/chan is zero
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
s.vars[n] = s.zeroVal(lenType)
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
switch n.Op {
|
|
case OLEN:
|
|
// length is stored in the first word for map/chan
|
|
s.vars[n] = s.load(lenType, x)
|
|
case OCAP:
|
|
// capacity is stored in the second word for chan
|
|
sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
|
|
s.vars[n] = s.load(lenType, sw)
|
|
default:
|
|
s.Fatalf("op must be OLEN or OCAP")
|
|
}
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, lenType)
|
|
}
|
|
|
|
type f2uCvtTab struct {
|
|
ltf, cvt2U, subf, or ssa.Op
|
|
floatValue func(*state, *types.Type, float64) *ssa.Value
|
|
intValue func(*state, *types.Type, int64) *ssa.Value
|
|
cutoff uint64
|
|
}
|
|
|
|
var f32_u64 = f2uCvtTab{
|
|
ltf: ssa.OpLess32F,
|
|
cvt2U: ssa.OpCvt32Fto64,
|
|
subf: ssa.OpSub32F,
|
|
or: ssa.OpOr64,
|
|
floatValue: (*state).constFloat32,
|
|
intValue: (*state).constInt64,
|
|
cutoff: 1 << 63,
|
|
}
|
|
|
|
var f64_u64 = f2uCvtTab{
|
|
ltf: ssa.OpLess64F,
|
|
cvt2U: ssa.OpCvt64Fto64,
|
|
subf: ssa.OpSub64F,
|
|
or: ssa.OpOr64,
|
|
floatValue: (*state).constFloat64,
|
|
intValue: (*state).constInt64,
|
|
cutoff: 1 << 63,
|
|
}
|
|
|
|
var f32_u32 = f2uCvtTab{
|
|
ltf: ssa.OpLess32F,
|
|
cvt2U: ssa.OpCvt32Fto32,
|
|
subf: ssa.OpSub32F,
|
|
or: ssa.OpOr32,
|
|
floatValue: (*state).constFloat32,
|
|
intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
|
|
cutoff: 1 << 31,
|
|
}
|
|
|
|
var f64_u32 = f2uCvtTab{
|
|
ltf: ssa.OpLess64F,
|
|
cvt2U: ssa.OpCvt64Fto32,
|
|
subf: ssa.OpSub64F,
|
|
or: ssa.OpOr32,
|
|
floatValue: (*state).constFloat64,
|
|
intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
|
|
cutoff: 1 << 31,
|
|
}
|
|
|
|
func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.floatToUint(&f32_u64, n, x, ft, tt)
|
|
}
|
|
func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.floatToUint(&f64_u64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.floatToUint(&f32_u32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
return s.floatToUint(&f64_u32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
|
|
// cutoff:=1<<(intY_Size-1)
|
|
// if x < floatX(cutoff) {
|
|
// result = uintY(x)
|
|
// } else {
|
|
// y = x - floatX(cutoff)
|
|
// z = uintY(y)
|
|
// result = z | -(cutoff)
|
|
// }
|
|
cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
|
|
cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvt2U, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
y := s.newValue2(cvttab.subf, ft, x, cutoff)
|
|
y = s.newValue1(cvttab.cvt2U, tt, y)
|
|
z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
|
|
a1 := s.newValue2(cvttab.or, tt, y, z)
|
|
s.vars[n] = a1
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
// dottype generates SSA for a type assertion node.
|
|
// commaok indicates whether to panic or return a bool.
|
|
// If commaok is false, resok will be nil.
|
|
func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
|
|
iface := s.expr(n.Left) // input interface
|
|
target := s.expr(n.Right) // target type
|
|
byteptr := s.f.Config.Types.BytePtr
|
|
|
|
if n.Type.IsInterface() {
|
|
if n.Type.IsEmptyInterface() {
|
|
// Converting to an empty interface.
|
|
// Input could be an empty or nonempty interface.
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
|
|
// Get itab/type field from input.
|
|
itab := s.newValue1(ssa.OpITab, byteptr, iface)
|
|
// Conversion succeeds iff that field is not nil.
|
|
cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
|
|
|
|
if n.Left.Type.IsEmptyInterface() && commaok {
|
|
// Converting empty interface to empty interface with ,ok is just a nil check.
|
|
return iface, cond
|
|
}
|
|
|
|
// Branch on nilness.
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cond)
|
|
b.Likely = ssa.BranchLikely
|
|
bOk := s.f.NewBlock(ssa.BlockPlain)
|
|
bFail := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bOk)
|
|
b.AddEdgeTo(bFail)
|
|
|
|
if !commaok {
|
|
// On failure, panic by calling panicnildottype.
|
|
s.startBlock(bFail)
|
|
s.rtcall(panicnildottype, false, nil, target)
|
|
|
|
// On success, return (perhaps modified) input interface.
|
|
s.startBlock(bOk)
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
res = iface // Use input interface unchanged.
|
|
return
|
|
}
|
|
// Load type out of itab, build interface with existing idata.
|
|
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
|
|
typ := s.load(byteptr, off)
|
|
idata := s.newValue1(ssa.OpIData, n.Type, iface)
|
|
res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
|
|
return
|
|
}
|
|
|
|
s.startBlock(bOk)
|
|
// nonempty -> empty
|
|
// Need to load type from itab
|
|
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
|
|
s.vars[&typVar] = s.load(byteptr, off)
|
|
s.endBlock()
|
|
|
|
// itab is nil, might as well use that as the nil result.
|
|
s.startBlock(bFail)
|
|
s.vars[&typVar] = itab
|
|
s.endBlock()
|
|
|
|
// Merge point.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
bOk.AddEdgeTo(bEnd)
|
|
bFail.AddEdgeTo(bEnd)
|
|
s.startBlock(bEnd)
|
|
idata := s.newValue1(ssa.OpIData, n.Type, iface)
|
|
res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
|
|
resok = cond
|
|
delete(s.vars, &typVar)
|
|
return
|
|
}
|
|
// converting to a nonempty interface needs a runtime call.
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion not inlined")
|
|
}
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
if commaok {
|
|
call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
|
|
return call[0], call[1]
|
|
}
|
|
return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
|
|
}
|
|
if commaok {
|
|
call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
|
|
return call[0], call[1]
|
|
}
|
|
return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
|
|
}
|
|
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
|
|
// Converting to a concrete type.
|
|
direct := isdirectiface(n.Type)
|
|
itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
var targetITab *ssa.Value
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
// Looking for pointer to target type.
|
|
targetITab = target
|
|
} else {
|
|
// Looking for pointer to itab for target type and source interface.
|
|
targetITab = s.expr(n.List.First())
|
|
}
|
|
|
|
var tmp *Node // temporary for use with large types
|
|
var addr *ssa.Value // address of tmp
|
|
if commaok && !canSSAType(n.Type) {
|
|
// unSSAable type, use temporary.
|
|
// TODO: get rid of some of these temporaries.
|
|
tmp = tempAt(n.Pos, s.curfn, n.Type)
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
|
|
addr = s.addr(tmp)
|
|
}
|
|
|
|
cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cond)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bOk := s.f.NewBlock(ssa.BlockPlain)
|
|
bFail := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bOk)
|
|
b.AddEdgeTo(bFail)
|
|
|
|
if !commaok {
|
|
// on failure, panic by calling panicdottype
|
|
s.startBlock(bFail)
|
|
taddr := s.expr(n.Right.Right)
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
|
|
} else {
|
|
s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
|
|
}
|
|
|
|
// on success, return data from interface
|
|
s.startBlock(bOk)
|
|
if direct {
|
|
return s.newValue1(ssa.OpIData, n.Type, iface), nil
|
|
}
|
|
p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
|
|
return s.load(n.Type, p), nil
|
|
}
|
|
|
|
// commaok is the more complicated case because we have
|
|
// a control flow merge point.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
// Note that we need a new valVar each time (unlike okVar where we can
|
|
// reuse the variable) because it might have a different type every time.
|
|
valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
|
|
|
|
// type assertion succeeded
|
|
s.startBlock(bOk)
|
|
if tmp == nil {
|
|
if direct {
|
|
s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
|
|
} else {
|
|
p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
|
|
s.vars[valVar] = s.load(n.Type, p)
|
|
}
|
|
} else {
|
|
p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
|
|
s.move(n.Type, addr, p)
|
|
}
|
|
s.vars[&okVar] = s.constBool(true)
|
|
s.endBlock()
|
|
bOk.AddEdgeTo(bEnd)
|
|
|
|
// type assertion failed
|
|
s.startBlock(bFail)
|
|
if tmp == nil {
|
|
s.vars[valVar] = s.zeroVal(n.Type)
|
|
} else {
|
|
s.zero(n.Type, addr)
|
|
}
|
|
s.vars[&okVar] = s.constBool(false)
|
|
s.endBlock()
|
|
bFail.AddEdgeTo(bEnd)
|
|
|
|
// merge point
|
|
s.startBlock(bEnd)
|
|
if tmp == nil {
|
|
res = s.variable(valVar, n.Type)
|
|
delete(s.vars, valVar)
|
|
} else {
|
|
res = s.load(n.Type, addr)
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem())
|
|
}
|
|
resok = s.variable(&okVar, types.Types[TBOOL])
|
|
delete(s.vars, &okVar)
|
|
return res, resok
|
|
}
|
|
|
|
// variable returns the value of a variable at the current location.
|
|
func (s *state) variable(name *Node, t *types.Type) *ssa.Value {
|
|
v := s.vars[name]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
v = s.fwdVars[name]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
|
|
if s.curBlock == s.f.Entry {
|
|
// No variable should be live at entry.
|
|
s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
|
|
}
|
|
// Make a FwdRef, which records a value that's live on block input.
|
|
// We'll find the matching definition as part of insertPhis.
|
|
v = s.newValue0A(ssa.OpFwdRef, t, name)
|
|
s.fwdVars[name] = v
|
|
s.addNamedValue(name, v)
|
|
return v
|
|
}
|
|
|
|
func (s *state) mem() *ssa.Value {
|
|
return s.variable(&memVar, types.TypeMem)
|
|
}
|
|
|
|
func (s *state) addNamedValue(n *Node, v *ssa.Value) {
|
|
if n.Class() == Pxxx {
|
|
// Don't track our dummy nodes (&memVar etc.).
|
|
return
|
|
}
|
|
if n.IsAutoTmp() {
|
|
// Don't track temporary variables.
|
|
return
|
|
}
|
|
if n.Class() == PPARAMOUT {
|
|
// Don't track named output values. This prevents return values
|
|
// from being assigned too early. See #14591 and #14762. TODO: allow this.
|
|
return
|
|
}
|
|
if n.Class() == PAUTO && n.Xoffset != 0 {
|
|
s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
|
|
}
|
|
loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
|
|
values, ok := s.f.NamedValues[loc]
|
|
if !ok {
|
|
s.f.Names = append(s.f.Names, loc)
|
|
}
|
|
s.f.NamedValues[loc] = append(values, v)
|
|
}
|
|
|
|
// Generate a disconnected call to a runtime routine and a return.
|
|
func gencallret(pp *Progs, sym *obj.LSym) *obj.Prog {
|
|
p := pp.Prog(obj.ACALL)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = sym
|
|
p = pp.Prog(obj.ARET)
|
|
return p
|
|
}
|
|
|
|
// Branch is an unresolved branch.
|
|
type Branch struct {
|
|
P *obj.Prog // branch instruction
|
|
B *ssa.Block // target
|
|
}
|
|
|
|
// SSAGenState contains state needed during Prog generation.
|
|
type SSAGenState struct {
|
|
pp *Progs
|
|
|
|
// Branches remembers all the branch instructions we've seen
|
|
// and where they would like to go.
|
|
Branches []Branch
|
|
|
|
// bstart remembers where each block starts (indexed by block ID)
|
|
bstart []*obj.Prog
|
|
|
|
// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
|
|
SSEto387 map[int16]int16
|
|
// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
|
|
ScratchFpMem *Node
|
|
|
|
maxarg int64 // largest frame size for arguments to calls made by the function
|
|
|
|
// Map from GC safe points to liveness index, generated by
|
|
// liveness analysis.
|
|
livenessMap LivenessMap
|
|
|
|
// lineRunStart records the beginning of the current run of instructions
|
|
// within a single block sharing the same line number
|
|
// Used to move statement marks to the beginning of such runs.
|
|
lineRunStart *obj.Prog
|
|
|
|
// wasm: The number of values on the WebAssembly stack. This is only used as a safeguard.
|
|
OnWasmStackSkipped int
|
|
|
|
// Liveness index for the first function call in the final defer exit code
|
|
// path that we generated. All defer functions and args should be live at
|
|
// this point. This will be used to set the liveness for the deferreturn.
|
|
lastDeferLiveness LivenessIndex
|
|
}
|
|
|
|
// Prog appends a new Prog.
|
|
func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
|
|
p := s.pp.Prog(as)
|
|
if ssa.LosesStmtMark(as) {
|
|
return p
|
|
}
|
|
// Float a statement start to the beginning of any same-line run.
|
|
// lineRunStart is reset at block boundaries, which appears to work well.
|
|
if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() {
|
|
s.lineRunStart = p
|
|
} else if p.Pos.IsStmt() == src.PosIsStmt {
|
|
s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt()
|
|
p.Pos = p.Pos.WithNotStmt()
|
|
}
|
|
return p
|
|
}
|
|
|
|
// Pc returns the current Prog.
|
|
func (s *SSAGenState) Pc() *obj.Prog {
|
|
return s.pp.next
|
|
}
|
|
|
|
// SetPos sets the current source position.
|
|
func (s *SSAGenState) SetPos(pos src.XPos) {
|
|
s.pp.pos = pos
|
|
}
|
|
|
|
// Br emits a single branch instruction and returns the instruction.
|
|
// Not all architectures need the returned instruction, but otherwise
|
|
// the boilerplate is common to all.
|
|
func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog {
|
|
p := s.Prog(op)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
s.Branches = append(s.Branches, Branch{P: p, B: target})
|
|
return p
|
|
}
|
|
|
|
// DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics
|
|
// that reduce "jumpy" line number churn when debugging.
|
|
// Spill/fill/copy instructions from the register allocator,
|
|
// phi functions, and instructions with a no-pos position
|
|
// are examples of instructions that can cause churn.
|
|
func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) {
|
|
switch v.Op {
|
|
case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
|
|
// These are not statements
|
|
s.SetPos(v.Pos.WithNotStmt())
|
|
default:
|
|
p := v.Pos
|
|
if p != src.NoXPos {
|
|
// If the position is defined, update the position.
|
|
// Also convert default IsStmt to NotStmt; only
|
|
// explicit statement boundaries should appear
|
|
// in the generated code.
|
|
if p.IsStmt() != src.PosIsStmt {
|
|
p = p.WithNotStmt()
|
|
// Calls use the pos attached to v, but copy the statement mark from SSAGenState
|
|
}
|
|
s.SetPos(p)
|
|
} else {
|
|
s.SetPos(s.pp.pos.WithNotStmt())
|
|
}
|
|
}
|
|
}
|
|
|
|
// byXoffset implements sort.Interface for []*Node using Xoffset as the ordering.
|
|
type byXoffset []*Node
|
|
|
|
func (s byXoffset) Len() int { return len(s) }
|
|
func (s byXoffset) Less(i, j int) bool { return s[i].Xoffset < s[j].Xoffset }
|
|
func (s byXoffset) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|
|
|
|
func emitStackObjects(e *ssafn, pp *Progs) {
|
|
var vars []*Node
|
|
for _, n := range e.curfn.Func.Dcl {
|
|
if livenessShouldTrack(n) && n.Name.Addrtaken() {
|
|
vars = append(vars, n)
|
|
}
|
|
}
|
|
if len(vars) == 0 {
|
|
return
|
|
}
|
|
|
|
// Sort variables from lowest to highest address.
|
|
sort.Sort(byXoffset(vars))
|
|
|
|
// Populate the stack object data.
|
|
// Format must match runtime/stack.go:stackObjectRecord.
|
|
x := e.curfn.Func.lsym.Func.StackObjects
|
|
off := 0
|
|
off = duintptr(x, off, uint64(len(vars)))
|
|
for _, v := range vars {
|
|
// Note: arguments and return values have non-negative Xoffset,
|
|
// in which case the offset is relative to argp.
|
|
// Locals have a negative Xoffset, in which case the offset is relative to varp.
|
|
off = duintptr(x, off, uint64(v.Xoffset))
|
|
if !typesym(v.Type).Siggen() {
|
|
e.Fatalf(v.Pos, "stack object's type symbol not generated for type %s", v.Type)
|
|
}
|
|
off = dsymptr(x, off, dtypesym(v.Type), 0)
|
|
}
|
|
|
|
// Emit a funcdata pointing at the stack object data.
|
|
p := pp.Prog(obj.AFUNCDATA)
|
|
Addrconst(&p.From, objabi.FUNCDATA_StackObjects)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = x
|
|
|
|
if debuglive != 0 {
|
|
for _, v := range vars {
|
|
Warnl(v.Pos, "stack object %v %s", v, v.Type.String())
|
|
}
|
|
}
|
|
}
|
|
|
|
// genssa appends entries to pp for each instruction in f.
|
|
func genssa(f *ssa.Func, pp *Progs) {
|
|
var s SSAGenState
|
|
|
|
e := f.Frontend().(*ssafn)
|
|
|
|
s.livenessMap = liveness(e, f, pp)
|
|
emitStackObjects(e, pp)
|
|
|
|
openDeferInfo := e.curfn.Func.lsym.Func.OpenCodedDeferInfo
|
|
if openDeferInfo != nil {
|
|
// This function uses open-coded defers -- write out the funcdata
|
|
// info that we computed at the end of genssa.
|
|
p := pp.Prog(obj.AFUNCDATA)
|
|
Addrconst(&p.From, objabi.FUNCDATA_OpenCodedDeferInfo)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = openDeferInfo
|
|
}
|
|
|
|
// Remember where each block starts.
|
|
s.bstart = make([]*obj.Prog, f.NumBlocks())
|
|
s.pp = pp
|
|
var progToValue map[*obj.Prog]*ssa.Value
|
|
var progToBlock map[*obj.Prog]*ssa.Block
|
|
var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
|
|
if f.PrintOrHtmlSSA {
|
|
progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
|
|
progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
|
|
f.Logf("genssa %s\n", f.Name)
|
|
progToBlock[s.pp.next] = f.Blocks[0]
|
|
}
|
|
|
|
if thearch.Use387 {
|
|
s.SSEto387 = map[int16]int16{}
|
|
}
|
|
|
|
s.ScratchFpMem = e.scratchFpMem
|
|
|
|
if Ctxt.Flag_locationlists {
|
|
if cap(f.Cache.ValueToProgAfter) < f.NumValues() {
|
|
f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues())
|
|
}
|
|
valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()]
|
|
for i := range valueToProgAfter {
|
|
valueToProgAfter[i] = nil
|
|
}
|
|
}
|
|
|
|
// If the very first instruction is not tagged as a statement,
|
|
// debuggers may attribute it to previous function in program.
|
|
firstPos := src.NoXPos
|
|
for _, v := range f.Entry.Values {
|
|
if v.Pos.IsStmt() == src.PosIsStmt {
|
|
firstPos = v.Pos
|
|
v.Pos = firstPos.WithDefaultStmt()
|
|
break
|
|
}
|
|
}
|
|
|
|
// inlMarks has an entry for each Prog that implements an inline mark.
|
|
// It maps from that Prog to the global inlining id of the inlined body
|
|
// which should unwind to this Prog's location.
|
|
var inlMarks map[*obj.Prog]int32
|
|
var inlMarkList []*obj.Prog
|
|
|
|
// inlMarksByPos maps from a (column 1) source position to the set of
|
|
// Progs that are in the set above and have that source position.
|
|
var inlMarksByPos map[src.XPos][]*obj.Prog
|
|
|
|
// Emit basic blocks
|
|
for i, b := range f.Blocks {
|
|
s.bstart[b.ID] = s.pp.next
|
|
s.lineRunStart = nil
|
|
|
|
// Attach a "default" liveness info. Normally this will be
|
|
// overwritten in the Values loop below for each Value. But
|
|
// for an empty block this will be used for its control
|
|
// instruction. We won't use the actual liveness map on a
|
|
// control instruction. Just mark it something that is
|
|
// preemptible.
|
|
s.pp.nextLive = LivenessIndex{-1, -1, false}
|
|
|
|
// Emit values in block
|
|
thearch.SSAMarkMoves(&s, b)
|
|
for _, v := range b.Values {
|
|
x := s.pp.next
|
|
s.DebugFriendlySetPosFrom(v)
|
|
|
|
switch v.Op {
|
|
case ssa.OpInitMem:
|
|
// memory arg needs no code
|
|
case ssa.OpArg:
|
|
// input args need no code
|
|
case ssa.OpSP, ssa.OpSB:
|
|
// nothing to do
|
|
case ssa.OpSelect0, ssa.OpSelect1:
|
|
// nothing to do
|
|
case ssa.OpGetG:
|
|
// nothing to do when there's a g register,
|
|
// and checkLower complains if there's not
|
|
case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill:
|
|
// nothing to do; already used by liveness
|
|
case ssa.OpPhi:
|
|
CheckLoweredPhi(v)
|
|
case ssa.OpConvert:
|
|
// nothing to do; no-op conversion for liveness
|
|
if v.Args[0].Reg() != v.Reg() {
|
|
v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString())
|
|
}
|
|
case ssa.OpInlMark:
|
|
p := thearch.Ginsnop(s.pp)
|
|
if inlMarks == nil {
|
|
inlMarks = map[*obj.Prog]int32{}
|
|
inlMarksByPos = map[src.XPos][]*obj.Prog{}
|
|
}
|
|
inlMarks[p] = v.AuxInt32()
|
|
inlMarkList = append(inlMarkList, p)
|
|
pos := v.Pos.AtColumn1()
|
|
inlMarksByPos[pos] = append(inlMarksByPos[pos], p)
|
|
|
|
default:
|
|
// Attach this safe point to the next
|
|
// instruction.
|
|
s.pp.nextLive = s.livenessMap.Get(v)
|
|
|
|
// Remember the liveness index of the first defer call of
|
|
// the last defer exit
|
|
if v.Block.Func.LastDeferExit != nil && v == v.Block.Func.LastDeferExit {
|
|
s.lastDeferLiveness = s.pp.nextLive
|
|
}
|
|
|
|
// Special case for first line in function; move it to the start.
|
|
if firstPos != src.NoXPos {
|
|
s.SetPos(firstPos)
|
|
firstPos = src.NoXPos
|
|
}
|
|
// let the backend handle it
|
|
thearch.SSAGenValue(&s, v)
|
|
}
|
|
|
|
if Ctxt.Flag_locationlists {
|
|
valueToProgAfter[v.ID] = s.pp.next
|
|
}
|
|
|
|
if f.PrintOrHtmlSSA {
|
|
for ; x != s.pp.next; x = x.Link {
|
|
progToValue[x] = v
|
|
}
|
|
}
|
|
}
|
|
// If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused.
|
|
if s.bstart[b.ID] == s.pp.next && len(b.Succs) == 1 && b.Succs[0].Block() == b {
|
|
p := thearch.Ginsnop(s.pp)
|
|
p.Pos = p.Pos.WithIsStmt()
|
|
if b.Pos == src.NoXPos {
|
|
b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652.
|
|
if b.Pos == src.NoXPos {
|
|
b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695.
|
|
}
|
|
}
|
|
b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number
|
|
}
|
|
// Emit control flow instructions for block
|
|
var next *ssa.Block
|
|
if i < len(f.Blocks)-1 && Debug['N'] == 0 {
|
|
// If -N, leave next==nil so every block with successors
|
|
// ends in a JMP (except call blocks - plive doesn't like
|
|
// select{send,recv} followed by a JMP call). Helps keep
|
|
// line numbers for otherwise empty blocks.
|
|
next = f.Blocks[i+1]
|
|
}
|
|
x := s.pp.next
|
|
s.SetPos(b.Pos)
|
|
thearch.SSAGenBlock(&s, b, next)
|
|
if f.PrintOrHtmlSSA {
|
|
for ; x != s.pp.next; x = x.Link {
|
|
progToBlock[x] = b
|
|
}
|
|
}
|
|
}
|
|
if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit {
|
|
// We need the return address of a panic call to
|
|
// still be inside the function in question. So if
|
|
// it ends in a call which doesn't return, add a
|
|
// nop (which will never execute) after the call.
|
|
thearch.Ginsnop(pp)
|
|
}
|
|
if openDeferInfo != nil {
|
|
// When doing open-coded defers, generate a disconnected call to
|
|
// deferreturn and a return. This will be used to during panic
|
|
// recovery to unwind the stack and return back to the runtime.
|
|
s.pp.nextLive = s.lastDeferLiveness
|
|
gencallret(pp, Deferreturn)
|
|
}
|
|
|
|
if inlMarks != nil {
|
|
// We have some inline marks. Try to find other instructions we're
|
|
// going to emit anyway, and use those instructions instead of the
|
|
// inline marks.
|
|
for p := pp.Text; p != nil; p = p.Link {
|
|
if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || thearch.LinkArch.Family == sys.Wasm {
|
|
// Don't use 0-sized instructions as inline marks, because we need
|
|
// to identify inline mark instructions by pc offset.
|
|
// (Some of these instructions are sometimes zero-sized, sometimes not.
|
|
// We must not use anything that even might be zero-sized.)
|
|
// TODO: are there others?
|
|
continue
|
|
}
|
|
if _, ok := inlMarks[p]; ok {
|
|
// Don't use inline marks themselves. We don't know
|
|
// whether they will be zero-sized or not yet.
|
|
continue
|
|
}
|
|
pos := p.Pos.AtColumn1()
|
|
s := inlMarksByPos[pos]
|
|
if len(s) == 0 {
|
|
continue
|
|
}
|
|
for _, m := range s {
|
|
// We found an instruction with the same source position as
|
|
// some of the inline marks.
|
|
// Use this instruction instead.
|
|
p.Pos = p.Pos.WithIsStmt() // promote position to a statement
|
|
pp.curfn.Func.lsym.Func.AddInlMark(p, inlMarks[m])
|
|
// Make the inline mark a real nop, so it doesn't generate any code.
|
|
m.As = obj.ANOP
|
|
m.Pos = src.NoXPos
|
|
m.From = obj.Addr{}
|
|
m.To = obj.Addr{}
|
|
}
|
|
delete(inlMarksByPos, pos)
|
|
}
|
|
// Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction).
|
|
for _, p := range inlMarkList {
|
|
if p.As != obj.ANOP {
|
|
pp.curfn.Func.lsym.Func.AddInlMark(p, inlMarks[p])
|
|
}
|
|
}
|
|
}
|
|
|
|
if Ctxt.Flag_locationlists {
|
|
e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(Ctxt, f, Debug_locationlist > 1, stackOffset)
|
|
bstart := s.bstart
|
|
// Note that at this moment, Prog.Pc is a sequence number; it's
|
|
// not a real PC until after assembly, so this mapping has to
|
|
// be done later.
|
|
e.curfn.Func.DebugInfo.GetPC = func(b, v ssa.ID) int64 {
|
|
switch v {
|
|
case ssa.BlockStart.ID:
|
|
if b == f.Entry.ID {
|
|
return 0 // Start at the very beginning, at the assembler-generated prologue.
|
|
// this should only happen for function args (ssa.OpArg)
|
|
}
|
|
return bstart[b].Pc
|
|
case ssa.BlockEnd.ID:
|
|
return e.curfn.Func.lsym.Size
|
|
default:
|
|
return valueToProgAfter[v].Pc
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve branches, and relax DefaultStmt into NotStmt
|
|
for _, br := range s.Branches {
|
|
br.P.To.Val = s.bstart[br.B.ID]
|
|
if br.P.Pos.IsStmt() != src.PosIsStmt {
|
|
br.P.Pos = br.P.Pos.WithNotStmt()
|
|
} else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt {
|
|
br.P.Pos = br.P.Pos.WithNotStmt()
|
|
}
|
|
|
|
}
|
|
|
|
if e.log { // spew to stdout
|
|
filename := ""
|
|
for p := pp.Text; p != nil; p = p.Link {
|
|
if p.Pos.IsKnown() && p.InnermostFilename() != filename {
|
|
filename = p.InnermostFilename()
|
|
f.Logf("# %s\n", filename)
|
|
}
|
|
|
|
var s string
|
|
if v, ok := progToValue[p]; ok {
|
|
s = v.String()
|
|
} else if b, ok := progToBlock[p]; ok {
|
|
s = b.String()
|
|
} else {
|
|
s = " " // most value and branch strings are 2-3 characters long
|
|
}
|
|
f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString())
|
|
}
|
|
}
|
|
if f.HTMLWriter != nil { // spew to ssa.html
|
|
var buf bytes.Buffer
|
|
buf.WriteString("<code>")
|
|
buf.WriteString("<dl class=\"ssa-gen\">")
|
|
filename := ""
|
|
for p := pp.Text; p != nil; p = p.Link {
|
|
// Don't spam every line with the file name, which is often huge.
|
|
// Only print changes, and "unknown" is not a change.
|
|
if p.Pos.IsKnown() && p.InnermostFilename() != filename {
|
|
filename = p.InnermostFilename()
|
|
buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
|
|
buf.WriteString(html.EscapeString("# " + filename))
|
|
buf.WriteString("</dd>")
|
|
}
|
|
|
|
buf.WriteString("<dt class=\"ssa-prog-src\">")
|
|
if v, ok := progToValue[p]; ok {
|
|
buf.WriteString(v.HTML())
|
|
} else if b, ok := progToBlock[p]; ok {
|
|
buf.WriteString("<b>" + b.HTML() + "</b>")
|
|
}
|
|
buf.WriteString("</dt>")
|
|
buf.WriteString("<dd class=\"ssa-prog\">")
|
|
buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString())))
|
|
buf.WriteString("</dd>")
|
|
}
|
|
buf.WriteString("</dl>")
|
|
buf.WriteString("</code>")
|
|
f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String())
|
|
}
|
|
|
|
defframe(&s, e)
|
|
|
|
f.HTMLWriter.Close()
|
|
f.HTMLWriter = nil
|
|
}
|
|
|
|
func defframe(s *SSAGenState, e *ssafn) {
|
|
pp := s.pp
|
|
|
|
frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
|
|
if thearch.PadFrame != nil {
|
|
frame = thearch.PadFrame(frame)
|
|
}
|
|
|
|
// Fill in argument and frame size.
|
|
pp.Text.To.Type = obj.TYPE_TEXTSIZE
|
|
pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
|
|
pp.Text.To.Offset = frame
|
|
|
|
// Insert code to zero ambiguously live variables so that the
|
|
// garbage collector only sees initialized values when it
|
|
// looks for pointers.
|
|
p := pp.Text
|
|
var lo, hi int64
|
|
|
|
// Opaque state for backend to use. Current backends use it to
|
|
// keep track of which helper registers have been zeroed.
|
|
var state uint32
|
|
|
|
// Iterate through declarations. They are sorted in decreasing Xoffset order.
|
|
for _, n := range e.curfn.Func.Dcl {
|
|
if !n.Name.Needzero() {
|
|
continue
|
|
}
|
|
if n.Class() != PAUTO {
|
|
e.Fatalf(n.Pos, "needzero class %d", n.Class())
|
|
}
|
|
if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
|
|
e.Fatalf(n.Pos, "var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
|
|
}
|
|
|
|
if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
|
|
// Merge with range we already have.
|
|
lo = n.Xoffset
|
|
continue
|
|
}
|
|
|
|
// Zero old range
|
|
p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
|
|
|
|
// Set new range.
|
|
lo = n.Xoffset
|
|
hi = lo + n.Type.Size()
|
|
}
|
|
|
|
// Zero final range.
|
|
thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
|
|
}
|
|
|
|
// For generating consecutive jump instructions to model a specific branching
|
|
type IndexJump struct {
|
|
Jump obj.As
|
|
Index int
|
|
}
|
|
|
|
func (s *SSAGenState) oneJump(b *ssa.Block, jump *IndexJump) {
|
|
p := s.Br(jump.Jump, b.Succs[jump.Index].Block())
|
|
p.Pos = b.Pos
|
|
}
|
|
|
|
// CombJump generates combinational instructions (2 at present) for a block jump,
|
|
// thereby the behaviour of non-standard condition codes could be simulated
|
|
func (s *SSAGenState) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) {
|
|
switch next {
|
|
case b.Succs[0].Block():
|
|
s.oneJump(b, &jumps[0][0])
|
|
s.oneJump(b, &jumps[0][1])
|
|
case b.Succs[1].Block():
|
|
s.oneJump(b, &jumps[1][0])
|
|
s.oneJump(b, &jumps[1][1])
|
|
default:
|
|
var q *obj.Prog
|
|
if b.Likely != ssa.BranchUnlikely {
|
|
s.oneJump(b, &jumps[1][0])
|
|
s.oneJump(b, &jumps[1][1])
|
|
q = s.Br(obj.AJMP, b.Succs[1].Block())
|
|
} else {
|
|
s.oneJump(b, &jumps[0][0])
|
|
s.oneJump(b, &jumps[0][1])
|
|
q = s.Br(obj.AJMP, b.Succs[0].Block())
|
|
}
|
|
q.Pos = b.Pos
|
|
}
|
|
}
|
|
|
|
// AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
|
|
func AddAux(a *obj.Addr, v *ssa.Value) {
|
|
AddAux2(a, v, v.AuxInt)
|
|
}
|
|
func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
|
|
if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
|
|
v.Fatalf("bad AddAux addr %v", a)
|
|
}
|
|
// add integer offset
|
|
a.Offset += offset
|
|
|
|
// If no additional symbol offset, we're done.
|
|
if v.Aux == nil {
|
|
return
|
|
}
|
|
// Add symbol's offset from its base register.
|
|
switch n := v.Aux.(type) {
|
|
case *obj.LSym:
|
|
a.Name = obj.NAME_EXTERN
|
|
a.Sym = n
|
|
case *Node:
|
|
if n.Class() == PPARAM || n.Class() == PPARAMOUT {
|
|
a.Name = obj.NAME_PARAM
|
|
a.Sym = n.Orig.Sym.Linksym()
|
|
a.Offset += n.Xoffset
|
|
break
|
|
}
|
|
a.Name = obj.NAME_AUTO
|
|
a.Sym = n.Sym.Linksym()
|
|
a.Offset += n.Xoffset
|
|
default:
|
|
v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
|
|
}
|
|
}
|
|
|
|
// extendIndex extends v to a full int width.
|
|
// panic with the given kind if v does not fit in an int (only on 32-bit archs).
|
|
func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
|
|
size := idx.Type.Size()
|
|
if size == s.config.PtrSize {
|
|
return idx
|
|
}
|
|
if size > s.config.PtrSize {
|
|
// truncate 64-bit indexes on 32-bit pointer archs. Test the
|
|
// high word and branch to out-of-bounds failure if it is not 0.
|
|
var lo *ssa.Value
|
|
if idx.Type.IsSigned() {
|
|
lo = s.newValue1(ssa.OpInt64Lo, types.Types[TINT], idx)
|
|
} else {
|
|
lo = s.newValue1(ssa.OpInt64Lo, types.Types[TUINT], idx)
|
|
}
|
|
if bounded || Debug['B'] != 0 {
|
|
return lo
|
|
}
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
bPanic := s.f.NewBlock(ssa.BlockExit)
|
|
hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], idx)
|
|
cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
|
|
if !idx.Type.IsSigned() {
|
|
switch kind {
|
|
case ssa.BoundsIndex:
|
|
kind = ssa.BoundsIndexU
|
|
case ssa.BoundsSliceAlen:
|
|
kind = ssa.BoundsSliceAlenU
|
|
case ssa.BoundsSliceAcap:
|
|
kind = ssa.BoundsSliceAcapU
|
|
case ssa.BoundsSliceB:
|
|
kind = ssa.BoundsSliceBU
|
|
case ssa.BoundsSlice3Alen:
|
|
kind = ssa.BoundsSlice3AlenU
|
|
case ssa.BoundsSlice3Acap:
|
|
kind = ssa.BoundsSlice3AcapU
|
|
case ssa.BoundsSlice3B:
|
|
kind = ssa.BoundsSlice3BU
|
|
case ssa.BoundsSlice3C:
|
|
kind = ssa.BoundsSlice3CU
|
|
}
|
|
}
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
b.AddEdgeTo(bNext)
|
|
b.AddEdgeTo(bPanic)
|
|
|
|
s.startBlock(bPanic)
|
|
mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem())
|
|
s.endBlock().SetControl(mem)
|
|
s.startBlock(bNext)
|
|
|
|
return lo
|
|
}
|
|
|
|
// Extend value to the required size
|
|
var op ssa.Op
|
|
if idx.Type.IsSigned() {
|
|
switch 10*size + s.config.PtrSize {
|
|
case 14:
|
|
op = ssa.OpSignExt8to32
|
|
case 18:
|
|
op = ssa.OpSignExt8to64
|
|
case 24:
|
|
op = ssa.OpSignExt16to32
|
|
case 28:
|
|
op = ssa.OpSignExt16to64
|
|
case 48:
|
|
op = ssa.OpSignExt32to64
|
|
default:
|
|
s.Fatalf("bad signed index extension %s", idx.Type)
|
|
}
|
|
} else {
|
|
switch 10*size + s.config.PtrSize {
|
|
case 14:
|
|
op = ssa.OpZeroExt8to32
|
|
case 18:
|
|
op = ssa.OpZeroExt8to64
|
|
case 24:
|
|
op = ssa.OpZeroExt16to32
|
|
case 28:
|
|
op = ssa.OpZeroExt16to64
|
|
case 48:
|
|
op = ssa.OpZeroExt32to64
|
|
default:
|
|
s.Fatalf("bad unsigned index extension %s", idx.Type)
|
|
}
|
|
}
|
|
return s.newValue1(op, types.Types[TINT], idx)
|
|
}
|
|
|
|
// CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
|
|
// Called during ssaGenValue.
|
|
func CheckLoweredPhi(v *ssa.Value) {
|
|
if v.Op != ssa.OpPhi {
|
|
v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
|
|
}
|
|
if v.Type.IsMemory() {
|
|
return
|
|
}
|
|
f := v.Block.Func
|
|
loc := f.RegAlloc[v.ID]
|
|
for _, a := range v.Args {
|
|
if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
|
|
v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
|
|
}
|
|
}
|
|
}
|
|
|
|
// CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
|
|
// The output of LoweredGetClosurePtr is generally hardwired to the correct register.
|
|
// That register contains the closure pointer on closure entry.
|
|
func CheckLoweredGetClosurePtr(v *ssa.Value) {
|
|
entry := v.Block.Func.Entry
|
|
if entry != v.Block || entry.Values[0] != v {
|
|
Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
|
|
}
|
|
}
|
|
|
|
// AutoVar returns a *Node and int64 representing the auto variable and offset within it
|
|
// where v should be spilled.
|
|
func AutoVar(v *ssa.Value) (*Node, int64) {
|
|
loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
|
|
if v.Type.Size() > loc.Type.Size() {
|
|
v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
|
|
}
|
|
return loc.N.(*Node), loc.Off
|
|
}
|
|
|
|
func AddrAuto(a *obj.Addr, v *ssa.Value) {
|
|
n, off := AutoVar(v)
|
|
a.Type = obj.TYPE_MEM
|
|
a.Sym = n.Sym.Linksym()
|
|
a.Reg = int16(thearch.REGSP)
|
|
a.Offset = n.Xoffset + off
|
|
if n.Class() == PPARAM || n.Class() == PPARAMOUT {
|
|
a.Name = obj.NAME_PARAM
|
|
} else {
|
|
a.Name = obj.NAME_AUTO
|
|
}
|
|
}
|
|
|
|
func (s *SSAGenState) AddrScratch(a *obj.Addr) {
|
|
if s.ScratchFpMem == nil {
|
|
panic("no scratch memory available; forgot to declare usesScratch for Op?")
|
|
}
|
|
a.Type = obj.TYPE_MEM
|
|
a.Name = obj.NAME_AUTO
|
|
a.Sym = s.ScratchFpMem.Sym.Linksym()
|
|
a.Reg = int16(thearch.REGSP)
|
|
a.Offset = s.ScratchFpMem.Xoffset
|
|
}
|
|
|
|
// Call returns a new CALL instruction for the SSA value v.
|
|
// It uses PrepareCall to prepare the call.
|
|
func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
|
|
pPosIsStmt := s.pp.pos.IsStmt() // The statement-ness fo the call comes from ssaGenState
|
|
s.PrepareCall(v)
|
|
|
|
p := s.Prog(obj.ACALL)
|
|
if pPosIsStmt == src.PosIsStmt {
|
|
p.Pos = v.Pos.WithIsStmt()
|
|
} else {
|
|
p.Pos = v.Pos.WithNotStmt()
|
|
}
|
|
if sym, ok := v.Aux.(*obj.LSym); ok {
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = sym
|
|
} else {
|
|
// TODO(mdempsky): Can these differences be eliminated?
|
|
switch thearch.LinkArch.Family {
|
|
case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm:
|
|
p.To.Type = obj.TYPE_REG
|
|
case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
|
|
p.To.Type = obj.TYPE_MEM
|
|
default:
|
|
Fatalf("unknown indirect call family")
|
|
}
|
|
p.To.Reg = v.Args[0].Reg()
|
|
}
|
|
return p
|
|
}
|
|
|
|
// PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping.
|
|
// It must be called immediately before emitting the actual CALL instruction,
|
|
// since it emits PCDATA for the stack map at the call (calls are safe points).
|
|
func (s *SSAGenState) PrepareCall(v *ssa.Value) {
|
|
idx := s.livenessMap.Get(v)
|
|
if !idx.StackMapValid() {
|
|
// See Liveness.hasStackMap.
|
|
if sym, _ := v.Aux.(*obj.LSym); !(sym == typedmemclr || sym == typedmemmove) {
|
|
Fatalf("missing stack map index for %v", v.LongString())
|
|
}
|
|
}
|
|
|
|
if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
|
|
// Deferred calls will appear to be returning to
|
|
// the CALL deferreturn(SB) that we are about to emit.
|
|
// However, the stack trace code will show the line
|
|
// of the instruction byte before the return PC.
|
|
// To avoid that being an unrelated instruction,
|
|
// insert an actual hardware NOP that will have the right line number.
|
|
// This is different from obj.ANOP, which is a virtual no-op
|
|
// that doesn't make it into the instruction stream.
|
|
thearch.Ginsnopdefer(s.pp)
|
|
}
|
|
|
|
if sym, ok := v.Aux.(*obj.LSym); ok {
|
|
// Record call graph information for nowritebarrierrec
|
|
// analysis.
|
|
if nowritebarrierrecCheck != nil {
|
|
nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos)
|
|
}
|
|
}
|
|
|
|
if s.maxarg < v.AuxInt {
|
|
s.maxarg = v.AuxInt
|
|
}
|
|
}
|
|
|
|
// UseArgs records the fact that an instruction needs a certain amount of
|
|
// callee args space for its use.
|
|
func (s *SSAGenState) UseArgs(n int64) {
|
|
if s.maxarg < n {
|
|
s.maxarg = n
|
|
}
|
|
}
|
|
|
|
// fieldIdx finds the index of the field referred to by the ODOT node n.
|
|
func fieldIdx(n *Node) int {
|
|
t := n.Left.Type
|
|
f := n.Sym
|
|
if !t.IsStruct() {
|
|
panic("ODOT's LHS is not a struct")
|
|
}
|
|
|
|
var i int
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if t1.Sym != f {
|
|
i++
|
|
continue
|
|
}
|
|
if t1.Offset != n.Xoffset {
|
|
panic("field offset doesn't match")
|
|
}
|
|
return i
|
|
}
|
|
panic(fmt.Sprintf("can't find field in expr %v\n", n))
|
|
|
|
// TODO: keep the result of this function somewhere in the ODOT Node
|
|
// so we don't have to recompute it each time we need it.
|
|
}
|
|
|
|
// ssafn holds frontend information about a function that the backend is processing.
|
|
// It also exports a bunch of compiler services for the ssa backend.
|
|
type ssafn struct {
|
|
curfn *Node
|
|
strings map[string]*obj.LSym // map from constant string to data symbols
|
|
scratchFpMem *Node // temp for floating point register / memory moves on some architectures
|
|
stksize int64 // stack size for current frame
|
|
stkptrsize int64 // prefix of stack containing pointers
|
|
log bool // print ssa debug to the stdout
|
|
}
|
|
|
|
// StringData returns a symbol which
|
|
// is the data component of a global string constant containing s.
|
|
func (e *ssafn) StringData(s string) *obj.LSym {
|
|
if aux, ok := e.strings[s]; ok {
|
|
return aux
|
|
}
|
|
if e.strings == nil {
|
|
e.strings = make(map[string]*obj.LSym)
|
|
}
|
|
data := stringsym(e.curfn.Pos, s)
|
|
e.strings[s] = data
|
|
return data
|
|
}
|
|
|
|
func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
|
|
n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
|
|
return n
|
|
}
|
|
|
|
func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
ptrType := types.NewPtr(types.Types[TUINT8])
|
|
lenType := types.Types[TINT]
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Split this string up into two separate variables.
|
|
p := e.splitSlot(&name, ".ptr", 0, ptrType)
|
|
l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
|
|
return p, l
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
|
|
}
|
|
|
|
func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
u := types.Types[TUINTPTR]
|
|
t := types.NewPtr(types.Types[TUINT8])
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Split this interface up into two separate variables.
|
|
f := ".itab"
|
|
if n.Type.IsEmptyInterface() {
|
|
f = ".type"
|
|
}
|
|
c := e.splitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1.
|
|
d := e.splitSlot(&name, ".data", u.Size(), t)
|
|
return c, d
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: u, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
|
|
}
|
|
|
|
func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
ptrType := types.NewPtr(name.Type.Elem())
|
|
lenType := types.Types[TINT]
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Split this slice up into three separate variables.
|
|
p := e.splitSlot(&name, ".ptr", 0, ptrType)
|
|
l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
|
|
c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
|
|
return p, l, c
|
|
}
|
|
// Return the three parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
|
|
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
|
|
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
|
|
}
|
|
|
|
func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
s := name.Type.Size() / 2
|
|
var t *types.Type
|
|
if s == 8 {
|
|
t = types.Types[TFLOAT64]
|
|
} else {
|
|
t = types.Types[TFLOAT32]
|
|
}
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Split this complex up into two separate variables.
|
|
r := e.splitSlot(&name, ".real", 0, t)
|
|
i := e.splitSlot(&name, ".imag", t.Size(), t)
|
|
return r, i
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
|
|
}
|
|
|
|
func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
var t *types.Type
|
|
if name.Type.IsSigned() {
|
|
t = types.Types[TINT32]
|
|
} else {
|
|
t = types.Types[TUINT32]
|
|
}
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Split this int64 up into two separate variables.
|
|
if thearch.LinkArch.ByteOrder == binary.BigEndian {
|
|
return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
|
|
}
|
|
return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
if thearch.LinkArch.ByteOrder == binary.BigEndian {
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
|
|
}
|
|
|
|
func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
|
|
n := name.N.(*Node)
|
|
st := name.Type
|
|
ft := st.FieldType(i)
|
|
var offset int64
|
|
for f := 0; f < i; f++ {
|
|
offset += st.FieldType(f).Size()
|
|
}
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
// Note: the _ field may appear several times. But
|
|
// have no fear, identically-named but distinct Autos are
|
|
// ok, albeit maybe confusing for a debugger.
|
|
return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
|
|
}
|
|
|
|
func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
|
|
n := name.N.(*Node)
|
|
at := name.Type
|
|
if at.NumElem() != 1 {
|
|
e.Fatalf(n.Pos, "bad array size")
|
|
}
|
|
et := at.Elem()
|
|
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
|
return e.splitSlot(&name, "[0]", 0, et)
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
|
|
}
|
|
|
|
func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
|
|
return itabsym(it, offset)
|
|
}
|
|
|
|
// splitSlot returns a slot representing the data of parent starting at offset.
|
|
func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
|
|
s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
|
|
|
|
n := &Node{
|
|
Name: new(Name),
|
|
Op: ONAME,
|
|
Pos: parent.N.(*Node).Pos,
|
|
}
|
|
n.Orig = n
|
|
|
|
s.Def = asTypesNode(n)
|
|
asNode(s.Def).Name.SetUsed(true)
|
|
n.Sym = s
|
|
n.Type = t
|
|
n.SetClass(PAUTO)
|
|
n.Esc = EscNever
|
|
n.Name.Curfn = e.curfn
|
|
e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
|
|
dowidth(t)
|
|
return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
|
|
}
|
|
|
|
func (e *ssafn) CanSSA(t *types.Type) bool {
|
|
return canSSAType(t)
|
|
}
|
|
|
|
func (e *ssafn) Line(pos src.XPos) string {
|
|
return linestr(pos)
|
|
}
|
|
|
|
// Log logs a message from the compiler.
|
|
func (e *ssafn) Logf(msg string, args ...interface{}) {
|
|
if e.log {
|
|
fmt.Printf(msg, args...)
|
|
}
|
|
}
|
|
|
|
func (e *ssafn) Log() bool {
|
|
return e.log
|
|
}
|
|
|
|
// Fatal reports a compiler error and exits.
|
|
func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
|
|
lineno = pos
|
|
nargs := append([]interface{}{e.curfn.funcname()}, args...)
|
|
Fatalf("'%s': "+msg, nargs...)
|
|
}
|
|
|
|
// Warnl reports a "warning", which is usually flag-triggered
|
|
// logging output for the benefit of tests.
|
|
func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
|
|
Warnl(pos, fmt_, args...)
|
|
}
|
|
|
|
func (e *ssafn) Debug_checknil() bool {
|
|
return Debug_checknil != 0
|
|
}
|
|
|
|
func (e *ssafn) UseWriteBarrier() bool {
|
|
return use_writebarrier
|
|
}
|
|
|
|
func (e *ssafn) Syslook(name string) *obj.LSym {
|
|
switch name {
|
|
case "goschedguarded":
|
|
return goschedguarded
|
|
case "writeBarrier":
|
|
return writeBarrier
|
|
case "gcWriteBarrier":
|
|
return gcWriteBarrier
|
|
case "typedmemmove":
|
|
return typedmemmove
|
|
case "typedmemclr":
|
|
return typedmemclr
|
|
}
|
|
e.Fatalf(src.NoXPos, "unknown Syslook func %v", name)
|
|
return nil
|
|
}
|
|
|
|
func (e *ssafn) SetWBPos(pos src.XPos) {
|
|
e.curfn.Func.setWBPos(pos)
|
|
}
|
|
|
|
func (n *Node) Typ() *types.Type {
|
|
return n.Type
|
|
}
|
|
func (n *Node) StorageClass() ssa.StorageClass {
|
|
switch n.Class() {
|
|
case PPARAM:
|
|
return ssa.ClassParam
|
|
case PPARAMOUT:
|
|
return ssa.ClassParamOut
|
|
case PAUTO:
|
|
return ssa.ClassAuto
|
|
default:
|
|
Fatalf("untranslatable storage class for %v: %s", n, n.Class())
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func clobberBase(n *Node) *Node {
|
|
if n.Op == ODOT && n.Left.Type.NumFields() == 1 {
|
|
return clobberBase(n.Left)
|
|
}
|
|
if n.Op == OINDEX && n.Left.Type.IsArray() && n.Left.Type.NumElem() == 1 {
|
|
return clobberBase(n.Left)
|
|
}
|
|
return n
|
|
}
|