Cuong Manh Le cfd0868fc3 cmd/compile: fix delayTransform condition
The delayTransform only checks whether ir.CurFunc is generic function or
not. but when compiling a non-generic closure inside a generic function,
we also want to delay the transformation, which delayTransform fails to
detect, since when ir.CurFunc is the closure, not the top level function.

Instead, we must rely on irgen.topFuncIsGeneric field to decide whether
to delay the transformation, the same logic with what is being done for
not adding closure inside a generic function to g.target.Decls list.

Fixes #48609

Change-Id: I5bf5592027d112fe8b19c92eb906add424c46507
Reviewed-on: https://go-review.googlesource.com/c/go/+/351855
Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Trust: Dan Scales <danscales@google.com>
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Dan Scales <danscales@google.com>
2021-09-24 19:40:03 +00:00

320 lines
8.9 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
type ImplicitNode interface {
ir.Node
SetImplicit(x bool)
}
// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
n.SetImplicit(true)
return n
}
// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
n.SetType(typ)
n.SetTypecheck(1)
return n
}
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
return typed(typ, ir.NewBasicLit(pos, val))
}
func OrigConst(pos src.XPos, typ *types.Type, val constant.Value, op ir.Op, raw string) ir.Node {
orig := ir.NewRawOrigExpr(pos, op, raw)
return ir.NewConstExpr(val, typed(typ, orig))
}
// FixValue returns val after converting and truncating it as
// appropriate for typ.
func FixValue(typ *types.Type, val constant.Value) constant.Value {
assert(typ.Kind() != types.TFORW)
switch {
case typ.IsInteger():
val = constant.ToInt(val)
case typ.IsFloat():
val = constant.ToFloat(val)
case typ.IsComplex():
val = constant.ToComplex(val)
}
if !typ.IsUntyped() {
val = typecheck.DefaultLit(ir.NewBasicLit(src.NoXPos, val), typ).Val()
}
if !typ.IsTypeParam() {
ir.AssertValidTypeForConst(typ, val)
}
return val
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
return typed(typ, ir.NewNilExpr(pos))
}
// Expressions
func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
n := typecheck.NodAddrAt(pos, x)
switch x.Op() {
case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
n.SetOp(ir.OPTRLIT)
}
typed(types.NewPtr(x.Type()), n)
return n
}
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
func Binary(pos src.XPos, op ir.Op, typ *types.Type, x, y ir.Node) *ir.BinaryExpr {
switch op {
case ir.OADD:
n := ir.NewBinaryExpr(pos, op, x, y)
typed(typ, n)
return n
default:
n := ir.NewBinaryExpr(pos, op, x, y)
typed(x.Type(), n)
return n
}
}
func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
if fun.Op() == ir.OTYPE {
// Actually a type conversion, not a function call.
if !fun.Type().IsInterface() &&
(fun.Type().HasTParam() || args[0].Type().HasTParam()) {
// For type params, we can transform if fun.Type() is known
// to be an interface (in which case a CONVIFACE node will be
// inserted). Otherwise, don't typecheck until we actually
// know the type.
return typed(typ, n)
}
typed(typ, n)
return transformConvCall(n)
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
// For most Builtin ops, we delay doing transformBuiltin if any of the
// args have type params, for a variety of reasons:
//
// OMAKE: transformMake can't choose specific ops OMAKESLICE, etc.
// until arg type is known
// OREAL/OIMAG: transformRealImag can't determine type float32/float64
// until arg type known
// OAPPEND: transformAppend requires that the arg is a slice
// ODELETE: transformDelete requires that the arg is a map
// OALIGNOF, OSIZEOF: can be eval'ed to a constant until types known.
switch fun.BuiltinOp {
case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.ODELETE, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
hasTParam := false
for _, arg := range args {
if fun.BuiltinOp == ir.OOFFSETOF {
// It's the type of left operand of the
// selection that matters, not the type of
// the field itself (which is irrelevant for
// offsetof).
arg = arg.(*ir.SelectorExpr).X
}
if arg.Type().HasTParam() {
hasTParam = true
break
}
}
if hasTParam {
return typed(typ, n)
}
}
typed(typ, n)
return transformBuiltin(n)
}
// Add information, now that we know that fun is actually being called.
switch fun := fun.(type) {
case *ir.SelectorExpr:
if fun.Op() == ir.OMETHVALUE {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
// Set the type to include the receiver, since that's what
// later parts of the compiler expect
fun.SetType(fun.Selection.Type)
}
}
if fun.Type().HasTParam() || fun.Op() == ir.OXDOT || fun.Op() == ir.OFUNCINST {
// If the fun arg is or has a type param, we can't do all the
// transformations, since we may not have needed properties yet
// (e.g. number of return values, etc). The same applies if a fun
// which is an XDOT could not be transformed yet because of a generic
// type in the X of the selector expression.
//
// A function instantiation (even if fully concrete) shouldn't be
// transformed yet, because we need to add the dictionary during the
// transformation.
return typed(typ, n)
}
// If no type params, do the normal call transformations. This
// will convert OCALL to OCALLFUNC.
typed(typ, n)
transformCall(n)
return n
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) *ir.BinaryExpr {
n := ir.NewBinaryExpr(pos, op, x, y)
typed(typ, n)
return n
}
func Deref(pos src.XPos, typ *types.Type, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x)
typed(typ, n)
return n
}
func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
op, typ := ir.ODOT, x.Type()
if typ.IsPtr() {
op, typ = ir.ODOTPTR, typ.Elem()
}
if !typ.IsStruct() {
base.FatalfAt(pos, "DotField of non-struct: %L", x)
}
// TODO(mdempsky): This is the backend's responsibility.
types.CalcSize(typ)
field := typ.Field(index)
return dot(pos, field.Type, op, x, field)
}
func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
method := method(x.Type(), index)
// Method value.
typ := typecheck.NewMethodType(method.Type, nil)
return dot(pos, typ, ir.OMETHVALUE, x, method)
}
// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
method := method(embed, index)
typ := typecheck.NewMethodType(method.Type, recv.Type())
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if recv.Sym() == nil {
typecheck.NeedRuntimeType(recv.Type())
}
return dot(pos, typ, ir.OMETHEXPR, recv, method)
}
func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
n.Selection = selection
typed(typ, n)
return n
}
// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
if typ.IsInterface() {
return typ.AllMethods().Index(index)
}
return types.ReceiverBaseType(typ).Methods().Index(index)
}
func Index(pos src.XPos, typ *types.Type, x, index ir.Node) *ir.IndexExpr {
n := ir.NewIndexExpr(pos, x, index)
typed(typ, n)
return n
}
func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) *ir.SliceExpr {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
n := ir.NewSliceExpr(pos, op, x, low, high, max)
typed(typ, n)
return n
}
func Unary(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return Addr(pos, x)
case ir.ODEREF:
return Deref(pos, typ, x)
}
if op == ir.ORECV {
if typ.IsFuncArgStruct() && typ.NumFields() == 2 {
// Remove the second boolean type (if provided by type2),
// since that works better with the rest of the compiler
// (which will add it back in later).
assert(typ.Field(1).Type.Kind() == types.TBOOL)
typ = typ.Field(0).Type
}
}
return typed(typ, ir.NewUnaryExpr(pos, op, x))
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) *ir.AssignOpStmt {
assert(x.Type() != nil)
bl := ir.NewBasicLit(pos, one)
if x.Type().HasTParam() {
// If the operand is generic, then types2 will have proved it must be
// a type that fits with increment/decrement, so just set the type of
// "one" to n.Type(). This works even for types that are eventually
// float or complex.
typed(x.Type(), bl)
} else {
bl = typecheck.DefaultLit(bl, x.Type())
}
return ir.NewAssignOpStmt(pos, op, x, bl)
}