mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
Attempt to construct large constants that have a consecutive sequence of ones from a small negative constant, with a logical right and/or left shift. This allows for a large range of mask like constants to be constructed with only two or three instructions, avoiding the need to load from memory. Change-Id: I35a77fecdd2df0ed3f33b772d518f85119d4ff66 Reviewed-on: https://go-review.googlesource.com/c/go/+/652778 LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Dmitri Shuralyov <dmitshur@google.com> Reviewed-by: Cherry Mui <cherryyz@google.com> Reviewed-by: Mark Ryan <markdryan@rivosinc.com> Reviewed-by: Meng Zhuo <mengzhuo1203@gmail.com>
3238 lines
98 KiB
Go
3238 lines
98 KiB
Go
// Copyright © 2015 The Go Authors. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
package riscv
|
|
|
|
import (
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"cmd/internal/sys"
|
|
"fmt"
|
|
"internal/abi"
|
|
"internal/buildcfg"
|
|
"log"
|
|
"math/bits"
|
|
"strings"
|
|
)
|
|
|
|
func buildop(ctxt *obj.Link) {}
|
|
|
|
func jalToSym(ctxt *obj.Link, p *obj.Prog, lr int16) {
|
|
switch p.As {
|
|
case obj.ACALL, obj.AJMP, obj.ARET, obj.ADUFFZERO, obj.ADUFFCOPY:
|
|
default:
|
|
ctxt.Diag("unexpected Prog in jalToSym: %v", p)
|
|
return
|
|
}
|
|
|
|
p.As = AJAL
|
|
p.Mark |= NEED_JAL_RELOC
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = lr
|
|
p.Reg = obj.REG_NONE
|
|
}
|
|
|
|
// progedit is called individually for each *obj.Prog. It normalizes instruction
|
|
// formats and eliminates as many pseudo-instructions as possible.
|
|
func progedit(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) {
|
|
insData, err := instructionDataForAs(p.As)
|
|
if err != nil {
|
|
panic(fmt.Sprintf("failed to lookup instruction data for %v: %v", p.As, err))
|
|
}
|
|
|
|
// Expand binary instructions to ternary ones.
|
|
if p.Reg == obj.REG_NONE {
|
|
if insData.ternary {
|
|
p.Reg = p.To.Reg
|
|
}
|
|
}
|
|
|
|
// Rewrite instructions with constant operands to refer to the immediate
|
|
// form of the instruction.
|
|
if p.From.Type == obj.TYPE_CONST {
|
|
switch p.As {
|
|
case ASUB:
|
|
p.As, p.From.Offset = AADDI, -p.From.Offset
|
|
case ASUBW:
|
|
p.As, p.From.Offset = AADDIW, -p.From.Offset
|
|
default:
|
|
if insData.immForm != obj.AXXX {
|
|
p.As = insData.immForm
|
|
}
|
|
}
|
|
}
|
|
|
|
switch p.As {
|
|
case obj.AJMP:
|
|
// Turn JMP into JAL ZERO or JALR ZERO.
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_ZERO
|
|
|
|
switch p.To.Type {
|
|
case obj.TYPE_BRANCH:
|
|
p.As = AJAL
|
|
case obj.TYPE_MEM:
|
|
switch p.To.Name {
|
|
case obj.NAME_NONE:
|
|
p.As = AJALR
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
// Handled in preprocess.
|
|
default:
|
|
ctxt.Diag("unsupported name %d for %v", p.To.Name, p)
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unhandled type %+v", p.To.Type))
|
|
}
|
|
|
|
case obj.ACALL:
|
|
switch p.To.Type {
|
|
case obj.TYPE_MEM:
|
|
// Handled in preprocess.
|
|
case obj.TYPE_REG:
|
|
p.As = AJALR
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_LR
|
|
default:
|
|
ctxt.Diag("unknown destination type %+v in CALL: %v", p.To.Type, p)
|
|
}
|
|
|
|
case obj.AUNDEF:
|
|
p.As = AEBREAK
|
|
|
|
case AFMVXS:
|
|
// FMVXS is the old name for FMVXW.
|
|
p.As = AFMVXW
|
|
|
|
case AFMVSX:
|
|
// FMVSX is the old name for FMVWX.
|
|
p.As = AFMVWX
|
|
|
|
case ASCALL:
|
|
// SCALL is the old name for ECALL.
|
|
p.As = AECALL
|
|
|
|
case ASBREAK:
|
|
// SBREAK is the old name for EBREAK.
|
|
p.As = AEBREAK
|
|
|
|
case AMOV:
|
|
if p.From.Type == obj.TYPE_CONST && p.From.Name == obj.NAME_NONE && p.From.Reg == obj.REG_NONE && int64(int32(p.From.Offset)) != p.From.Offset {
|
|
if isShiftConst(p.From.Offset) {
|
|
break
|
|
}
|
|
// Put >32-bit constants in memory and load them.
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Sym = ctxt.Int64Sym(p.From.Offset)
|
|
p.From.Name = obj.NAME_EXTERN
|
|
p.From.Offset = 0
|
|
}
|
|
|
|
case AMOVD:
|
|
if p.From.Type == obj.TYPE_FCONST && p.From.Name == obj.NAME_NONE && p.From.Reg == obj.REG_NONE {
|
|
f64 := p.From.Val.(float64)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Sym = ctxt.Float64Sym(f64)
|
|
p.From.Name = obj.NAME_EXTERN
|
|
p.From.Offset = 0
|
|
}
|
|
}
|
|
|
|
if ctxt.Flag_dynlink {
|
|
rewriteToUseGot(ctxt, p, newprog)
|
|
}
|
|
}
|
|
|
|
// Rewrite p, if necessary, to access global data via the global offset table.
|
|
func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) {
|
|
if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO {
|
|
// ADUFFxxx $offset
|
|
// becomes
|
|
// MOV runtime.duffxxx@GOT, REG_TMP
|
|
// ADD $offset, REG_TMP
|
|
// CALL REG_TMP
|
|
var sym *obj.LSym
|
|
if p.As == obj.ADUFFCOPY {
|
|
sym = ctxt.LookupABI("runtime.duffcopy", obj.ABIInternal)
|
|
} else {
|
|
sym = ctxt.LookupABI("runtime.duffzero", obj.ABIInternal)
|
|
}
|
|
offset := p.To.Offset
|
|
p.As = AMOV
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Name = obj.NAME_GOTREF
|
|
p.From.Sym = sym
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = REG_TMP
|
|
p.To.Name = obj.NAME_NONE
|
|
p.To.Offset = 0
|
|
p.To.Sym = nil
|
|
|
|
p1 := obj.Appendp(p, newprog)
|
|
p1.As = AADD
|
|
p1.From.Type = obj.TYPE_CONST
|
|
p1.From.Offset = offset
|
|
p1.To.Type = obj.TYPE_REG
|
|
p1.To.Reg = REG_TMP
|
|
|
|
p2 := obj.Appendp(p1, newprog)
|
|
p2.As = obj.ACALL
|
|
p2.To.Type = obj.TYPE_REG
|
|
p2.To.Reg = REG_TMP
|
|
}
|
|
|
|
// We only care about global data: NAME_EXTERN means a global
|
|
// symbol in the Go sense and p.Sym.Local is true for a few internally
|
|
// defined symbols.
|
|
if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() {
|
|
// MOV $sym, Rx becomes MOV sym@GOT, Rx
|
|
// MOV $sym+<off>, Rx becomes MOV sym@GOT, Rx; ADD <off>, Rx
|
|
if p.As != AMOV {
|
|
ctxt.Diag("don't know how to handle TYPE_ADDR in %v with -dynlink", p)
|
|
}
|
|
if p.To.Type != obj.TYPE_REG {
|
|
ctxt.Diag("don't know how to handle LD instruction to non-register in %v with -dynlink", p)
|
|
}
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Name = obj.NAME_GOTREF
|
|
if p.From.Offset != 0 {
|
|
q := obj.Appendp(p, newprog)
|
|
q.As = AADD
|
|
q.From.Type = obj.TYPE_CONST
|
|
q.From.Offset = p.From.Offset
|
|
q.To = p.To
|
|
p.From.Offset = 0
|
|
}
|
|
|
|
}
|
|
|
|
if p.GetFrom3() != nil && p.GetFrom3().Name == obj.NAME_EXTERN {
|
|
ctxt.Diag("don't know how to handle %v with -dynlink", p)
|
|
}
|
|
|
|
var source *obj.Addr
|
|
// MOVx sym, Ry becomes MOV sym@GOT, X31; MOVx (X31), Ry
|
|
// MOVx Ry, sym becomes MOV sym@GOT, X31; MOV Ry, (X31)
|
|
// An addition may be inserted between the two MOVs if there is an offset.
|
|
if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() {
|
|
if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() {
|
|
ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p)
|
|
}
|
|
source = &p.From
|
|
} else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() {
|
|
source = &p.To
|
|
} else {
|
|
return
|
|
}
|
|
if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP {
|
|
return
|
|
}
|
|
if source.Sym.Type == objabi.STLSBSS {
|
|
return
|
|
}
|
|
if source.Type != obj.TYPE_MEM {
|
|
ctxt.Diag("don't know how to handle %v with -dynlink", p)
|
|
}
|
|
p1 := obj.Appendp(p, newprog)
|
|
p1.As = AMOV
|
|
p1.From.Type = obj.TYPE_MEM
|
|
p1.From.Sym = source.Sym
|
|
p1.From.Name = obj.NAME_GOTREF
|
|
p1.To.Type = obj.TYPE_REG
|
|
p1.To.Reg = REG_TMP
|
|
|
|
p2 := obj.Appendp(p1, newprog)
|
|
p2.As = p.As
|
|
p2.From = p.From
|
|
p2.To = p.To
|
|
if p.From.Name == obj.NAME_EXTERN {
|
|
p2.From.Reg = REG_TMP
|
|
p2.From.Name = obj.NAME_NONE
|
|
p2.From.Sym = nil
|
|
} else if p.To.Name == obj.NAME_EXTERN {
|
|
p2.To.Reg = REG_TMP
|
|
p2.To.Name = obj.NAME_NONE
|
|
p2.To.Sym = nil
|
|
} else {
|
|
return
|
|
}
|
|
obj.Nopout(p)
|
|
|
|
}
|
|
|
|
// addrToReg extracts the register from an Addr, handling special Addr.Names.
|
|
func addrToReg(a obj.Addr) int16 {
|
|
switch a.Name {
|
|
case obj.NAME_PARAM, obj.NAME_AUTO:
|
|
return REG_SP
|
|
}
|
|
return a.Reg
|
|
}
|
|
|
|
// movToLoad converts a MOV mnemonic into the corresponding load instruction.
|
|
func movToLoad(mnemonic obj.As) obj.As {
|
|
switch mnemonic {
|
|
case AMOV:
|
|
return ALD
|
|
case AMOVB:
|
|
return ALB
|
|
case AMOVH:
|
|
return ALH
|
|
case AMOVW:
|
|
return ALW
|
|
case AMOVBU:
|
|
return ALBU
|
|
case AMOVHU:
|
|
return ALHU
|
|
case AMOVWU:
|
|
return ALWU
|
|
case AMOVF:
|
|
return AFLW
|
|
case AMOVD:
|
|
return AFLD
|
|
default:
|
|
panic(fmt.Sprintf("%+v is not a MOV", mnemonic))
|
|
}
|
|
}
|
|
|
|
// movToStore converts a MOV mnemonic into the corresponding store instruction.
|
|
func movToStore(mnemonic obj.As) obj.As {
|
|
switch mnemonic {
|
|
case AMOV:
|
|
return ASD
|
|
case AMOVB:
|
|
return ASB
|
|
case AMOVH:
|
|
return ASH
|
|
case AMOVW:
|
|
return ASW
|
|
case AMOVF:
|
|
return AFSW
|
|
case AMOVD:
|
|
return AFSD
|
|
default:
|
|
panic(fmt.Sprintf("%+v is not a MOV", mnemonic))
|
|
}
|
|
}
|
|
|
|
// markRelocs marks an obj.Prog that specifies a MOV pseudo-instruction and
|
|
// requires relocation.
|
|
func markRelocs(p *obj.Prog) {
|
|
switch p.As {
|
|
case AMOV, AMOVB, AMOVH, AMOVW, AMOVBU, AMOVHU, AMOVWU, AMOVF, AMOVD:
|
|
switch {
|
|
case p.From.Type == obj.TYPE_ADDR && p.To.Type == obj.TYPE_REG:
|
|
switch p.From.Name {
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
p.Mark |= NEED_PCREL_ITYPE_RELOC
|
|
case obj.NAME_GOTREF:
|
|
p.Mark |= NEED_GOT_PCREL_ITYPE_RELOC
|
|
}
|
|
case p.From.Type == obj.TYPE_MEM && p.To.Type == obj.TYPE_REG:
|
|
switch p.From.Name {
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
p.Mark |= NEED_PCREL_ITYPE_RELOC
|
|
case obj.NAME_GOTREF:
|
|
p.Mark |= NEED_GOT_PCREL_ITYPE_RELOC
|
|
}
|
|
case p.From.Type == obj.TYPE_REG && p.To.Type == obj.TYPE_MEM:
|
|
switch p.To.Name {
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
p.Mark |= NEED_PCREL_STYPE_RELOC
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// InvertBranch inverts the condition of a conditional branch.
|
|
func InvertBranch(as obj.As) obj.As {
|
|
switch as {
|
|
case ABEQ:
|
|
return ABNE
|
|
case ABEQZ:
|
|
return ABNEZ
|
|
case ABGE:
|
|
return ABLT
|
|
case ABGEU:
|
|
return ABLTU
|
|
case ABGEZ:
|
|
return ABLTZ
|
|
case ABGT:
|
|
return ABLE
|
|
case ABGTU:
|
|
return ABLEU
|
|
case ABGTZ:
|
|
return ABLEZ
|
|
case ABLE:
|
|
return ABGT
|
|
case ABLEU:
|
|
return ABGTU
|
|
case ABLEZ:
|
|
return ABGTZ
|
|
case ABLT:
|
|
return ABGE
|
|
case ABLTU:
|
|
return ABGEU
|
|
case ABLTZ:
|
|
return ABGEZ
|
|
case ABNE:
|
|
return ABEQ
|
|
case ABNEZ:
|
|
return ABEQZ
|
|
default:
|
|
panic("InvertBranch: not a branch")
|
|
}
|
|
}
|
|
|
|
// containsCall reports whether the symbol contains a CALL (or equivalent)
|
|
// instruction. Must be called after progedit.
|
|
func containsCall(sym *obj.LSym) bool {
|
|
// CALLs are CALL or JAL(R) with link register LR.
|
|
for p := sym.Func().Text; p != nil; p = p.Link {
|
|
switch p.As {
|
|
case obj.ACALL, obj.ADUFFZERO, obj.ADUFFCOPY:
|
|
return true
|
|
case AJAL, AJALR:
|
|
if p.From.Type == obj.TYPE_REG && p.From.Reg == REG_LR {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// setPCs sets the Pc field in all instructions reachable from p.
|
|
// It uses pc as the initial value and returns the next available pc.
|
|
func setPCs(p *obj.Prog, pc int64) int64 {
|
|
for ; p != nil; p = p.Link {
|
|
p.Pc = pc
|
|
for _, ins := range instructionsForProg(p) {
|
|
pc += int64(ins.length())
|
|
}
|
|
|
|
if p.As == obj.APCALIGN {
|
|
alignedValue := p.From.Offset
|
|
v := pcAlignPadLength(pc, alignedValue)
|
|
pc += int64(v)
|
|
}
|
|
}
|
|
return pc
|
|
}
|
|
|
|
// stackOffset updates Addr offsets based on the current stack size.
|
|
//
|
|
// The stack looks like:
|
|
// -------------------
|
|
// | |
|
|
// | PARAMs |
|
|
// | |
|
|
// | |
|
|
// -------------------
|
|
// | Parent RA | SP on function entry
|
|
// -------------------
|
|
// | |
|
|
// | |
|
|
// | AUTOs |
|
|
// | |
|
|
// | |
|
|
// -------------------
|
|
// | RA | SP during function execution
|
|
// -------------------
|
|
//
|
|
// FixedFrameSize makes other packages aware of the space allocated for RA.
|
|
//
|
|
// A nicer version of this diagram can be found on slide 21 of the presentation
|
|
// attached to https://golang.org/issue/16922#issuecomment-243748180.
|
|
func stackOffset(a *obj.Addr, stacksize int64) {
|
|
switch a.Name {
|
|
case obj.NAME_AUTO:
|
|
// Adjust to the top of AUTOs.
|
|
a.Offset += stacksize
|
|
case obj.NAME_PARAM:
|
|
// Adjust to the bottom of PARAMs.
|
|
a.Offset += stacksize + 8
|
|
}
|
|
}
|
|
|
|
// preprocess generates prologue and epilogue code, computes PC-relative branch
|
|
// and jump offsets, and resolves pseudo-registers.
|
|
//
|
|
// preprocess is called once per linker symbol.
|
|
//
|
|
// When preprocess finishes, all instructions in the symbol are either
|
|
// concrete, real RISC-V instructions or directive pseudo-ops like TEXT,
|
|
// PCDATA, and FUNCDATA.
|
|
func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
|
|
if cursym.Func().Text == nil || cursym.Func().Text.Link == nil {
|
|
return
|
|
}
|
|
|
|
// Generate the prologue.
|
|
text := cursym.Func().Text
|
|
if text.As != obj.ATEXT {
|
|
ctxt.Diag("preprocess: found symbol that does not start with TEXT directive")
|
|
return
|
|
}
|
|
|
|
stacksize := text.To.Offset
|
|
if stacksize == -8 {
|
|
// Historical way to mark NOFRAME.
|
|
text.From.Sym.Set(obj.AttrNoFrame, true)
|
|
stacksize = 0
|
|
}
|
|
if stacksize < 0 {
|
|
ctxt.Diag("negative frame size %d - did you mean NOFRAME?", stacksize)
|
|
}
|
|
if text.From.Sym.NoFrame() {
|
|
if stacksize != 0 {
|
|
ctxt.Diag("NOFRAME functions must have a frame size of 0, not %d", stacksize)
|
|
}
|
|
}
|
|
|
|
if !containsCall(cursym) {
|
|
text.From.Sym.Set(obj.AttrLeaf, true)
|
|
if stacksize == 0 {
|
|
// A leaf function with no locals has no frame.
|
|
text.From.Sym.Set(obj.AttrNoFrame, true)
|
|
}
|
|
}
|
|
|
|
// Save LR unless there is no frame.
|
|
if !text.From.Sym.NoFrame() {
|
|
stacksize += ctxt.Arch.FixedFrameSize
|
|
}
|
|
|
|
cursym.Func().Args = text.To.Val.(int32)
|
|
cursym.Func().Locals = int32(stacksize)
|
|
|
|
prologue := text
|
|
|
|
if !cursym.Func().Text.From.Sym.NoSplit() {
|
|
prologue = stacksplit(ctxt, prologue, cursym, newprog, stacksize) // emit split check
|
|
}
|
|
|
|
q := prologue
|
|
|
|
if stacksize != 0 {
|
|
prologue = ctxt.StartUnsafePoint(prologue, newprog)
|
|
|
|
// Actually save LR.
|
|
prologue = obj.Appendp(prologue, newprog)
|
|
prologue.As = AMOV
|
|
prologue.Pos = q.Pos
|
|
prologue.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
prologue.To = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: -stacksize}
|
|
|
|
// Insert stack adjustment.
|
|
prologue = obj.Appendp(prologue, newprog)
|
|
prologue.As = AADDI
|
|
prologue.Pos = q.Pos
|
|
prologue.Pos = prologue.Pos.WithXlogue(src.PosPrologueEnd)
|
|
prologue.From = obj.Addr{Type: obj.TYPE_CONST, Offset: -stacksize}
|
|
prologue.Reg = REG_SP
|
|
prologue.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_SP}
|
|
prologue.Spadj = int32(stacksize)
|
|
|
|
prologue = ctxt.EndUnsafePoint(prologue, newprog, -1)
|
|
|
|
// On Linux, in a cgo binary we may get a SIGSETXID signal early on
|
|
// before the signal stack is set, as glibc doesn't allow us to block
|
|
// SIGSETXID. So a signal may land on the current stack and clobber
|
|
// the content below the SP. We store the LR again after the SP is
|
|
// decremented.
|
|
prologue = obj.Appendp(prologue, newprog)
|
|
prologue.As = AMOV
|
|
prologue.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
prologue.To = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: 0}
|
|
}
|
|
|
|
if cursym.Func().Text.From.Sym.Wrapper() {
|
|
// if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame
|
|
//
|
|
// MOV g_panic(g), X5
|
|
// BNE X5, ZERO, adjust
|
|
// end:
|
|
// NOP
|
|
// ...rest of function..
|
|
// adjust:
|
|
// MOV panic_argp(X5), X6
|
|
// ADD $(autosize+FIXED_FRAME), SP, X7
|
|
// BNE X6, X7, end
|
|
// ADD $FIXED_FRAME, SP, X6
|
|
// MOV X6, panic_argp(X5)
|
|
// JMP end
|
|
//
|
|
// The NOP is needed to give the jumps somewhere to land.
|
|
|
|
ldpanic := obj.Appendp(prologue, newprog)
|
|
|
|
ldpanic.As = AMOV
|
|
ldpanic.From = obj.Addr{Type: obj.TYPE_MEM, Reg: REGG, Offset: 4 * int64(ctxt.Arch.PtrSize)} // G.panic
|
|
ldpanic.Reg = obj.REG_NONE
|
|
ldpanic.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X5}
|
|
|
|
bneadj := obj.Appendp(ldpanic, newprog)
|
|
bneadj.As = ABNE
|
|
bneadj.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X5}
|
|
bneadj.Reg = REG_ZERO
|
|
bneadj.To.Type = obj.TYPE_BRANCH
|
|
|
|
endadj := obj.Appendp(bneadj, newprog)
|
|
endadj.As = obj.ANOP
|
|
|
|
last := endadj
|
|
for last.Link != nil {
|
|
last = last.Link
|
|
}
|
|
|
|
getargp := obj.Appendp(last, newprog)
|
|
getargp.As = AMOV
|
|
getargp.From = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_X5, Offset: 0} // Panic.argp
|
|
getargp.Reg = obj.REG_NONE
|
|
getargp.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X6}
|
|
|
|
bneadj.To.SetTarget(getargp)
|
|
|
|
calcargp := obj.Appendp(getargp, newprog)
|
|
calcargp.As = AADDI
|
|
calcargp.From = obj.Addr{Type: obj.TYPE_CONST, Offset: stacksize + ctxt.Arch.FixedFrameSize}
|
|
calcargp.Reg = REG_SP
|
|
calcargp.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X7}
|
|
|
|
testargp := obj.Appendp(calcargp, newprog)
|
|
testargp.As = ABNE
|
|
testargp.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X6}
|
|
testargp.Reg = REG_X7
|
|
testargp.To.Type = obj.TYPE_BRANCH
|
|
testargp.To.SetTarget(endadj)
|
|
|
|
adjargp := obj.Appendp(testargp, newprog)
|
|
adjargp.As = AADDI
|
|
adjargp.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(ctxt.Arch.PtrSize)}
|
|
adjargp.Reg = REG_SP
|
|
adjargp.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X6}
|
|
|
|
setargp := obj.Appendp(adjargp, newprog)
|
|
setargp.As = AMOV
|
|
setargp.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_X6}
|
|
setargp.Reg = obj.REG_NONE
|
|
setargp.To = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_X5, Offset: 0} // Panic.argp
|
|
|
|
godone := obj.Appendp(setargp, newprog)
|
|
godone.As = AJAL
|
|
godone.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_ZERO}
|
|
godone.To.Type = obj.TYPE_BRANCH
|
|
godone.To.SetTarget(endadj)
|
|
}
|
|
|
|
// Update stack-based offsets.
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
stackOffset(&p.From, stacksize)
|
|
stackOffset(&p.To, stacksize)
|
|
}
|
|
|
|
// Additional instruction rewriting.
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
switch p.As {
|
|
case obj.AGETCALLERPC:
|
|
if cursym.Leaf() {
|
|
// MOV LR, Rd
|
|
p.As = AMOV
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_LR
|
|
} else {
|
|
// MOV (RSP), Rd
|
|
p.As = AMOV
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = REG_SP
|
|
}
|
|
|
|
case obj.ACALL, obj.ADUFFZERO, obj.ADUFFCOPY:
|
|
switch p.To.Type {
|
|
case obj.TYPE_MEM:
|
|
jalToSym(ctxt, p, REG_LR)
|
|
}
|
|
|
|
case obj.AJMP:
|
|
switch p.To.Type {
|
|
case obj.TYPE_MEM:
|
|
switch p.To.Name {
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
jalToSym(ctxt, p, REG_ZERO)
|
|
}
|
|
}
|
|
|
|
case obj.ARET:
|
|
// Replace RET with epilogue.
|
|
retJMP := p.To.Sym
|
|
|
|
if stacksize != 0 {
|
|
// Restore LR.
|
|
p.As = AMOV
|
|
p.From = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: 0}
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
p = obj.Appendp(p, newprog)
|
|
|
|
p.As = AADDI
|
|
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: stacksize}
|
|
p.Reg = REG_SP
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_SP}
|
|
p.Spadj = int32(-stacksize)
|
|
p = obj.Appendp(p, newprog)
|
|
}
|
|
|
|
if retJMP != nil {
|
|
p.As = obj.ARET
|
|
p.To.Sym = retJMP
|
|
jalToSym(ctxt, p, REG_ZERO)
|
|
} else {
|
|
p.As = AJALR
|
|
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_ZERO}
|
|
p.Reg = obj.REG_NONE
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
}
|
|
|
|
// "Add back" the stack removed in the previous instruction.
|
|
//
|
|
// This is to avoid confusing pctospadj, which sums
|
|
// Spadj from function entry to each PC, and shouldn't
|
|
// count adjustments from earlier epilogues, since they
|
|
// won't affect later PCs.
|
|
p.Spadj = int32(stacksize)
|
|
|
|
case AADDI:
|
|
// Refine Spadjs account for adjustment via ADDI instruction.
|
|
if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_SP && p.From.Type == obj.TYPE_CONST {
|
|
p.Spadj = int32(-p.From.Offset)
|
|
}
|
|
}
|
|
|
|
if p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP && p.Spadj == 0 {
|
|
f := cursym.Func()
|
|
if f.FuncFlag&abi.FuncFlagSPWrite == 0 {
|
|
f.FuncFlag |= abi.FuncFlagSPWrite
|
|
if ctxt.Debugvlog || !ctxt.IsAsm {
|
|
ctxt.Logf("auto-SPWRITE: %s %v\n", cursym.Name, p)
|
|
if !ctxt.IsAsm {
|
|
ctxt.Diag("invalid auto-SPWRITE in non-assembly")
|
|
ctxt.DiagFlush()
|
|
log.Fatalf("bad SPWRITE")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
var callCount int
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
markRelocs(p)
|
|
if p.Mark&NEED_JAL_RELOC == NEED_JAL_RELOC {
|
|
callCount++
|
|
}
|
|
}
|
|
const callTrampSize = 8 // 2 machine instructions.
|
|
maxTrampSize := int64(callCount * callTrampSize)
|
|
|
|
// Compute instruction addresses. Once we do that, we need to check for
|
|
// overextended jumps and branches. Within each iteration, Pc differences
|
|
// are always lower bounds (since the program gets monotonically longer,
|
|
// a fixed point will be reached). No attempt to handle functions > 2GiB.
|
|
for {
|
|
big, rescan := false, false
|
|
maxPC := setPCs(cursym.Func().Text, 0)
|
|
if maxPC+maxTrampSize > (1 << 20) {
|
|
big = true
|
|
}
|
|
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
switch p.As {
|
|
case ABEQ, ABEQZ, ABGE, ABGEU, ABGEZ, ABGT, ABGTU, ABGTZ, ABLE, ABLEU, ABLEZ, ABLT, ABLTU, ABLTZ, ABNE, ABNEZ:
|
|
if p.To.Type != obj.TYPE_BRANCH {
|
|
ctxt.Diag("%v: instruction with branch-like opcode lacks destination", p)
|
|
break
|
|
}
|
|
offset := p.To.Target().Pc - p.Pc
|
|
if offset < -4096 || 4096 <= offset {
|
|
// Branch is long. Replace it with a jump.
|
|
jmp := obj.Appendp(p, newprog)
|
|
jmp.As = AJAL
|
|
jmp.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_ZERO}
|
|
jmp.To = obj.Addr{Type: obj.TYPE_BRANCH}
|
|
jmp.To.SetTarget(p.To.Target())
|
|
|
|
p.As = InvertBranch(p.As)
|
|
p.To.SetTarget(jmp.Link)
|
|
|
|
// We may have made previous branches too long,
|
|
// so recheck them.
|
|
rescan = true
|
|
}
|
|
case AJAL:
|
|
// Linker will handle the intersymbol case and trampolines.
|
|
if p.To.Target() == nil {
|
|
if !big {
|
|
break
|
|
}
|
|
// This function is going to be too large for JALs
|
|
// to reach trampolines. Replace with AUIPC+JALR.
|
|
jmp := obj.Appendp(p, newprog)
|
|
jmp.As = AJALR
|
|
jmp.From = p.From
|
|
jmp.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_TMP}
|
|
|
|
p.As = AAUIPC
|
|
p.Mark = (p.Mark &^ NEED_JAL_RELOC) | NEED_CALL_RELOC
|
|
p.AddRestSource(obj.Addr{Type: obj.TYPE_CONST, Offset: p.To.Offset, Sym: p.To.Sym})
|
|
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: 0}
|
|
p.Reg = obj.REG_NONE
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_TMP}
|
|
|
|
rescan = true
|
|
break
|
|
}
|
|
offset := p.To.Target().Pc - p.Pc
|
|
if offset < -(1<<20) || (1<<20) <= offset {
|
|
// Replace with 2-instruction sequence. This assumes
|
|
// that TMP is not live across J instructions, since
|
|
// it is reserved by SSA.
|
|
jmp := obj.Appendp(p, newprog)
|
|
jmp.As = AJALR
|
|
jmp.From = p.From
|
|
jmp.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_TMP}
|
|
|
|
// p.From is not generally valid, however will be
|
|
// fixed up in the next loop.
|
|
p.As = AAUIPC
|
|
p.From = obj.Addr{Type: obj.TYPE_BRANCH, Sym: p.From.Sym}
|
|
p.From.SetTarget(p.To.Target())
|
|
p.Reg = obj.REG_NONE
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_TMP}
|
|
|
|
rescan = true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return if errors have been detected up to this point. Continuing
|
|
// may lead to duplicate errors being output.
|
|
if ctxt.Errors > 0 {
|
|
return
|
|
}
|
|
if !rescan {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Now that there are no long branches, resolve branch and jump targets.
|
|
// At this point, instruction rewriting which changes the number of
|
|
// instructions will break everything--don't do it!
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
switch p.As {
|
|
case ABEQ, ABEQZ, ABGE, ABGEU, ABGEZ, ABGT, ABGTU, ABGTZ, ABLE, ABLEU, ABLEZ, ABLT, ABLTU, ABLTZ, ABNE, ABNEZ:
|
|
switch p.To.Type {
|
|
case obj.TYPE_BRANCH:
|
|
p.To.Type, p.To.Offset = obj.TYPE_CONST, p.To.Target().Pc-p.Pc
|
|
case obj.TYPE_MEM:
|
|
if ctxt.Errors == 0 {
|
|
// An error should have already been reported for this instruction
|
|
panic("unhandled type")
|
|
}
|
|
}
|
|
|
|
case AJAL:
|
|
// Linker will handle the intersymbol case and trampolines.
|
|
if p.To.Target() != nil {
|
|
p.To.Type, p.To.Offset = obj.TYPE_CONST, p.To.Target().Pc-p.Pc
|
|
}
|
|
|
|
case AAUIPC:
|
|
if p.From.Type == obj.TYPE_BRANCH {
|
|
low, high, err := Split32BitImmediate(p.From.Target().Pc - p.Pc)
|
|
if err != nil {
|
|
ctxt.Diag("%v: jump displacement %d too large", p, p.To.Target().Pc-p.Pc)
|
|
}
|
|
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: high, Sym: cursym}
|
|
p.Link.To.Offset = low
|
|
}
|
|
|
|
case obj.APCALIGN:
|
|
alignedValue := p.From.Offset
|
|
if (alignedValue&(alignedValue-1) != 0) || 4 > alignedValue || alignedValue > 2048 {
|
|
ctxt.Diag("alignment value of an instruction must be a power of two and in the range [4, 2048], got %d\n", alignedValue)
|
|
}
|
|
// Update the current text symbol alignment value.
|
|
if int32(alignedValue) > cursym.Func().Align {
|
|
cursym.Func().Align = int32(alignedValue)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Validate all instructions - this provides nice error messages.
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
for _, ins := range instructionsForProg(p) {
|
|
ins.validate(ctxt)
|
|
}
|
|
}
|
|
}
|
|
|
|
func pcAlignPadLength(pc int64, alignedValue int64) int {
|
|
return int(-pc & (alignedValue - 1))
|
|
}
|
|
|
|
func stacksplit(ctxt *obj.Link, p *obj.Prog, cursym *obj.LSym, newprog obj.ProgAlloc, framesize int64) *obj.Prog {
|
|
// Leaf function with no frame is effectively NOSPLIT.
|
|
if framesize == 0 {
|
|
return p
|
|
}
|
|
|
|
if ctxt.Flag_maymorestack != "" {
|
|
// Save LR and REGCTXT
|
|
const frameSize = 16
|
|
p = ctxt.StartUnsafePoint(p, newprog)
|
|
|
|
// Spill Arguments. This has to happen before we open
|
|
// any more frame space.
|
|
p = cursym.Func().SpillRegisterArgs(p, newprog)
|
|
|
|
// MOV LR, -16(SP)
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
p.To = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: -frameSize}
|
|
// ADDI $-16, SP
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AADDI
|
|
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: -frameSize}
|
|
p.Reg = REG_SP
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_SP}
|
|
p.Spadj = frameSize
|
|
// MOV REGCTXT, 8(SP)
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_CTXT}
|
|
p.To = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: 8}
|
|
|
|
// CALL maymorestack
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = obj.ACALL
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
// See ../x86/obj6.go
|
|
p.To.Sym = ctxt.LookupABI(ctxt.Flag_maymorestack, cursym.ABI())
|
|
jalToSym(ctxt, p, REG_X5)
|
|
|
|
// Restore LR and REGCTXT
|
|
|
|
// MOV 8(SP), REGCTXT
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: 8}
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_CTXT}
|
|
// MOV (SP), LR
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From = obj.Addr{Type: obj.TYPE_MEM, Reg: REG_SP, Offset: 0}
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_LR}
|
|
// ADDI $16, SP
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AADDI
|
|
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: frameSize}
|
|
p.Reg = REG_SP
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: REG_SP}
|
|
p.Spadj = -frameSize
|
|
|
|
// Unspill arguments
|
|
p = cursym.Func().UnspillRegisterArgs(p, newprog)
|
|
p = ctxt.EndUnsafePoint(p, newprog, -1)
|
|
}
|
|
|
|
// Jump back to here after morestack returns.
|
|
startPred := p
|
|
|
|
// MOV g_stackguard(g), X6
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = REGG
|
|
p.From.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0
|
|
if cursym.CFunc() {
|
|
p.From.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1
|
|
}
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = REG_X6
|
|
|
|
// Mark the stack bound check and morestack call async nonpreemptible.
|
|
// If we get preempted here, when resumed the preemption request is
|
|
// cleared, but we'll still call morestack, which will double the stack
|
|
// unnecessarily. See issue #35470.
|
|
p = ctxt.StartUnsafePoint(p, newprog)
|
|
|
|
var to_done, to_more *obj.Prog
|
|
|
|
if framesize <= abi.StackSmall {
|
|
// small stack
|
|
// // if SP > stackguard { goto done }
|
|
// BLTU stackguard, SP, done
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = ABLTU
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_X6
|
|
p.Reg = REG_SP
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
to_done = p
|
|
} else {
|
|
// large stack: SP-framesize < stackguard-StackSmall
|
|
offset := int64(framesize) - abi.StackSmall
|
|
if framesize > abi.StackBig {
|
|
// Such a large stack we need to protect against underflow.
|
|
// The runtime guarantees SP > objabi.StackBig, but
|
|
// framesize is large enough that SP-framesize may
|
|
// underflow, causing a direct comparison with the
|
|
// stack guard to incorrectly succeed. We explicitly
|
|
// guard against underflow.
|
|
//
|
|
// MOV $(framesize-StackSmall), X7
|
|
// BLTU SP, X7, label-of-call-to-morestack
|
|
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AMOV
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = offset
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = REG_X7
|
|
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = ABLTU
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_SP
|
|
p.Reg = REG_X7
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
to_more = p
|
|
}
|
|
|
|
// Check against the stack guard. We've ensured this won't underflow.
|
|
// ADD $-(framesize-StackSmall), SP, X7
|
|
// // if X7 > stackguard { goto done }
|
|
// BLTU stackguard, X7, done
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AADDI
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = -offset
|
|
p.Reg = REG_SP
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = REG_X7
|
|
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = ABLTU
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = REG_X6
|
|
p.Reg = REG_X7
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
to_done = p
|
|
}
|
|
|
|
// Spill the register args that could be clobbered by the
|
|
// morestack code
|
|
p = ctxt.EmitEntryStackMap(cursym, p, newprog)
|
|
p = cursym.Func().SpillRegisterArgs(p, newprog)
|
|
|
|
// CALL runtime.morestack(SB)
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = obj.ACALL
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
|
|
if cursym.CFunc() {
|
|
p.To.Sym = ctxt.Lookup("runtime.morestackc")
|
|
} else if !cursym.Func().Text.From.Sym.NeedCtxt() {
|
|
p.To.Sym = ctxt.Lookup("runtime.morestack_noctxt")
|
|
} else {
|
|
p.To.Sym = ctxt.Lookup("runtime.morestack")
|
|
}
|
|
if to_more != nil {
|
|
to_more.To.SetTarget(p)
|
|
}
|
|
jalToSym(ctxt, p, REG_X5)
|
|
|
|
// The instructions which unspill regs should be preemptible.
|
|
p = ctxt.EndUnsafePoint(p, newprog, -1)
|
|
p = cursym.Func().UnspillRegisterArgs(p, newprog)
|
|
|
|
// JMP start
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = AJAL
|
|
p.To = obj.Addr{Type: obj.TYPE_BRANCH}
|
|
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: REG_ZERO}
|
|
p.To.SetTarget(startPred.Link)
|
|
|
|
// placeholder for to_done's jump target
|
|
p = obj.Appendp(p, newprog)
|
|
p.As = obj.ANOP // zero-width place holder
|
|
to_done.To.SetTarget(p)
|
|
|
|
return p
|
|
}
|
|
|
|
// signExtend sign extends val starting at bit bit.
|
|
func signExtend(val int64, bit uint) int64 {
|
|
return val << (64 - bit) >> (64 - bit)
|
|
}
|
|
|
|
// Split32BitImmediate splits a signed 32-bit immediate into a signed 20-bit
|
|
// upper immediate and a signed 12-bit lower immediate to be added to the upper
|
|
// result. For example, high may be used in LUI and low in a following ADDI to
|
|
// generate a full 32-bit constant.
|
|
func Split32BitImmediate(imm int64) (low, high int64, err error) {
|
|
if err := immIFits(imm, 32); err != nil {
|
|
return 0, 0, err
|
|
}
|
|
|
|
// Nothing special needs to be done if the immediate fits in 12 bits.
|
|
if err := immIFits(imm, 12); err == nil {
|
|
return imm, 0, nil
|
|
}
|
|
|
|
high = imm >> 12
|
|
|
|
// The bottom 12 bits will be treated as signed.
|
|
//
|
|
// If that will result in a negative 12 bit number, add 1 to
|
|
// our upper bits to adjust for the borrow.
|
|
//
|
|
// It is not possible for this increment to overflow. To
|
|
// overflow, the 20 top bits would be 1, and the sign bit for
|
|
// the low 12 bits would be set, in which case the entire 32
|
|
// bit pattern fits in a 12 bit signed value.
|
|
if imm&(1<<11) != 0 {
|
|
high++
|
|
}
|
|
|
|
low = signExtend(imm, 12)
|
|
high = signExtend(high, 20)
|
|
|
|
return low, high, nil
|
|
}
|
|
|
|
func regVal(r, min, max uint32) uint32 {
|
|
if r < min || r > max {
|
|
panic(fmt.Sprintf("register out of range, want %d <= %d <= %d", min, r, max))
|
|
}
|
|
return r - min
|
|
}
|
|
|
|
// regI returns an integer register.
|
|
func regI(r uint32) uint32 {
|
|
return regVal(r, REG_X0, REG_X31)
|
|
}
|
|
|
|
// regF returns a float register.
|
|
func regF(r uint32) uint32 {
|
|
return regVal(r, REG_F0, REG_F31)
|
|
}
|
|
|
|
// regV returns a vector register.
|
|
func regV(r uint32) uint32 {
|
|
return regVal(r, REG_V0, REG_V31)
|
|
}
|
|
|
|
// regAddr extracts a register from an Addr.
|
|
func regAddr(a obj.Addr, min, max uint32) uint32 {
|
|
if a.Type != obj.TYPE_REG {
|
|
panic(fmt.Sprintf("ill typed: %+v", a))
|
|
}
|
|
return regVal(uint32(a.Reg), min, max)
|
|
}
|
|
|
|
// regIAddr extracts the integer register from an Addr.
|
|
func regIAddr(a obj.Addr) uint32 {
|
|
return regAddr(a, REG_X0, REG_X31)
|
|
}
|
|
|
|
// regFAddr extracts the float register from an Addr.
|
|
func regFAddr(a obj.Addr) uint32 {
|
|
return regAddr(a, REG_F0, REG_F31)
|
|
}
|
|
|
|
// immEven checks that the immediate is a multiple of two. If it
|
|
// is not, an error is returned.
|
|
func immEven(x int64) error {
|
|
if x&1 != 0 {
|
|
return fmt.Errorf("immediate %#x is not a multiple of two", x)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func immFits(x int64, nbits uint, signed bool) error {
|
|
label := "unsigned"
|
|
min, max := int64(0), int64(1)<<nbits-1
|
|
if signed {
|
|
label = "signed"
|
|
sbits := nbits - 1
|
|
min, max = int64(-1)<<sbits, int64(1)<<sbits-1
|
|
}
|
|
if x < min || x > max {
|
|
if nbits <= 16 {
|
|
return fmt.Errorf("%s immediate %d must be in range [%d, %d] (%d bits)", label, x, min, max, nbits)
|
|
}
|
|
return fmt.Errorf("%s immediate %#x must be in range [%#x, %#x] (%d bits)", label, x, min, max, nbits)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// immIFits checks whether the immediate value x fits in nbits bits
|
|
// as a signed integer. If it does not, an error is returned.
|
|
func immIFits(x int64, nbits uint) error {
|
|
return immFits(x, nbits, true)
|
|
}
|
|
|
|
// immI extracts the signed integer of the specified size from an immediate.
|
|
func immI(as obj.As, imm int64, nbits uint) uint32 {
|
|
if err := immIFits(imm, nbits); err != nil {
|
|
panic(fmt.Sprintf("%v: %v", as, err))
|
|
}
|
|
return uint32(imm) & ((1 << nbits) - 1)
|
|
}
|
|
|
|
func wantImmI(ctxt *obj.Link, ins *instruction, imm int64, nbits uint) {
|
|
if err := immIFits(imm, nbits); err != nil {
|
|
ctxt.Diag("%v: %v", ins, err)
|
|
}
|
|
}
|
|
|
|
// immUFits checks whether the immediate value x fits in nbits bits
|
|
// as an unsigned integer. If it does not, an error is returned.
|
|
func immUFits(x int64, nbits uint) error {
|
|
return immFits(x, nbits, false)
|
|
}
|
|
|
|
// immU extracts the unsigned integer of the specified size from an immediate.
|
|
func immU(as obj.As, imm int64, nbits uint) uint32 {
|
|
if err := immUFits(imm, nbits); err != nil {
|
|
panic(fmt.Sprintf("%v: %v", as, err))
|
|
}
|
|
return uint32(imm) & ((1 << nbits) - 1)
|
|
}
|
|
|
|
func wantImmU(ctxt *obj.Link, ins *instruction, imm int64, nbits uint) {
|
|
if err := immUFits(imm, nbits); err != nil {
|
|
ctxt.Diag("%v: %v", ins, err)
|
|
}
|
|
}
|
|
|
|
func wantReg(ctxt *obj.Link, ins *instruction, pos string, descr string, r, min, max uint32) {
|
|
if r < min || r > max {
|
|
var suffix string
|
|
if r != obj.REG_NONE {
|
|
suffix = fmt.Sprintf(" but got non-%s register %s", descr, RegName(int(r)))
|
|
}
|
|
ctxt.Diag("%v: expected %s register in %s position%s", ins, descr, pos, suffix)
|
|
}
|
|
}
|
|
|
|
func wantNoneReg(ctxt *obj.Link, ins *instruction, pos string, r uint32) {
|
|
if r != obj.REG_NONE {
|
|
ctxt.Diag("%v: expected no register in %s but got register %s", ins, pos, RegName(int(r)))
|
|
}
|
|
}
|
|
|
|
// wantIntReg checks that r is an integer register.
|
|
func wantIntReg(ctxt *obj.Link, ins *instruction, pos string, r uint32) {
|
|
wantReg(ctxt, ins, pos, "integer", r, REG_X0, REG_X31)
|
|
}
|
|
|
|
// wantFloatReg checks that r is a floating-point register.
|
|
func wantFloatReg(ctxt *obj.Link, ins *instruction, pos string, r uint32) {
|
|
wantReg(ctxt, ins, pos, "float", r, REG_F0, REG_F31)
|
|
}
|
|
|
|
// wantVectorReg checks that r is a vector register.
|
|
func wantVectorReg(ctxt *obj.Link, ins *instruction, pos string, r uint32) {
|
|
wantReg(ctxt, ins, pos, "vector", r, REG_V0, REG_V31)
|
|
}
|
|
|
|
// wantEvenOffset checks that the offset is a multiple of two.
|
|
func wantEvenOffset(ctxt *obj.Link, ins *instruction, offset int64) {
|
|
if err := immEven(offset); err != nil {
|
|
ctxt.Diag("%v: %v", ins, err)
|
|
}
|
|
}
|
|
|
|
func validateRII(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRIII(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRFFF(ctxt *obj.Link, ins *instruction) {
|
|
wantFloatReg(ctxt, ins, "rd", ins.rd)
|
|
wantFloatReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantFloatReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRFFFF(ctxt *obj.Link, ins *instruction) {
|
|
wantFloatReg(ctxt, ins, "rd", ins.rd)
|
|
wantFloatReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantFloatReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantFloatReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRFFI(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantFloatReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantFloatReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRFI(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantNoneReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantFloatReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRIF(ctxt *obj.Link, ins *instruction) {
|
|
wantFloatReg(ctxt, ins, "rd", ins.rd)
|
|
wantNoneReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRFF(ctxt *obj.Link, ins *instruction) {
|
|
wantFloatReg(ctxt, ins, "rd", ins.rd)
|
|
wantNoneReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantFloatReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateIII(ctxt *obj.Link, ins *instruction) {
|
|
wantImmI(ctxt, ins, ins.imm, 12)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateIF(ctxt *obj.Link, ins *instruction) {
|
|
wantImmI(ctxt, ins, ins.imm, 12)
|
|
wantFloatReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateIV(ctxt *obj.Link, ins *instruction) {
|
|
wantVectorReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateIIIV(ctxt *obj.Link, ins *instruction) {
|
|
wantVectorReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateIVIV(ctxt *obj.Link, ins *instruction) {
|
|
wantVectorReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantVectorReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateSI(ctxt *obj.Link, ins *instruction) {
|
|
wantImmI(ctxt, ins, ins.imm, 12)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateSF(ctxt *obj.Link, ins *instruction) {
|
|
wantImmI(ctxt, ins, ins.imm, 12)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantFloatReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateSV(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantVectorReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateSVII(ctxt *obj.Link, ins *instruction) {
|
|
wantVectorReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateSVIV(ctxt *obj.Link, ins *instruction) {
|
|
wantVectorReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantVectorReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateB(ctxt *obj.Link, ins *instruction) {
|
|
// Offsets are multiples of two, so accept 13 bit immediates for the
|
|
// 12 bit slot. We implicitly drop the least significant bit in encodeB.
|
|
wantEvenOffset(ctxt, ins, ins.imm)
|
|
wantImmI(ctxt, ins, ins.imm, 13)
|
|
wantNoneReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateU(ctxt *obj.Link, ins *instruction) {
|
|
wantImmI(ctxt, ins, ins.imm, 20)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantNoneReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateJ(ctxt *obj.Link, ins *instruction) {
|
|
// Offsets are multiples of two, so accept 21 bit immediates for the
|
|
// 20 bit slot. We implicitly drop the least significant bit in encodeJ.
|
|
wantEvenOffset(ctxt, ins, ins.imm)
|
|
wantImmI(ctxt, ins, ins.imm, 21)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantNoneReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateVsetvli(ctxt *obj.Link, ins *instruction) {
|
|
wantImmU(ctxt, ins, ins.imm, 11)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateVsetivli(ctxt *obj.Link, ins *instruction) {
|
|
wantImmU(ctxt, ins, ins.imm, 10)
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantImmU(ctxt, ins, int64(ins.rs1), 5)
|
|
wantNoneReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateVsetvl(ctxt *obj.Link, ins *instruction) {
|
|
wantIntReg(ctxt, ins, "rd", ins.rd)
|
|
wantIntReg(ctxt, ins, "rs1", ins.rs1)
|
|
wantIntReg(ctxt, ins, "rs2", ins.rs2)
|
|
wantNoneReg(ctxt, ins, "rs3", ins.rs3)
|
|
}
|
|
|
|
func validateRaw(ctxt *obj.Link, ins *instruction) {
|
|
// Treat the raw value specially as a 32-bit unsigned integer.
|
|
// Nobody wants to enter negative machine code.
|
|
if ins.imm < 0 || 1<<32 <= ins.imm {
|
|
ctxt.Diag("%v: immediate %d in raw position cannot be larger than 32 bits", ins.as, ins.imm)
|
|
}
|
|
}
|
|
|
|
// extractBitAndShift extracts the specified bit from the given immediate,
|
|
// before shifting it to the requested position and returning it.
|
|
func extractBitAndShift(imm uint32, bit, pos int) uint32 {
|
|
return ((imm >> bit) & 1) << pos
|
|
}
|
|
|
|
// encodeR encodes an R-type RISC-V instruction.
|
|
func encodeR(as obj.As, rs1, rs2, rd, funct3, funct7 uint32) uint32 {
|
|
enc := encode(as)
|
|
if enc == nil {
|
|
panic("encodeR: could not encode instruction")
|
|
}
|
|
if enc.rs2 != 0 && rs2 != 0 {
|
|
panic("encodeR: instruction uses rs2, but rs2 was nonzero")
|
|
}
|
|
funct3 |= enc.funct3
|
|
funct7 |= enc.funct7
|
|
rs2 |= enc.rs2
|
|
return funct7<<25 | rs2<<20 | rs1<<15 | funct3<<12 | rd<<7 | enc.opcode
|
|
}
|
|
|
|
// encodeR4 encodes an R4-type RISC-V instruction.
|
|
func encodeR4(as obj.As, rs1, rs2, rs3, rd, funct3, funct2 uint32) uint32 {
|
|
enc := encode(as)
|
|
if enc == nil {
|
|
panic("encodeR4: could not encode instruction")
|
|
}
|
|
if enc.rs2 != 0 {
|
|
panic("encodeR4: instruction uses rs2")
|
|
}
|
|
funct2 |= enc.funct7
|
|
if funct2&^3 != 0 {
|
|
panic("encodeR4: funct2 requires more than 2 bits")
|
|
}
|
|
return rs3<<27 | funct2<<25 | rs2<<20 | rs1<<15 | enc.funct3<<12 | funct3<<12 | rd<<7 | enc.opcode
|
|
}
|
|
|
|
func encodeRII(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regI(ins.rs1), 0, regI(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRIII(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regI(ins.rs1), regI(ins.rs2), regI(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRFFF(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regF(ins.rs1), regF(ins.rs2), regF(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRFFFF(ins *instruction) uint32 {
|
|
return encodeR4(ins.as, regF(ins.rs1), regF(ins.rs2), regF(ins.rs3), regF(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRFFI(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regF(ins.rs1), regF(ins.rs2), regI(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRFI(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regF(ins.rs2), 0, regI(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRIF(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regI(ins.rs2), 0, regF(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
func encodeRFF(ins *instruction) uint32 {
|
|
return encodeR(ins.as, regF(ins.rs2), 0, regF(ins.rd), ins.funct3, ins.funct7)
|
|
}
|
|
|
|
// encodeI encodes an I-type RISC-V instruction.
|
|
func encodeI(as obj.As, rs1, rd, imm, funct7 uint32) uint32 {
|
|
enc := encode(as)
|
|
if enc == nil {
|
|
panic("encodeI: could not encode instruction")
|
|
}
|
|
imm |= uint32(enc.csr)
|
|
return funct7<<25 | imm<<20 | rs1<<15 | enc.funct3<<12 | rd<<7 | enc.opcode
|
|
}
|
|
|
|
func encodeIII(ins *instruction) uint32 {
|
|
return encodeI(ins.as, regI(ins.rs1), regI(ins.rd), uint32(ins.imm), 0)
|
|
}
|
|
|
|
func encodeIF(ins *instruction) uint32 {
|
|
return encodeI(ins.as, regI(ins.rs1), regF(ins.rd), uint32(ins.imm), 0)
|
|
}
|
|
|
|
func encodeIV(ins *instruction) uint32 {
|
|
return encodeI(ins.as, regI(ins.rs1), regV(ins.rd), uint32(ins.imm), ins.funct7)
|
|
}
|
|
|
|
func encodeIIIV(ins *instruction) uint32 {
|
|
return encodeI(ins.as, regI(ins.rs1), regV(ins.rd), regI(ins.rs2), ins.funct7)
|
|
}
|
|
|
|
func encodeIVIV(ins *instruction) uint32 {
|
|
return encodeI(ins.as, regI(ins.rs1), regV(ins.rd), regV(ins.rs2), ins.funct7)
|
|
}
|
|
|
|
// encodeS encodes an S-type RISC-V instruction.
|
|
func encodeS(as obj.As, rs1, rs2, imm, funct7 uint32) uint32 {
|
|
enc := encode(as)
|
|
if enc == nil {
|
|
panic("encodeS: could not encode instruction")
|
|
}
|
|
if enc.rs2 != 0 && rs2 != 0 {
|
|
panic("encodeS: instruction uses rs2, but rs2 was nonzero")
|
|
}
|
|
rs2 |= enc.rs2
|
|
imm |= uint32(enc.csr) &^ 0x1f
|
|
return funct7<<25 | (imm>>5)<<25 | rs2<<20 | rs1<<15 | enc.funct3<<12 | (imm&0x1f)<<7 | enc.opcode
|
|
}
|
|
|
|
func encodeSI(ins *instruction) uint32 {
|
|
return encodeS(ins.as, regI(ins.rd), regI(ins.rs1), uint32(ins.imm), 0)
|
|
}
|
|
|
|
func encodeSF(ins *instruction) uint32 {
|
|
return encodeS(ins.as, regI(ins.rd), regF(ins.rs1), uint32(ins.imm), 0)
|
|
}
|
|
|
|
func encodeSV(ins *instruction) uint32 {
|
|
return encodeS(ins.as, regI(ins.rd), 0, regV(ins.rs1), ins.funct7)
|
|
}
|
|
|
|
func encodeSVII(ins *instruction) uint32 {
|
|
return encodeS(ins.as, regI(ins.rs1), regI(ins.rs2), regV(ins.rd), ins.funct7)
|
|
}
|
|
|
|
func encodeSVIV(ins *instruction) uint32 {
|
|
return encodeS(ins.as, regI(ins.rs1), regV(ins.rs2), regV(ins.rd), ins.funct7)
|
|
}
|
|
|
|
// encodeBImmediate encodes an immediate for a B-type RISC-V instruction.
|
|
func encodeBImmediate(imm uint32) uint32 {
|
|
return (imm>>12)<<31 | ((imm>>5)&0x3f)<<25 | ((imm>>1)&0xf)<<8 | ((imm>>11)&0x1)<<7
|
|
}
|
|
|
|
// encodeB encodes a B-type RISC-V instruction.
|
|
func encodeB(ins *instruction) uint32 {
|
|
imm := immI(ins.as, ins.imm, 13)
|
|
rs2 := regI(ins.rs1)
|
|
rs1 := regI(ins.rs2)
|
|
enc := encode(ins.as)
|
|
if enc == nil {
|
|
panic("encodeB: could not encode instruction")
|
|
}
|
|
return encodeBImmediate(imm) | rs2<<20 | rs1<<15 | enc.funct3<<12 | enc.opcode
|
|
}
|
|
|
|
// encodeU encodes a U-type RISC-V instruction.
|
|
func encodeU(ins *instruction) uint32 {
|
|
// The immediates for encodeU are the upper 20 bits of a 32 bit value.
|
|
// Rather than have the user/compiler generate a 32 bit constant, the
|
|
// bottommost bits of which must all be zero, instead accept just the
|
|
// top bits.
|
|
imm := immI(ins.as, ins.imm, 20)
|
|
rd := regI(ins.rd)
|
|
enc := encode(ins.as)
|
|
if enc == nil {
|
|
panic("encodeU: could not encode instruction")
|
|
}
|
|
return imm<<12 | rd<<7 | enc.opcode
|
|
}
|
|
|
|
// encodeJImmediate encodes an immediate for a J-type RISC-V instruction.
|
|
func encodeJImmediate(imm uint32) uint32 {
|
|
return (imm>>20)<<31 | ((imm>>1)&0x3ff)<<21 | ((imm>>11)&0x1)<<20 | ((imm>>12)&0xff)<<12
|
|
}
|
|
|
|
// encodeJ encodes a J-type RISC-V instruction.
|
|
func encodeJ(ins *instruction) uint32 {
|
|
imm := immI(ins.as, ins.imm, 21)
|
|
rd := regI(ins.rd)
|
|
enc := encode(ins.as)
|
|
if enc == nil {
|
|
panic("encodeJ: could not encode instruction")
|
|
}
|
|
return encodeJImmediate(imm) | rd<<7 | enc.opcode
|
|
}
|
|
|
|
// encodeCBImmediate encodes an immediate for a CB-type RISC-V instruction.
|
|
func encodeCBImmediate(imm uint32) uint32 {
|
|
// Bit order - [8|4:3|7:6|2:1|5]
|
|
bits := extractBitAndShift(imm, 8, 7)
|
|
bits |= extractBitAndShift(imm, 4, 6)
|
|
bits |= extractBitAndShift(imm, 3, 5)
|
|
bits |= extractBitAndShift(imm, 7, 4)
|
|
bits |= extractBitAndShift(imm, 6, 3)
|
|
bits |= extractBitAndShift(imm, 2, 2)
|
|
bits |= extractBitAndShift(imm, 1, 1)
|
|
bits |= extractBitAndShift(imm, 5, 0)
|
|
return (bits>>5)<<10 | (bits&0x1f)<<2
|
|
}
|
|
|
|
// encodeCJImmediate encodes an immediate for a CJ-type RISC-V instruction.
|
|
func encodeCJImmediate(imm uint32) uint32 {
|
|
// Bit order - [11|4|9:8|10|6|7|3:1|5]
|
|
bits := extractBitAndShift(imm, 11, 10)
|
|
bits |= extractBitAndShift(imm, 4, 9)
|
|
bits |= extractBitAndShift(imm, 9, 8)
|
|
bits |= extractBitAndShift(imm, 8, 7)
|
|
bits |= extractBitAndShift(imm, 10, 6)
|
|
bits |= extractBitAndShift(imm, 6, 5)
|
|
bits |= extractBitAndShift(imm, 7, 4)
|
|
bits |= extractBitAndShift(imm, 3, 3)
|
|
bits |= extractBitAndShift(imm, 2, 2)
|
|
bits |= extractBitAndShift(imm, 1, 1)
|
|
bits |= extractBitAndShift(imm, 5, 0)
|
|
return bits << 2
|
|
}
|
|
|
|
func encodeVset(as obj.As, rs1, rs2, rd uint32) uint32 {
|
|
enc := encode(as)
|
|
if enc == nil {
|
|
panic("encodeVset: could not encode instruction")
|
|
}
|
|
return enc.funct7<<25 | rs2<<20 | rs1<<15 | enc.funct3<<12 | rd<<7 | enc.opcode
|
|
}
|
|
|
|
func encodeVsetvli(ins *instruction) uint32 {
|
|
vtype := immU(ins.as, ins.imm, 11)
|
|
return encodeVset(ins.as, regI(ins.rs1), vtype, regI(ins.rd))
|
|
}
|
|
|
|
func encodeVsetivli(ins *instruction) uint32 {
|
|
vtype := immU(ins.as, ins.imm, 10)
|
|
avl := immU(ins.as, int64(ins.rs1), 5)
|
|
return encodeVset(ins.as, avl, vtype, regI(ins.rd))
|
|
}
|
|
|
|
func encodeVsetvl(ins *instruction) uint32 {
|
|
return encodeVset(ins.as, regI(ins.rs1), regI(ins.rs2), regI(ins.rd))
|
|
}
|
|
|
|
func encodeRawIns(ins *instruction) uint32 {
|
|
// Treat the raw value specially as a 32-bit unsigned integer.
|
|
// Nobody wants to enter negative machine code.
|
|
if ins.imm < 0 || 1<<32 <= ins.imm {
|
|
panic(fmt.Sprintf("immediate %d cannot fit in 32 bits", ins.imm))
|
|
}
|
|
return uint32(ins.imm)
|
|
}
|
|
|
|
func EncodeBImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 13); err != nil {
|
|
return 0, err
|
|
}
|
|
if err := immEven(imm); err != nil {
|
|
return 0, err
|
|
}
|
|
return int64(encodeBImmediate(uint32(imm))), nil
|
|
}
|
|
|
|
func EncodeCBImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 9); err != nil {
|
|
return 0, err
|
|
}
|
|
if err := immEven(imm); err != nil {
|
|
return 0, err
|
|
}
|
|
return int64(encodeCBImmediate(uint32(imm))), nil
|
|
}
|
|
|
|
func EncodeCJImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 12); err != nil {
|
|
return 0, err
|
|
}
|
|
if err := immEven(imm); err != nil {
|
|
return 0, err
|
|
}
|
|
return int64(encodeCJImmediate(uint32(imm))), nil
|
|
}
|
|
|
|
func EncodeIImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 12); err != nil {
|
|
return 0, err
|
|
}
|
|
return imm << 20, nil
|
|
}
|
|
|
|
func EncodeJImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 21); err != nil {
|
|
return 0, err
|
|
}
|
|
if err := immEven(imm); err != nil {
|
|
return 0, err
|
|
}
|
|
return int64(encodeJImmediate(uint32(imm))), nil
|
|
}
|
|
|
|
func EncodeSImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 12); err != nil {
|
|
return 0, err
|
|
}
|
|
return ((imm >> 5) << 25) | ((imm & 0x1f) << 7), nil
|
|
}
|
|
|
|
func EncodeUImmediate(imm int64) (int64, error) {
|
|
if err := immIFits(imm, 20); err != nil {
|
|
return 0, err
|
|
}
|
|
return imm << 12, nil
|
|
}
|
|
|
|
func EncodeVectorType(vsew, vlmul, vtail, vmask int64) (int64, error) {
|
|
vsewSO := SpecialOperand(vsew)
|
|
if vsewSO < SPOP_E8 || vsewSO > SPOP_E64 {
|
|
return -1, fmt.Errorf("invalid vector selected element width %q", vsewSO)
|
|
}
|
|
vlmulSO := SpecialOperand(vlmul)
|
|
if vlmulSO < SPOP_M1 || vlmulSO > SPOP_MF8 {
|
|
return -1, fmt.Errorf("invalid vector register group multiplier %q", vlmulSO)
|
|
}
|
|
vtailSO := SpecialOperand(vtail)
|
|
if vtailSO != SPOP_TA && vtailSO != SPOP_TU {
|
|
return -1, fmt.Errorf("invalid vector tail policy %q", vtailSO)
|
|
}
|
|
vmaskSO := SpecialOperand(vmask)
|
|
if vmaskSO != SPOP_MA && vmaskSO != SPOP_MU {
|
|
return -1, fmt.Errorf("invalid vector mask policy %q", vmaskSO)
|
|
}
|
|
vtype := vmaskSO.encode()<<7 | vtailSO.encode()<<6 | vsewSO.encode()<<3 | vlmulSO.encode()
|
|
return int64(vtype), nil
|
|
}
|
|
|
|
type encoding struct {
|
|
encode func(*instruction) uint32 // encode returns the machine code for an instruction
|
|
validate func(*obj.Link, *instruction) // validate validates an instruction
|
|
length int // length of encoded instruction; 0 for pseudo-ops, 4 otherwise
|
|
}
|
|
|
|
var (
|
|
// Encodings have the following naming convention:
|
|
//
|
|
// 1. the instruction encoding (R/I/S/B/U/J), in lowercase
|
|
// 2. zero or more register operand identifiers (I = integer
|
|
// register, F = float register, V = vector register), in uppercase
|
|
// 3. the word "Encoding"
|
|
//
|
|
// For example, rIIIEncoding indicates an R-type instruction with two
|
|
// integer register inputs and an integer register output; sFEncoding
|
|
// indicates an S-type instruction with rs2 being a float register.
|
|
|
|
rIIIEncoding = encoding{encode: encodeRIII, validate: validateRIII, length: 4}
|
|
rIIEncoding = encoding{encode: encodeRII, validate: validateRII, length: 4}
|
|
rFFFEncoding = encoding{encode: encodeRFFF, validate: validateRFFF, length: 4}
|
|
rFFFFEncoding = encoding{encode: encodeRFFFF, validate: validateRFFFF, length: 4}
|
|
rFFIEncoding = encoding{encode: encodeRFFI, validate: validateRFFI, length: 4}
|
|
rFIEncoding = encoding{encode: encodeRFI, validate: validateRFI, length: 4}
|
|
rIFEncoding = encoding{encode: encodeRIF, validate: validateRIF, length: 4}
|
|
rFFEncoding = encoding{encode: encodeRFF, validate: validateRFF, length: 4}
|
|
|
|
iIIEncoding = encoding{encode: encodeIII, validate: validateIII, length: 4}
|
|
iFEncoding = encoding{encode: encodeIF, validate: validateIF, length: 4}
|
|
iVEncoding = encoding{encode: encodeIV, validate: validateIV, length: 4}
|
|
iIIVEncoding = encoding{encode: encodeIIIV, validate: validateIIIV, length: 4}
|
|
iVIVEncoding = encoding{encode: encodeIVIV, validate: validateIVIV, length: 4}
|
|
|
|
sIEncoding = encoding{encode: encodeSI, validate: validateSI, length: 4}
|
|
sFEncoding = encoding{encode: encodeSF, validate: validateSF, length: 4}
|
|
sVEncoding = encoding{encode: encodeSV, validate: validateSV, length: 4}
|
|
sVIIEncoding = encoding{encode: encodeSVII, validate: validateSVII, length: 4}
|
|
sVIVEncoding = encoding{encode: encodeSVIV, validate: validateSVIV, length: 4}
|
|
|
|
bEncoding = encoding{encode: encodeB, validate: validateB, length: 4}
|
|
uEncoding = encoding{encode: encodeU, validate: validateU, length: 4}
|
|
jEncoding = encoding{encode: encodeJ, validate: validateJ, length: 4}
|
|
|
|
// Encodings for vector configuration setting instruction.
|
|
vsetvliEncoding = encoding{encode: encodeVsetvli, validate: validateVsetvli, length: 4}
|
|
vsetivliEncoding = encoding{encode: encodeVsetivli, validate: validateVsetivli, length: 4}
|
|
vsetvlEncoding = encoding{encode: encodeVsetvl, validate: validateVsetvl, length: 4}
|
|
|
|
// rawEncoding encodes a raw instruction byte sequence.
|
|
rawEncoding = encoding{encode: encodeRawIns, validate: validateRaw, length: 4}
|
|
|
|
// pseudoOpEncoding panics if encoding is attempted, but does no validation.
|
|
pseudoOpEncoding = encoding{encode: nil, validate: func(*obj.Link, *instruction) {}, length: 0}
|
|
|
|
// badEncoding is used when an invalid op is encountered.
|
|
// An error has already been generated, so let anything else through.
|
|
badEncoding = encoding{encode: func(*instruction) uint32 { return 0 }, validate: func(*obj.Link, *instruction) {}, length: 0}
|
|
)
|
|
|
|
// instructionData specifies details relating to a RISC-V instruction.
|
|
type instructionData struct {
|
|
enc encoding
|
|
immForm obj.As // immediate form of this instruction
|
|
ternary bool
|
|
}
|
|
|
|
// instructions contains details of RISC-V instructions, including
|
|
// their encoding type. Entries are masked with obj.AMask to keep
|
|
// indices small.
|
|
var instructions = [ALAST & obj.AMask]instructionData{
|
|
//
|
|
// Unprivileged ISA
|
|
//
|
|
|
|
// 2.4: Integer Computational Instructions
|
|
AADDI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASLTI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASLTIU & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
AANDI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
AORI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
AXORI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASLLI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASRLI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASRAI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ALUI & obj.AMask: {enc: uEncoding},
|
|
AAUIPC & obj.AMask: {enc: uEncoding},
|
|
AADD & obj.AMask: {enc: rIIIEncoding, immForm: AADDI, ternary: true},
|
|
ASLT & obj.AMask: {enc: rIIIEncoding, immForm: ASLTI, ternary: true},
|
|
ASLTU & obj.AMask: {enc: rIIIEncoding, immForm: ASLTIU, ternary: true},
|
|
AAND & obj.AMask: {enc: rIIIEncoding, immForm: AANDI, ternary: true},
|
|
AOR & obj.AMask: {enc: rIIIEncoding, immForm: AORI, ternary: true},
|
|
AXOR & obj.AMask: {enc: rIIIEncoding, immForm: AXORI, ternary: true},
|
|
ASLL & obj.AMask: {enc: rIIIEncoding, immForm: ASLLI, ternary: true},
|
|
ASRL & obj.AMask: {enc: rIIIEncoding, immForm: ASRLI, ternary: true},
|
|
ASUB & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASRA & obj.AMask: {enc: rIIIEncoding, immForm: ASRAI, ternary: true},
|
|
|
|
// 2.5: Control Transfer Instructions
|
|
AJAL & obj.AMask: {enc: jEncoding},
|
|
AJALR & obj.AMask: {enc: iIIEncoding},
|
|
ABEQ & obj.AMask: {enc: bEncoding},
|
|
ABNE & obj.AMask: {enc: bEncoding},
|
|
ABLT & obj.AMask: {enc: bEncoding},
|
|
ABLTU & obj.AMask: {enc: bEncoding},
|
|
ABGE & obj.AMask: {enc: bEncoding},
|
|
ABGEU & obj.AMask: {enc: bEncoding},
|
|
|
|
// 2.6: Load and Store Instructions
|
|
ALW & obj.AMask: {enc: iIIEncoding},
|
|
ALWU & obj.AMask: {enc: iIIEncoding},
|
|
ALH & obj.AMask: {enc: iIIEncoding},
|
|
ALHU & obj.AMask: {enc: iIIEncoding},
|
|
ALB & obj.AMask: {enc: iIIEncoding},
|
|
ALBU & obj.AMask: {enc: iIIEncoding},
|
|
ASW & obj.AMask: {enc: sIEncoding},
|
|
ASH & obj.AMask: {enc: sIEncoding},
|
|
ASB & obj.AMask: {enc: sIEncoding},
|
|
|
|
// 2.7: Memory Ordering
|
|
AFENCE & obj.AMask: {enc: iIIEncoding},
|
|
|
|
// 4.2: Integer Computational Instructions (RV64I)
|
|
AADDIW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASLLIW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASRLIW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ASRAIW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
AADDW & obj.AMask: {enc: rIIIEncoding, immForm: AADDIW, ternary: true},
|
|
ASLLW & obj.AMask: {enc: rIIIEncoding, immForm: ASLLIW, ternary: true},
|
|
ASRLW & obj.AMask: {enc: rIIIEncoding, immForm: ASRLIW, ternary: true},
|
|
ASUBW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASRAW & obj.AMask: {enc: rIIIEncoding, immForm: ASRAIW, ternary: true},
|
|
|
|
// 4.3: Load and Store Instructions (RV64I)
|
|
ALD & obj.AMask: {enc: iIIEncoding},
|
|
ASD & obj.AMask: {enc: sIEncoding},
|
|
|
|
// 7.1: CSR Instructions
|
|
ACSRRS & obj.AMask: {enc: iIIEncoding},
|
|
|
|
// 13.1: Multiplication Operations
|
|
AMUL & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMULH & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMULHU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMULHSU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMULW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ADIV & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ADIVU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AREM & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AREMU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ADIVW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ADIVUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AREMW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AREMUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
|
|
// 14.2: Load-Reserved/Store-Conditional Instructions (Zalrsc)
|
|
ALRW & obj.AMask: {enc: rIIIEncoding},
|
|
ALRD & obj.AMask: {enc: rIIIEncoding},
|
|
ASCW & obj.AMask: {enc: rIIIEncoding},
|
|
ASCD & obj.AMask: {enc: rIIIEncoding},
|
|
|
|
// 14.4: Atomic Memory Operations (Zaamo)
|
|
AAMOSWAPW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOSWAPD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOADDW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOADDD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOANDW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOANDD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOORW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOORD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOXORW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOXORD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMAXW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMAXD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMAXUW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMAXUD & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMINW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMIND & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMINUW & obj.AMask: {enc: rIIIEncoding},
|
|
AAMOMINUD & obj.AMask: {enc: rIIIEncoding},
|
|
|
|
// 20.5: Single-Precision Load and Store Instructions
|
|
AFLW & obj.AMask: {enc: iFEncoding},
|
|
AFSW & obj.AMask: {enc: sFEncoding},
|
|
|
|
// 20.6: Single-Precision Floating-Point Computational Instructions
|
|
AFADDS & obj.AMask: {enc: rFFFEncoding},
|
|
AFSUBS & obj.AMask: {enc: rFFFEncoding},
|
|
AFMULS & obj.AMask: {enc: rFFFEncoding},
|
|
AFDIVS & obj.AMask: {enc: rFFFEncoding},
|
|
AFMINS & obj.AMask: {enc: rFFFEncoding},
|
|
AFMAXS & obj.AMask: {enc: rFFFEncoding},
|
|
AFSQRTS & obj.AMask: {enc: rFFFEncoding},
|
|
AFMADDS & obj.AMask: {enc: rFFFFEncoding},
|
|
AFMSUBS & obj.AMask: {enc: rFFFFEncoding},
|
|
AFNMSUBS & obj.AMask: {enc: rFFFFEncoding},
|
|
AFNMADDS & obj.AMask: {enc: rFFFFEncoding},
|
|
|
|
// 20.7: Single-Precision Floating-Point Conversion and Move Instructions
|
|
AFCVTWS & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTLS & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTSW & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTSL & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTWUS & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTLUS & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTSWU & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTSLU & obj.AMask: {enc: rIFEncoding},
|
|
AFSGNJS & obj.AMask: {enc: rFFFEncoding},
|
|
AFSGNJNS & obj.AMask: {enc: rFFFEncoding},
|
|
AFSGNJXS & obj.AMask: {enc: rFFFEncoding},
|
|
AFMVXW & obj.AMask: {enc: rFIEncoding},
|
|
AFMVWX & obj.AMask: {enc: rIFEncoding},
|
|
|
|
// 20.8: Single-Precision Floating-Point Compare Instructions
|
|
AFEQS & obj.AMask: {enc: rFFIEncoding},
|
|
AFLTS & obj.AMask: {enc: rFFIEncoding},
|
|
AFLES & obj.AMask: {enc: rFFIEncoding},
|
|
|
|
// 20.9: Single-Precision Floating-Point Classify Instruction
|
|
AFCLASSS & obj.AMask: {enc: rFIEncoding},
|
|
|
|
// 12.3: Double-Precision Load and Store Instructions
|
|
AFLD & obj.AMask: {enc: iFEncoding},
|
|
AFSD & obj.AMask: {enc: sFEncoding},
|
|
|
|
// 21.4: Double-Precision Floating-Point Computational Instructions
|
|
AFADDD & obj.AMask: {enc: rFFFEncoding},
|
|
AFSUBD & obj.AMask: {enc: rFFFEncoding},
|
|
AFMULD & obj.AMask: {enc: rFFFEncoding},
|
|
AFDIVD & obj.AMask: {enc: rFFFEncoding},
|
|
AFMIND & obj.AMask: {enc: rFFFEncoding},
|
|
AFMAXD & obj.AMask: {enc: rFFFEncoding},
|
|
AFSQRTD & obj.AMask: {enc: rFFFEncoding},
|
|
AFMADDD & obj.AMask: {enc: rFFFFEncoding},
|
|
AFMSUBD & obj.AMask: {enc: rFFFFEncoding},
|
|
AFNMSUBD & obj.AMask: {enc: rFFFFEncoding},
|
|
AFNMADDD & obj.AMask: {enc: rFFFFEncoding},
|
|
|
|
// 21.5: Double-Precision Floating-Point Conversion and Move Instructions
|
|
AFCVTWD & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTLD & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTDW & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTDL & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTWUD & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTLUD & obj.AMask: {enc: rFIEncoding},
|
|
AFCVTDWU & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTDLU & obj.AMask: {enc: rIFEncoding},
|
|
AFCVTSD & obj.AMask: {enc: rFFEncoding},
|
|
AFCVTDS & obj.AMask: {enc: rFFEncoding},
|
|
AFSGNJD & obj.AMask: {enc: rFFFEncoding},
|
|
AFSGNJND & obj.AMask: {enc: rFFFEncoding},
|
|
AFSGNJXD & obj.AMask: {enc: rFFFEncoding},
|
|
AFMVXD & obj.AMask: {enc: rFIEncoding},
|
|
AFMVDX & obj.AMask: {enc: rIFEncoding},
|
|
|
|
// 21.6: Double-Precision Floating-Point Compare Instructions
|
|
AFEQD & obj.AMask: {enc: rFFIEncoding},
|
|
AFLTD & obj.AMask: {enc: rFFIEncoding},
|
|
AFLED & obj.AMask: {enc: rFFIEncoding},
|
|
|
|
// 21.7: Double-Precision Floating-Point Classify Instruction
|
|
AFCLASSD & obj.AMask: {enc: rFIEncoding},
|
|
|
|
//
|
|
// "B" Extension for Bit Manipulation, Version 1.0.0
|
|
//
|
|
|
|
// 28.4.1: Address Generation Instructions (Zba)
|
|
AADDUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH1ADD & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH1ADDUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH2ADD & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH2ADDUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH3ADD & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASH3ADDUW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASLLIUW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
|
|
// 28.4.2: Basic Bit Manipulation (Zbb)
|
|
AANDN & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ACLZ & obj.AMask: {enc: rIIEncoding},
|
|
ACLZW & obj.AMask: {enc: rIIEncoding},
|
|
ACPOP & obj.AMask: {enc: rIIEncoding},
|
|
ACPOPW & obj.AMask: {enc: rIIEncoding},
|
|
ACTZ & obj.AMask: {enc: rIIEncoding},
|
|
ACTZW & obj.AMask: {enc: rIIEncoding},
|
|
AMAX & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMAXU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMIN & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AMINU & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AORN & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
ASEXTB & obj.AMask: {enc: rIIEncoding},
|
|
ASEXTH & obj.AMask: {enc: rIIEncoding},
|
|
AXNOR & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AZEXTH & obj.AMask: {enc: rIIEncoding},
|
|
|
|
// 28.4.3: Bitwise Rotation (Zbb)
|
|
AROL & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AROLW & obj.AMask: {enc: rIIIEncoding, ternary: true},
|
|
AROR & obj.AMask: {enc: rIIIEncoding, immForm: ARORI, ternary: true},
|
|
ARORI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ARORIW & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ARORW & obj.AMask: {enc: rIIIEncoding, immForm: ARORIW, ternary: true},
|
|
AORCB & obj.AMask: {enc: rIIEncoding},
|
|
AREV8 & obj.AMask: {enc: rIIEncoding},
|
|
|
|
// 28.4.4: Single-bit Instructions (Zbs)
|
|
ABCLR & obj.AMask: {enc: rIIIEncoding, immForm: ABCLRI, ternary: true},
|
|
ABCLRI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ABEXT & obj.AMask: {enc: rIIIEncoding, immForm: ABEXTI, ternary: true},
|
|
ABEXTI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ABINV & obj.AMask: {enc: rIIIEncoding, immForm: ABINVI, ternary: true},
|
|
ABINVI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
ABSET & obj.AMask: {enc: rIIIEncoding, immForm: ABSETI, ternary: true},
|
|
ABSETI & obj.AMask: {enc: iIIEncoding, ternary: true},
|
|
|
|
//
|
|
// "V" Standard Extension for Vector Operations, Version 1.0
|
|
//
|
|
|
|
// 31.6: Vector Configuration-Setting Instructions
|
|
AVSETVLI & obj.AMask: {enc: vsetvliEncoding, immForm: AVSETIVLI},
|
|
AVSETIVLI & obj.AMask: {enc: vsetivliEncoding},
|
|
AVSETVL & obj.AMask: {enc: vsetvlEncoding},
|
|
|
|
// 31.7.4: Vector Unit-Stride Instructions
|
|
AVLE8V & obj.AMask: {enc: iVEncoding},
|
|
AVLE16V & obj.AMask: {enc: iVEncoding},
|
|
AVLE32V & obj.AMask: {enc: iVEncoding},
|
|
AVLE64V & obj.AMask: {enc: iVEncoding},
|
|
AVSE8V & obj.AMask: {enc: sVEncoding},
|
|
AVSE16V & obj.AMask: {enc: sVEncoding},
|
|
AVSE32V & obj.AMask: {enc: sVEncoding},
|
|
AVSE64V & obj.AMask: {enc: sVEncoding},
|
|
AVLMV & obj.AMask: {enc: iVEncoding},
|
|
AVSMV & obj.AMask: {enc: sVEncoding},
|
|
|
|
// 31.7.5: Vector Strided Instructions
|
|
AVLSE8V & obj.AMask: {enc: iIIVEncoding},
|
|
AVLSE16V & obj.AMask: {enc: iIIVEncoding},
|
|
AVLSE32V & obj.AMask: {enc: iIIVEncoding},
|
|
AVLSE64V & obj.AMask: {enc: iIIVEncoding},
|
|
AVSSE8V & obj.AMask: {enc: sVIIEncoding},
|
|
AVSSE16V & obj.AMask: {enc: sVIIEncoding},
|
|
AVSSE32V & obj.AMask: {enc: sVIIEncoding},
|
|
AVSSE64V & obj.AMask: {enc: sVIIEncoding},
|
|
|
|
// 31.7.6: Vector Indexed Instructions
|
|
AVLUXEI8V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLUXEI16V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLUXEI32V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLUXEI64V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLOXEI8V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLOXEI16V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLOXEI32V & obj.AMask: {enc: iVIVEncoding},
|
|
AVLOXEI64V & obj.AMask: {enc: iVIVEncoding},
|
|
AVSUXEI8V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSUXEI16V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSUXEI32V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSUXEI64V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSOXEI8V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSOXEI16V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSOXEI32V & obj.AMask: {enc: sVIVEncoding},
|
|
AVSOXEI64V & obj.AMask: {enc: sVIVEncoding},
|
|
|
|
// 31.7.9. Vector Load/Store Whole Register Instructions
|
|
AVL1RE8V & obj.AMask: {enc: iVEncoding},
|
|
AVL1RE16V & obj.AMask: {enc: iVEncoding},
|
|
AVL1RE32V & obj.AMask: {enc: iVEncoding},
|
|
AVL1RE64V & obj.AMask: {enc: iVEncoding},
|
|
AVL2RE8V & obj.AMask: {enc: iVEncoding},
|
|
AVL2RE16V & obj.AMask: {enc: iVEncoding},
|
|
AVL2RE32V & obj.AMask: {enc: iVEncoding},
|
|
AVL2RE64V & obj.AMask: {enc: iVEncoding},
|
|
AVL4RE8V & obj.AMask: {enc: iVEncoding},
|
|
AVL4RE16V & obj.AMask: {enc: iVEncoding},
|
|
AVL4RE32V & obj.AMask: {enc: iVEncoding},
|
|
AVL4RE64V & obj.AMask: {enc: iVEncoding},
|
|
AVL8RE8V & obj.AMask: {enc: iVEncoding},
|
|
AVL8RE16V & obj.AMask: {enc: iVEncoding},
|
|
AVL8RE32V & obj.AMask: {enc: iVEncoding},
|
|
AVL8RE64V & obj.AMask: {enc: iVEncoding},
|
|
AVS1RV & obj.AMask: {enc: sVEncoding},
|
|
AVS2RV & obj.AMask: {enc: sVEncoding},
|
|
AVS4RV & obj.AMask: {enc: sVEncoding},
|
|
AVS8RV & obj.AMask: {enc: sVEncoding},
|
|
|
|
//
|
|
// Privileged ISA
|
|
//
|
|
|
|
// 3.3.1: Environment Call and Breakpoint
|
|
AECALL & obj.AMask: {enc: iIIEncoding},
|
|
AEBREAK & obj.AMask: {enc: iIIEncoding},
|
|
|
|
// Escape hatch
|
|
AWORD & obj.AMask: {enc: rawEncoding},
|
|
|
|
// Pseudo-operations
|
|
obj.AFUNCDATA: {enc: pseudoOpEncoding},
|
|
obj.APCDATA: {enc: pseudoOpEncoding},
|
|
obj.ATEXT: {enc: pseudoOpEncoding},
|
|
obj.ANOP: {enc: pseudoOpEncoding},
|
|
obj.ADUFFZERO: {enc: pseudoOpEncoding},
|
|
obj.ADUFFCOPY: {enc: pseudoOpEncoding},
|
|
obj.APCALIGN: {enc: pseudoOpEncoding},
|
|
}
|
|
|
|
// instructionDataForAs returns the instruction data for an obj.As.
|
|
func instructionDataForAs(as obj.As) (*instructionData, error) {
|
|
if base := as &^ obj.AMask; base != obj.ABaseRISCV && base != 0 {
|
|
return nil, fmt.Errorf("%v is not a RISC-V instruction", as)
|
|
}
|
|
asi := as & obj.AMask
|
|
if int(asi) >= len(instructions) {
|
|
return nil, fmt.Errorf("bad RISC-V instruction %v", as)
|
|
}
|
|
return &instructions[asi], nil
|
|
}
|
|
|
|
// encodingForAs returns the encoding for an obj.As.
|
|
func encodingForAs(as obj.As) (*encoding, error) {
|
|
insData, err := instructionDataForAs(as)
|
|
if err != nil {
|
|
return &badEncoding, err
|
|
}
|
|
if insData.enc.validate == nil {
|
|
return &badEncoding, fmt.Errorf("no encoding for instruction %s", as)
|
|
}
|
|
return &insData.enc, nil
|
|
}
|
|
|
|
// splitShiftConst attempts to split a constant into a signed 12 bit or
|
|
// 32 bit integer, with corresponding logical right shift and/or left shift.
|
|
func splitShiftConst(v int64) (imm int64, lsh int, rsh int, ok bool) {
|
|
// See if we can reconstruct this value from a signed 32 bit integer.
|
|
lsh = bits.TrailingZeros64(uint64(v))
|
|
c := v >> lsh
|
|
if int64(int32(c)) == c {
|
|
return c, lsh, 0, true
|
|
}
|
|
|
|
// See if we can reconstruct this value from a small negative constant.
|
|
rsh = bits.LeadingZeros64(uint64(v))
|
|
ones := bits.OnesCount64((uint64(v) >> lsh) >> 11)
|
|
c = signExtend(1<<11|((v>>lsh)&0x7ff), 12)
|
|
if rsh+ones+lsh+11 == 64 {
|
|
if lsh > 0 || c != -1 {
|
|
lsh += rsh
|
|
}
|
|
return c, lsh, rsh, true
|
|
}
|
|
|
|
return 0, 0, 0, false
|
|
}
|
|
|
|
// isShiftConst indicates whether a constant can be represented as a signed
|
|
// 32 bit integer that is left shifted.
|
|
func isShiftConst(v int64) bool {
|
|
_, lsh, rsh, ok := splitShiftConst(v)
|
|
return ok && (lsh > 0 || rsh > 0)
|
|
}
|
|
|
|
type instruction struct {
|
|
p *obj.Prog // Prog that instruction is for
|
|
as obj.As // Assembler opcode
|
|
rd uint32 // Destination register
|
|
rs1 uint32 // Source register 1
|
|
rs2 uint32 // Source register 2
|
|
rs3 uint32 // Source register 3
|
|
imm int64 // Immediate
|
|
funct3 uint32 // Function 3
|
|
funct7 uint32 // Function 7 (or Function 2)
|
|
}
|
|
|
|
func (ins *instruction) String() string {
|
|
if ins.p == nil {
|
|
return ins.as.String()
|
|
}
|
|
var suffix string
|
|
if ins.p.As != ins.as {
|
|
suffix = fmt.Sprintf(" (%v)", ins.as)
|
|
}
|
|
return fmt.Sprintf("%v%v", ins.p, suffix)
|
|
}
|
|
|
|
func (ins *instruction) encode() (uint32, error) {
|
|
enc, err := encodingForAs(ins.as)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
if enc.length <= 0 {
|
|
return 0, fmt.Errorf("%v: encoding called for a pseudo instruction", ins.as)
|
|
}
|
|
return enc.encode(ins), nil
|
|
}
|
|
|
|
func (ins *instruction) length() int {
|
|
enc, err := encodingForAs(ins.as)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
return enc.length
|
|
}
|
|
|
|
func (ins *instruction) validate(ctxt *obj.Link) {
|
|
enc, err := encodingForAs(ins.as)
|
|
if err != nil {
|
|
ctxt.Diag(err.Error())
|
|
return
|
|
}
|
|
enc.validate(ctxt, ins)
|
|
}
|
|
|
|
func (ins *instruction) usesRegTmp() bool {
|
|
return ins.rd == REG_TMP || ins.rs1 == REG_TMP || ins.rs2 == REG_TMP
|
|
}
|
|
|
|
// instructionForProg returns the default *obj.Prog to instruction mapping.
|
|
func instructionForProg(p *obj.Prog) *instruction {
|
|
ins := &instruction{
|
|
as: p.As,
|
|
rd: uint32(p.To.Reg),
|
|
rs1: uint32(p.Reg),
|
|
rs2: uint32(p.From.Reg),
|
|
imm: p.From.Offset,
|
|
}
|
|
if len(p.RestArgs) == 1 {
|
|
ins.rs3 = uint32(p.RestArgs[0].Reg)
|
|
}
|
|
return ins
|
|
}
|
|
|
|
// instructionsForOpImmediate returns the machine instructions for an immediate
|
|
// operand. The instruction is specified by as and the source register is
|
|
// specified by rs, instead of the obj.Prog.
|
|
func instructionsForOpImmediate(p *obj.Prog, as obj.As, rs int16) []*instruction {
|
|
// <opi> $imm, REG, TO
|
|
ins := instructionForProg(p)
|
|
ins.as, ins.rs1, ins.rs2 = as, uint32(rs), obj.REG_NONE
|
|
|
|
low, high, err := Split32BitImmediate(ins.imm)
|
|
if err != nil {
|
|
p.Ctxt.Diag("%v: constant %d too large", p, ins.imm, err)
|
|
return nil
|
|
}
|
|
if high == 0 {
|
|
return []*instruction{ins}
|
|
}
|
|
|
|
// Split into two additions, if possible.
|
|
// Do not split SP-writing instructions, as otherwise the recorded SP delta may be wrong.
|
|
if p.Spadj == 0 && ins.as == AADDI && ins.imm >= -(1<<12) && ins.imm < 1<<12-1 {
|
|
imm0 := ins.imm / 2
|
|
imm1 := ins.imm - imm0
|
|
|
|
// ADDI $(imm/2), REG, TO
|
|
// ADDI $(imm-imm/2), TO, TO
|
|
ins.imm = imm0
|
|
insADDI := &instruction{as: AADDI, rd: ins.rd, rs1: ins.rd, imm: imm1}
|
|
return []*instruction{ins, insADDI}
|
|
}
|
|
|
|
// LUI $high, TMP
|
|
// ADDIW $low, TMP, TMP
|
|
// <op> TMP, REG, TO
|
|
insLUI := &instruction{as: ALUI, rd: REG_TMP, imm: high}
|
|
insADDIW := &instruction{as: AADDIW, rd: REG_TMP, rs1: REG_TMP, imm: low}
|
|
switch ins.as {
|
|
case AADDI:
|
|
ins.as = AADD
|
|
case AANDI:
|
|
ins.as = AAND
|
|
case AORI:
|
|
ins.as = AOR
|
|
case AXORI:
|
|
ins.as = AXOR
|
|
default:
|
|
p.Ctxt.Diag("unsupported immediate instruction %v for splitting", p)
|
|
return nil
|
|
}
|
|
ins.rs2 = REG_TMP
|
|
if low == 0 {
|
|
return []*instruction{insLUI, ins}
|
|
}
|
|
return []*instruction{insLUI, insADDIW, ins}
|
|
}
|
|
|
|
// instructionsForLoad returns the machine instructions for a load. The load
|
|
// instruction is specified by as and the base/source register is specified
|
|
// by rs, instead of the obj.Prog.
|
|
func instructionsForLoad(p *obj.Prog, as obj.As, rs int16) []*instruction {
|
|
if p.From.Type != obj.TYPE_MEM {
|
|
p.Ctxt.Diag("%v requires memory for source", p)
|
|
return nil
|
|
}
|
|
|
|
switch as {
|
|
case ALD, ALB, ALH, ALW, ALBU, ALHU, ALWU, AFLW, AFLD:
|
|
default:
|
|
p.Ctxt.Diag("%v: unknown load instruction %v", p, as)
|
|
return nil
|
|
}
|
|
|
|
// <load> $imm, REG, TO (load $imm+(REG), TO)
|
|
ins := instructionForProg(p)
|
|
ins.as, ins.rs1, ins.rs2 = as, uint32(rs), obj.REG_NONE
|
|
ins.imm = p.From.Offset
|
|
|
|
low, high, err := Split32BitImmediate(ins.imm)
|
|
if err != nil {
|
|
p.Ctxt.Diag("%v: constant %d too large", p, ins.imm)
|
|
return nil
|
|
}
|
|
if high == 0 {
|
|
return []*instruction{ins}
|
|
}
|
|
|
|
// LUI $high, TMP
|
|
// ADD TMP, REG, TMP
|
|
// <load> $low, TMP, TO
|
|
insLUI := &instruction{as: ALUI, rd: REG_TMP, imm: high}
|
|
insADD := &instruction{as: AADD, rd: REG_TMP, rs1: REG_TMP, rs2: ins.rs1}
|
|
ins.rs1, ins.imm = REG_TMP, low
|
|
|
|
return []*instruction{insLUI, insADD, ins}
|
|
}
|
|
|
|
// instructionsForStore returns the machine instructions for a store. The store
|
|
// instruction is specified by as and the target/source register is specified
|
|
// by rd, instead of the obj.Prog.
|
|
func instructionsForStore(p *obj.Prog, as obj.As, rd int16) []*instruction {
|
|
if p.To.Type != obj.TYPE_MEM {
|
|
p.Ctxt.Diag("%v requires memory for destination", p)
|
|
return nil
|
|
}
|
|
|
|
switch as {
|
|
case ASW, ASH, ASB, ASD, AFSW, AFSD:
|
|
default:
|
|
p.Ctxt.Diag("%v: unknown store instruction %v", p, as)
|
|
return nil
|
|
}
|
|
|
|
// <store> $imm, REG, TO (store $imm+(TO), REG)
|
|
ins := instructionForProg(p)
|
|
ins.as, ins.rd, ins.rs1, ins.rs2 = as, uint32(rd), uint32(p.From.Reg), obj.REG_NONE
|
|
ins.imm = p.To.Offset
|
|
|
|
low, high, err := Split32BitImmediate(ins.imm)
|
|
if err != nil {
|
|
p.Ctxt.Diag("%v: constant %d too large", p, ins.imm)
|
|
return nil
|
|
}
|
|
if high == 0 {
|
|
return []*instruction{ins}
|
|
}
|
|
|
|
// LUI $high, TMP
|
|
// ADD TMP, TO, TMP
|
|
// <store> $low, REG, TMP
|
|
insLUI := &instruction{as: ALUI, rd: REG_TMP, imm: high}
|
|
insADD := &instruction{as: AADD, rd: REG_TMP, rs1: REG_TMP, rs2: ins.rd}
|
|
ins.rd, ins.imm = REG_TMP, low
|
|
|
|
return []*instruction{insLUI, insADD, ins}
|
|
}
|
|
|
|
func instructionsForTLS(p *obj.Prog, ins *instruction) []*instruction {
|
|
insAddTP := &instruction{as: AADD, rd: REG_TMP, rs1: REG_TMP, rs2: REG_TP}
|
|
|
|
var inss []*instruction
|
|
if p.Ctxt.Flag_shared {
|
|
// TLS initial-exec mode - load TLS offset from GOT, add the thread pointer
|
|
// register, then load from or store to the resulting memory location.
|
|
insAUIPC := &instruction{as: AAUIPC, rd: REG_TMP}
|
|
insLoadTLSOffset := &instruction{as: ALD, rd: REG_TMP, rs1: REG_TMP}
|
|
inss = []*instruction{insAUIPC, insLoadTLSOffset, insAddTP, ins}
|
|
} else {
|
|
// TLS local-exec mode - load upper TLS offset, add the lower TLS offset,
|
|
// add the thread pointer register, then load from or store to the resulting
|
|
// memory location. Note that this differs from the suggested three
|
|
// instruction sequence, as the Go linker does not currently have an
|
|
// easy way to handle relocation across 12 bytes of machine code.
|
|
insLUI := &instruction{as: ALUI, rd: REG_TMP}
|
|
insADDIW := &instruction{as: AADDIW, rd: REG_TMP, rs1: REG_TMP}
|
|
inss = []*instruction{insLUI, insADDIW, insAddTP, ins}
|
|
}
|
|
return inss
|
|
}
|
|
|
|
func instructionsForTLSLoad(p *obj.Prog) []*instruction {
|
|
if p.From.Sym.Type != objabi.STLSBSS {
|
|
p.Ctxt.Diag("%v: %v is not a TLS symbol", p, p.From.Sym)
|
|
return nil
|
|
}
|
|
|
|
ins := instructionForProg(p)
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = movToLoad(p.As), REG_TMP, obj.REG_NONE, 0
|
|
|
|
return instructionsForTLS(p, ins)
|
|
}
|
|
|
|
func instructionsForTLSStore(p *obj.Prog) []*instruction {
|
|
if p.To.Sym.Type != objabi.STLSBSS {
|
|
p.Ctxt.Diag("%v: %v is not a TLS symbol", p, p.To.Sym)
|
|
return nil
|
|
}
|
|
|
|
ins := instructionForProg(p)
|
|
ins.as, ins.rd, ins.rs1, ins.rs2, ins.imm = movToStore(p.As), REG_TMP, uint32(p.From.Reg), obj.REG_NONE, 0
|
|
|
|
return instructionsForTLS(p, ins)
|
|
}
|
|
|
|
// instructionsForMOV returns the machine instructions for an *obj.Prog that
|
|
// uses a MOV pseudo-instruction.
|
|
func instructionsForMOV(p *obj.Prog) []*instruction {
|
|
ins := instructionForProg(p)
|
|
inss := []*instruction{ins}
|
|
|
|
if p.Reg != 0 {
|
|
p.Ctxt.Diag("%v: illegal MOV instruction", p)
|
|
return nil
|
|
}
|
|
|
|
switch {
|
|
case p.From.Type == obj.TYPE_CONST && p.To.Type == obj.TYPE_REG:
|
|
// Handle constant to register moves.
|
|
if p.As != AMOV {
|
|
p.Ctxt.Diag("%v: unsupported constant load", p)
|
|
return nil
|
|
}
|
|
|
|
// For constants larger than 32 bits in size that have trailing zeros,
|
|
// use the value with the trailing zeros removed and then use a SLLI
|
|
// instruction to restore the original constant.
|
|
//
|
|
// For example:
|
|
// MOV $0x8000000000000000, X10
|
|
// becomes
|
|
// MOV $1, X10
|
|
// SLLI $63, X10, X10
|
|
//
|
|
// Similarly, we can construct large constants that have a consecutive
|
|
// sequence of ones from a small negative constant, with a right and/or
|
|
// left shift.
|
|
//
|
|
// For example:
|
|
// MOV $0x000fffffffffffda, X10
|
|
// becomes
|
|
// MOV $-19, X10
|
|
// SLLI $13, X10
|
|
// SRLI $12, X10
|
|
//
|
|
var insSLLI, insSRLI *instruction
|
|
if err := immIFits(ins.imm, 32); err != nil {
|
|
if c, lsh, rsh, ok := splitShiftConst(ins.imm); ok {
|
|
ins.imm = c
|
|
if lsh > 0 {
|
|
insSLLI = &instruction{as: ASLLI, rd: ins.rd, rs1: ins.rd, imm: int64(lsh)}
|
|
}
|
|
if rsh > 0 {
|
|
insSRLI = &instruction{as: ASRLI, rd: ins.rd, rs1: ins.rd, imm: int64(rsh)}
|
|
}
|
|
}
|
|
}
|
|
|
|
low, high, err := Split32BitImmediate(ins.imm)
|
|
if err != nil {
|
|
p.Ctxt.Diag("%v: constant %d too large: %v", p, ins.imm, err)
|
|
return nil
|
|
}
|
|
|
|
// MOV $c, R -> ADD $c, ZERO, R
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AADDI, REG_ZERO, obj.REG_NONE, low
|
|
|
|
// LUI is only necessary if the constant does not fit in 12 bits.
|
|
if high != 0 {
|
|
// LUI top20bits(c), R
|
|
// ADD bottom12bits(c), R, R
|
|
insLUI := &instruction{as: ALUI, rd: ins.rd, imm: high}
|
|
inss = []*instruction{insLUI}
|
|
if low != 0 {
|
|
ins.as, ins.rs1 = AADDIW, ins.rd
|
|
inss = append(inss, ins)
|
|
}
|
|
}
|
|
if insSLLI != nil {
|
|
inss = append(inss, insSLLI)
|
|
}
|
|
if insSRLI != nil {
|
|
inss = append(inss, insSRLI)
|
|
}
|
|
|
|
case p.From.Type == obj.TYPE_CONST && p.To.Type != obj.TYPE_REG:
|
|
p.Ctxt.Diag("%v: constant load must target register", p)
|
|
return nil
|
|
|
|
case p.From.Type == obj.TYPE_REG && p.To.Type == obj.TYPE_REG:
|
|
// Handle register to register moves.
|
|
switch p.As {
|
|
case AMOV: // MOV Ra, Rb -> ADDI $0, Ra, Rb
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AADDI, uint32(p.From.Reg), obj.REG_NONE, 0
|
|
case AMOVW: // MOVW Ra, Rb -> ADDIW $0, Ra, Rb
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AADDIW, uint32(p.From.Reg), obj.REG_NONE, 0
|
|
case AMOVBU: // MOVBU Ra, Rb -> ANDI $255, Ra, Rb
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AANDI, uint32(p.From.Reg), obj.REG_NONE, 255
|
|
case AMOVF: // MOVF Ra, Rb -> FSGNJS Ra, Ra, Rb
|
|
ins.as, ins.rs1 = AFSGNJS, uint32(p.From.Reg)
|
|
case AMOVD: // MOVD Ra, Rb -> FSGNJD Ra, Ra, Rb
|
|
ins.as, ins.rs1 = AFSGNJD, uint32(p.From.Reg)
|
|
case AMOVB, AMOVH:
|
|
if buildcfg.GORISCV64 >= 22 {
|
|
// Use SEXTB or SEXTH to extend.
|
|
ins.as, ins.rs1, ins.rs2 = ASEXTB, uint32(p.From.Reg), obj.REG_NONE
|
|
if p.As == AMOVH {
|
|
ins.as = ASEXTH
|
|
}
|
|
} else {
|
|
// Use SLLI/SRAI sequence to extend.
|
|
ins.as, ins.rs1, ins.rs2 = ASLLI, uint32(p.From.Reg), obj.REG_NONE
|
|
if p.As == AMOVB {
|
|
ins.imm = 56
|
|
} else if p.As == AMOVH {
|
|
ins.imm = 48
|
|
}
|
|
ins2 := &instruction{as: ASRAI, rd: ins.rd, rs1: ins.rd, imm: ins.imm}
|
|
inss = append(inss, ins2)
|
|
}
|
|
case AMOVHU, AMOVWU:
|
|
if buildcfg.GORISCV64 >= 22 {
|
|
// Use ZEXTH or ADDUW to extend.
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AZEXTH, uint32(p.From.Reg), obj.REG_NONE, 0
|
|
if p.As == AMOVWU {
|
|
ins.as, ins.rs2 = AADDUW, REG_ZERO
|
|
}
|
|
} else {
|
|
// Use SLLI/SRLI sequence to extend.
|
|
ins.as, ins.rs1, ins.rs2 = ASLLI, uint32(p.From.Reg), obj.REG_NONE
|
|
if p.As == AMOVHU {
|
|
ins.imm = 48
|
|
} else if p.As == AMOVWU {
|
|
ins.imm = 32
|
|
}
|
|
ins2 := &instruction{as: ASRLI, rd: ins.rd, rs1: ins.rd, imm: ins.imm}
|
|
inss = append(inss, ins2)
|
|
}
|
|
}
|
|
|
|
case p.From.Type == obj.TYPE_MEM && p.To.Type == obj.TYPE_REG:
|
|
// Memory to register loads.
|
|
switch p.From.Name {
|
|
case obj.NAME_AUTO, obj.NAME_PARAM, obj.NAME_NONE:
|
|
// MOV c(Rs), Rd -> L $c, Rs, Rd
|
|
inss = instructionsForLoad(p, movToLoad(p.As), addrToReg(p.From))
|
|
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC, obj.NAME_GOTREF:
|
|
if p.From.Sym.Type == objabi.STLSBSS {
|
|
return instructionsForTLSLoad(p)
|
|
}
|
|
|
|
// Note that the values for $off_hi and $off_lo are currently
|
|
// zero and will be assigned during relocation. If the destination
|
|
// is an integer register then we can use the same register for the
|
|
// address computation, otherwise we need to use the temporary register.
|
|
//
|
|
// AUIPC $off_hi, Rd
|
|
// L $off_lo, Rd, Rd
|
|
//
|
|
addrReg := ins.rd
|
|
if addrReg < REG_X0 || addrReg > REG_X31 {
|
|
addrReg = REG_TMP
|
|
}
|
|
insAUIPC := &instruction{as: AAUIPC, rd: addrReg}
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = movToLoad(p.As), addrReg, obj.REG_NONE, 0
|
|
inss = []*instruction{insAUIPC, ins}
|
|
|
|
default:
|
|
p.Ctxt.Diag("unsupported name %d for %v", p.From.Name, p)
|
|
return nil
|
|
}
|
|
|
|
case p.From.Type == obj.TYPE_REG && p.To.Type == obj.TYPE_MEM:
|
|
// Register to memory stores.
|
|
switch p.As {
|
|
case AMOVBU, AMOVHU, AMOVWU:
|
|
p.Ctxt.Diag("%v: unsupported unsigned store", p)
|
|
return nil
|
|
}
|
|
switch p.To.Name {
|
|
case obj.NAME_AUTO, obj.NAME_PARAM, obj.NAME_NONE:
|
|
// MOV Rs, c(Rd) -> S $c, Rs, Rd
|
|
inss = instructionsForStore(p, movToStore(p.As), addrToReg(p.To))
|
|
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
if p.To.Sym.Type == objabi.STLSBSS {
|
|
return instructionsForTLSStore(p)
|
|
}
|
|
|
|
// Note that the values for $off_hi and $off_lo are currently
|
|
// zero and will be assigned during relocation.
|
|
//
|
|
// AUIPC $off_hi, Rtmp
|
|
// S $off_lo, Rtmp, Rd
|
|
insAUIPC := &instruction{as: AAUIPC, rd: REG_TMP}
|
|
ins.as, ins.rd, ins.rs1, ins.rs2, ins.imm = movToStore(p.As), REG_TMP, uint32(p.From.Reg), obj.REG_NONE, 0
|
|
inss = []*instruction{insAUIPC, ins}
|
|
|
|
default:
|
|
p.Ctxt.Diag("unsupported name %d for %v", p.From.Name, p)
|
|
return nil
|
|
}
|
|
|
|
case p.From.Type == obj.TYPE_ADDR && p.To.Type == obj.TYPE_REG:
|
|
// MOV $sym+off(SP/SB), R
|
|
if p.As != AMOV {
|
|
p.Ctxt.Diag("%v: unsupported address load", p)
|
|
return nil
|
|
}
|
|
switch p.From.Name {
|
|
case obj.NAME_AUTO, obj.NAME_PARAM, obj.NAME_NONE:
|
|
inss = instructionsForOpImmediate(p, AADDI, addrToReg(p.From))
|
|
|
|
case obj.NAME_EXTERN, obj.NAME_STATIC:
|
|
// Note that the values for $off_hi and $off_lo are currently
|
|
// zero and will be assigned during relocation.
|
|
//
|
|
// AUIPC $off_hi, R
|
|
// ADDI $off_lo, R
|
|
insAUIPC := &instruction{as: AAUIPC, rd: ins.rd}
|
|
ins.as, ins.rs1, ins.rs2, ins.imm = AADDI, ins.rd, obj.REG_NONE, 0
|
|
inss = []*instruction{insAUIPC, ins}
|
|
|
|
default:
|
|
p.Ctxt.Diag("unsupported name %d for %v", p.From.Name, p)
|
|
return nil
|
|
}
|
|
|
|
case p.From.Type == obj.TYPE_ADDR && p.To.Type != obj.TYPE_REG:
|
|
p.Ctxt.Diag("%v: address load must target register", p)
|
|
return nil
|
|
|
|
default:
|
|
p.Ctxt.Diag("%v: unsupported MOV", p)
|
|
return nil
|
|
}
|
|
|
|
return inss
|
|
}
|
|
|
|
// instructionsForRotate returns the machine instructions for a bitwise rotation.
|
|
func instructionsForRotate(p *obj.Prog, ins *instruction) []*instruction {
|
|
if buildcfg.GORISCV64 >= 22 {
|
|
// Rotation instructions are supported natively.
|
|
return []*instruction{ins}
|
|
}
|
|
|
|
switch ins.as {
|
|
case AROL, AROLW, AROR, ARORW:
|
|
// ROL -> OR (SLL x y) (SRL x (NEG y))
|
|
// ROR -> OR (SRL x y) (SLL x (NEG y))
|
|
sllOp, srlOp := ASLL, ASRL
|
|
if ins.as == AROLW || ins.as == ARORW {
|
|
sllOp, srlOp = ASLLW, ASRLW
|
|
}
|
|
shift1, shift2 := sllOp, srlOp
|
|
if ins.as == AROR || ins.as == ARORW {
|
|
shift1, shift2 = shift2, shift1
|
|
}
|
|
return []*instruction{
|
|
&instruction{as: ASUB, rs1: REG_ZERO, rs2: ins.rs2, rd: REG_TMP},
|
|
&instruction{as: shift2, rs1: ins.rs1, rs2: REG_TMP, rd: REG_TMP},
|
|
&instruction{as: shift1, rs1: ins.rs1, rs2: ins.rs2, rd: ins.rd},
|
|
&instruction{as: AOR, rs1: REG_TMP, rs2: ins.rd, rd: ins.rd},
|
|
}
|
|
|
|
case ARORI, ARORIW:
|
|
// ROR -> OR (SLLI -x y) (SRLI x y)
|
|
sllOp, srlOp := ASLLI, ASRLI
|
|
sllImm := int64(int8(-ins.imm) & 63)
|
|
if ins.as == ARORIW {
|
|
sllOp, srlOp = ASLLIW, ASRLIW
|
|
sllImm = int64(int8(-ins.imm) & 31)
|
|
}
|
|
return []*instruction{
|
|
&instruction{as: srlOp, rs1: ins.rs1, rd: REG_TMP, imm: ins.imm},
|
|
&instruction{as: sllOp, rs1: ins.rs1, rd: ins.rd, imm: sllImm},
|
|
&instruction{as: AOR, rs1: REG_TMP, rs2: ins.rd, rd: ins.rd},
|
|
}
|
|
|
|
default:
|
|
p.Ctxt.Diag("%v: unknown rotation", p)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// instructionsForProg returns the machine instructions for an *obj.Prog.
|
|
func instructionsForProg(p *obj.Prog) []*instruction {
|
|
ins := instructionForProg(p)
|
|
inss := []*instruction{ins}
|
|
|
|
if ins.as == AVSETVLI || ins.as == AVSETIVLI {
|
|
if len(p.RestArgs) != 4 {
|
|
p.Ctxt.Diag("incorrect number of arguments for instruction")
|
|
return nil
|
|
}
|
|
} else if len(p.RestArgs) > 1 {
|
|
p.Ctxt.Diag("too many source registers")
|
|
return nil
|
|
}
|
|
|
|
switch ins.as {
|
|
case AJAL, AJALR:
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.From.Reg), uint32(p.To.Reg), obj.REG_NONE
|
|
ins.imm = p.To.Offset
|
|
|
|
case ABEQ, ABEQZ, ABGE, ABGEU, ABGEZ, ABGT, ABGTU, ABGTZ, ABLE, ABLEU, ABLEZ, ABLT, ABLTU, ABLTZ, ABNE, ABNEZ:
|
|
switch ins.as {
|
|
case ABEQZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABEQ, REG_ZERO, uint32(p.From.Reg)
|
|
case ABGEZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABGE, REG_ZERO, uint32(p.From.Reg)
|
|
case ABGT:
|
|
ins.as, ins.rs1, ins.rs2 = ABLT, uint32(p.From.Reg), uint32(p.Reg)
|
|
case ABGTU:
|
|
ins.as, ins.rs1, ins.rs2 = ABLTU, uint32(p.From.Reg), uint32(p.Reg)
|
|
case ABGTZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABLT, uint32(p.From.Reg), REG_ZERO
|
|
case ABLE:
|
|
ins.as, ins.rs1, ins.rs2 = ABGE, uint32(p.From.Reg), uint32(p.Reg)
|
|
case ABLEU:
|
|
ins.as, ins.rs1, ins.rs2 = ABGEU, uint32(p.From.Reg), uint32(p.Reg)
|
|
case ABLEZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABGE, uint32(p.From.Reg), REG_ZERO
|
|
case ABLTZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABLT, REG_ZERO, uint32(p.From.Reg)
|
|
case ABNEZ:
|
|
ins.as, ins.rs1, ins.rs2 = ABNE, REG_ZERO, uint32(p.From.Reg)
|
|
}
|
|
ins.imm = p.To.Offset
|
|
|
|
case AMOV, AMOVB, AMOVH, AMOVW, AMOVBU, AMOVHU, AMOVWU, AMOVF, AMOVD:
|
|
inss = instructionsForMOV(p)
|
|
|
|
case ALW, ALWU, ALH, ALHU, ALB, ALBU, ALD, AFLW, AFLD:
|
|
inss = instructionsForLoad(p, ins.as, p.From.Reg)
|
|
|
|
case ASW, ASH, ASB, ASD, AFSW, AFSD:
|
|
inss = instructionsForStore(p, ins.as, p.To.Reg)
|
|
|
|
case ALRW, ALRD:
|
|
// Set aq to use acquire access ordering
|
|
ins.funct7 = 2
|
|
ins.rs1, ins.rs2 = uint32(p.From.Reg), REG_ZERO
|
|
|
|
case AADDI, AANDI, AORI, AXORI:
|
|
inss = instructionsForOpImmediate(p, ins.as, p.Reg)
|
|
|
|
case ASCW, ASCD:
|
|
// Set release access ordering
|
|
ins.funct7 = 1
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.RegTo2), uint32(p.To.Reg), uint32(p.From.Reg)
|
|
|
|
case AAMOSWAPW, AAMOSWAPD, AAMOADDW, AAMOADDD, AAMOANDW, AAMOANDD, AAMOORW, AAMOORD,
|
|
AAMOXORW, AAMOXORD, AAMOMINW, AAMOMIND, AAMOMINUW, AAMOMINUD, AAMOMAXW, AAMOMAXD, AAMOMAXUW, AAMOMAXUD:
|
|
// Set aqrl to use acquire & release access ordering
|
|
ins.funct7 = 3
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.RegTo2), uint32(p.To.Reg), uint32(p.From.Reg)
|
|
|
|
case AECALL, AEBREAK:
|
|
insEnc := encode(p.As)
|
|
if p.To.Type == obj.TYPE_NONE {
|
|
ins.rd = REG_ZERO
|
|
}
|
|
ins.rs1 = REG_ZERO
|
|
ins.imm = insEnc.csr
|
|
|
|
case ARDCYCLE, ARDTIME, ARDINSTRET:
|
|
ins.as = ACSRRS
|
|
if p.To.Type == obj.TYPE_NONE {
|
|
ins.rd = REG_ZERO
|
|
}
|
|
ins.rs1 = REG_ZERO
|
|
switch p.As {
|
|
case ARDCYCLE:
|
|
ins.imm = -1024
|
|
case ARDTIME:
|
|
ins.imm = -1023
|
|
case ARDINSTRET:
|
|
ins.imm = -1022
|
|
}
|
|
|
|
case AFENCE:
|
|
ins.rd, ins.rs1, ins.rs2 = REG_ZERO, REG_ZERO, obj.REG_NONE
|
|
ins.imm = 0x0ff
|
|
|
|
case AFCVTWS, AFCVTLS, AFCVTWUS, AFCVTLUS, AFCVTWD, AFCVTLD, AFCVTWUD, AFCVTLUD:
|
|
// Set the default rounding mode in funct3 to round to zero.
|
|
if p.Scond&rmSuffixBit == 0 {
|
|
ins.funct3 = uint32(RM_RTZ)
|
|
} else {
|
|
ins.funct3 = uint32(p.Scond &^ rmSuffixBit)
|
|
}
|
|
|
|
case AFNES, AFNED:
|
|
// Replace FNE[SD] with FEQ[SD] and NOT.
|
|
if p.To.Type != obj.TYPE_REG {
|
|
p.Ctxt.Diag("%v needs an integer register output", p)
|
|
return nil
|
|
}
|
|
if ins.as == AFNES {
|
|
ins.as = AFEQS
|
|
} else {
|
|
ins.as = AFEQD
|
|
}
|
|
ins2 := &instruction{
|
|
as: AXORI, // [bit] xor 1 = not [bit]
|
|
rd: ins.rd,
|
|
rs1: ins.rd,
|
|
imm: 1,
|
|
}
|
|
inss = append(inss, ins2)
|
|
|
|
case AFSQRTS, AFSQRTD:
|
|
// These instructions expect a zero (i.e. float register 0)
|
|
// to be the second input operand.
|
|
ins.rs1 = uint32(p.From.Reg)
|
|
ins.rs2 = REG_F0
|
|
|
|
case AFMADDS, AFMSUBS, AFNMADDS, AFNMSUBS,
|
|
AFMADDD, AFMSUBD, AFNMADDD, AFNMSUBD:
|
|
// Swap the first two operands so that the operands are in the same
|
|
// order as they are in the specification: RS1, RS2, RS3, RD.
|
|
ins.rs1, ins.rs2 = ins.rs2, ins.rs1
|
|
|
|
case ANEG, ANEGW:
|
|
// NEG rs, rd -> SUB rs, X0, rd
|
|
ins.as = ASUB
|
|
if p.As == ANEGW {
|
|
ins.as = ASUBW
|
|
}
|
|
ins.rs1 = REG_ZERO
|
|
if ins.rd == obj.REG_NONE {
|
|
ins.rd = ins.rs2
|
|
}
|
|
|
|
case ANOT:
|
|
// NOT rs, rd -> XORI $-1, rs, rd
|
|
ins.as = AXORI
|
|
ins.rs1, ins.rs2 = uint32(p.From.Reg), obj.REG_NONE
|
|
if ins.rd == obj.REG_NONE {
|
|
ins.rd = ins.rs1
|
|
}
|
|
ins.imm = -1
|
|
|
|
case ASEQZ:
|
|
// SEQZ rs, rd -> SLTIU $1, rs, rd
|
|
ins.as = ASLTIU
|
|
ins.rs1, ins.rs2 = uint32(p.From.Reg), obj.REG_NONE
|
|
ins.imm = 1
|
|
|
|
case ASNEZ:
|
|
// SNEZ rs, rd -> SLTU rs, x0, rd
|
|
ins.as = ASLTU
|
|
ins.rs1 = REG_ZERO
|
|
|
|
case AFABSS:
|
|
// FABSS rs, rd -> FSGNJXS rs, rs, rd
|
|
ins.as = AFSGNJXS
|
|
ins.rs1 = uint32(p.From.Reg)
|
|
|
|
case AFABSD:
|
|
// FABSD rs, rd -> FSGNJXD rs, rs, rd
|
|
ins.as = AFSGNJXD
|
|
ins.rs1 = uint32(p.From.Reg)
|
|
|
|
case AFNEGS:
|
|
// FNEGS rs, rd -> FSGNJNS rs, rs, rd
|
|
ins.as = AFSGNJNS
|
|
ins.rs1 = uint32(p.From.Reg)
|
|
|
|
case AFNEGD:
|
|
// FNEGD rs, rd -> FSGNJND rs, rs, rd
|
|
ins.as = AFSGNJND
|
|
ins.rs1 = uint32(p.From.Reg)
|
|
|
|
case AROL, AROLW, AROR, ARORW:
|
|
inss = instructionsForRotate(p, ins)
|
|
|
|
case ARORI:
|
|
if ins.imm < 0 || ins.imm > 63 {
|
|
p.Ctxt.Diag("%v: immediate out of range 0 to 63", p)
|
|
}
|
|
inss = instructionsForRotate(p, ins)
|
|
|
|
case ARORIW:
|
|
if ins.imm < 0 || ins.imm > 31 {
|
|
p.Ctxt.Diag("%v: immediate out of range 0 to 31", p)
|
|
}
|
|
inss = instructionsForRotate(p, ins)
|
|
|
|
case ASLLI, ASRLI, ASRAI:
|
|
if ins.imm < 0 || ins.imm > 63 {
|
|
p.Ctxt.Diag("%v: immediate out of range 0 to 63", p)
|
|
}
|
|
|
|
case ASLLIW, ASRLIW, ASRAIW:
|
|
if ins.imm < 0 || ins.imm > 31 {
|
|
p.Ctxt.Diag("%v: immediate out of range 0 to 31", p)
|
|
}
|
|
|
|
case ACLZ, ACLZW, ACTZ, ACTZW, ACPOP, ACPOPW, ASEXTB, ASEXTH, AZEXTH:
|
|
ins.rs1, ins.rs2 = uint32(p.From.Reg), obj.REG_NONE
|
|
|
|
case AORCB, AREV8:
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.To.Reg), uint32(p.From.Reg), obj.REG_NONE
|
|
|
|
case AANDN, AORN:
|
|
if buildcfg.GORISCV64 >= 22 {
|
|
// ANDN and ORN instructions are supported natively.
|
|
break
|
|
}
|
|
// ANDN -> (AND (NOT x) y)
|
|
// ORN -> (OR (NOT x) y)
|
|
bitwiseOp, notReg := AAND, ins.rd
|
|
if ins.as == AORN {
|
|
bitwiseOp = AOR
|
|
}
|
|
if ins.rs1 == notReg {
|
|
notReg = REG_TMP
|
|
}
|
|
inss = []*instruction{
|
|
&instruction{as: AXORI, rs1: ins.rs2, rs2: obj.REG_NONE, rd: notReg, imm: -1},
|
|
&instruction{as: bitwiseOp, rs1: ins.rs1, rs2: notReg, rd: ins.rd},
|
|
}
|
|
|
|
case AXNOR:
|
|
if buildcfg.GORISCV64 >= 22 {
|
|
// XNOR instruction is supported natively.
|
|
break
|
|
}
|
|
// XNOR -> (NOT (XOR x y))
|
|
ins.as = AXOR
|
|
inss = append(inss, &instruction{as: AXORI, rs1: ins.rd, rs2: obj.REG_NONE, rd: ins.rd, imm: -1})
|
|
|
|
case AVSETVLI, AVSETIVLI:
|
|
ins.rs1, ins.rs2 = ins.rs2, obj.REG_NONE
|
|
vtype, err := EncodeVectorType(p.RestArgs[0].Offset, p.RestArgs[1].Offset, p.RestArgs[2].Offset, p.RestArgs[3].Offset)
|
|
if err != nil {
|
|
p.Ctxt.Diag("%v: %v", p, err)
|
|
}
|
|
ins.imm = int64(vtype)
|
|
if ins.as == AVSETIVLI {
|
|
if p.From.Type != obj.TYPE_CONST {
|
|
p.Ctxt.Diag("%v: expected immediate value", p)
|
|
}
|
|
ins.rs1 = uint32(p.From.Offset)
|
|
}
|
|
|
|
case AVLE8V, AVLE16V, AVLE32V, AVLE64V, AVSE8V, AVSE16V, AVSE32V, AVSE64V, AVLMV, AVSMV:
|
|
// Set mask bit
|
|
switch {
|
|
case ins.rs1 == obj.REG_NONE:
|
|
ins.funct7 |= 1 // unmasked
|
|
case ins.rs1 != REG_V0:
|
|
p.Ctxt.Diag("%v: invalid vector mask register", p)
|
|
}
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.To.Reg), uint32(p.From.Reg), obj.REG_NONE
|
|
|
|
case AVLSE8V, AVLSE16V, AVLSE32V, AVLSE64V,
|
|
AVLUXEI8V, AVLUXEI16V, AVLUXEI32V, AVLUXEI64V, AVLOXEI8V, AVLOXEI16V, AVLOXEI32V, AVLOXEI64V:
|
|
// Set mask bit
|
|
switch {
|
|
case ins.rs3 == obj.REG_NONE:
|
|
ins.funct7 |= 1 // unmasked
|
|
case ins.rs3 != REG_V0:
|
|
p.Ctxt.Diag("%v: invalid vector mask register", p)
|
|
}
|
|
ins.rs1, ins.rs2, ins.rs3 = ins.rs2, ins.rs1, obj.REG_NONE
|
|
|
|
case AVSSE8V, AVSSE16V, AVSSE32V, AVSSE64V,
|
|
AVSUXEI8V, AVSUXEI16V, AVSUXEI32V, AVSUXEI64V, AVSOXEI8V, AVSOXEI16V, AVSOXEI32V, AVSOXEI64V:
|
|
// Set mask bit
|
|
switch {
|
|
case ins.rs3 == obj.REG_NONE:
|
|
ins.funct7 |= 1 // unmasked
|
|
case ins.rs3 != REG_V0:
|
|
p.Ctxt.Diag("%v: invalid vector mask register", p)
|
|
}
|
|
ins.rd, ins.rs1, ins.rs2, ins.rs3 = ins.rs2, ins.rd, ins.rs1, obj.REG_NONE
|
|
|
|
case AVL1RV, AVL1RE8V, AVL1RE16V, AVL1RE32V, AVL1RE64V, AVL2RV, AVL2RE8V, AVL2RE16V, AVL2RE32V, AVL2RE64V,
|
|
AVL4RV, AVL4RE8V, AVL4RE16V, AVL4RE32V, AVL4RE64V, AVL8RV, AVL8RE8V, AVL8RE16V, AVL8RE32V, AVL8RE64V:
|
|
switch ins.as {
|
|
case AVL1RV:
|
|
ins.as = AVL1RE8V
|
|
case AVL2RV:
|
|
ins.as = AVL2RE8V
|
|
case AVL4RV:
|
|
ins.as = AVL4RE8V
|
|
case AVL8RV:
|
|
ins.as = AVL8RE8V
|
|
}
|
|
if ins.rs1 != obj.REG_NONE {
|
|
p.Ctxt.Diag("%v: too many operands for instruction", p)
|
|
}
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.To.Reg), uint32(p.From.Reg), obj.REG_NONE
|
|
|
|
case AVS1RV, AVS2RV, AVS4RV, AVS8RV:
|
|
if ins.rs1 != obj.REG_NONE {
|
|
p.Ctxt.Diag("%v: too many operands for instruction", p)
|
|
}
|
|
ins.rd, ins.rs1, ins.rs2 = uint32(p.To.Reg), uint32(p.From.Reg), obj.REG_NONE
|
|
}
|
|
|
|
for _, ins := range inss {
|
|
ins.p = p
|
|
}
|
|
|
|
return inss
|
|
}
|
|
|
|
// assemble emits machine code.
|
|
// It is called at the very end of the assembly process.
|
|
func assemble(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
|
|
if ctxt.Retpoline {
|
|
ctxt.Diag("-spectre=ret not supported on riscv")
|
|
ctxt.Retpoline = false // don't keep printing
|
|
}
|
|
|
|
// If errors were encountered during preprocess/validation, proceeding
|
|
// and attempting to encode said instructions will only lead to panics.
|
|
if ctxt.Errors > 0 {
|
|
return
|
|
}
|
|
|
|
for p := cursym.Func().Text; p != nil; p = p.Link {
|
|
switch p.As {
|
|
case AJAL:
|
|
if p.Mark&NEED_JAL_RELOC == NEED_JAL_RELOC {
|
|
cursym.AddRel(ctxt, obj.Reloc{
|
|
Type: objabi.R_RISCV_JAL,
|
|
Off: int32(p.Pc),
|
|
Siz: 4,
|
|
Sym: p.To.Sym,
|
|
Add: p.To.Offset,
|
|
})
|
|
}
|
|
case AJALR:
|
|
if p.To.Sym != nil {
|
|
ctxt.Diag("%v: unexpected AJALR with to symbol", p)
|
|
}
|
|
|
|
case AAUIPC, AMOV, AMOVB, AMOVH, AMOVW, AMOVBU, AMOVHU, AMOVWU, AMOVF, AMOVD:
|
|
var addr *obj.Addr
|
|
var rt objabi.RelocType
|
|
if p.Mark&NEED_CALL_RELOC == NEED_CALL_RELOC {
|
|
rt = objabi.R_RISCV_CALL
|
|
addr = &p.From
|
|
} else if p.Mark&NEED_PCREL_ITYPE_RELOC == NEED_PCREL_ITYPE_RELOC {
|
|
rt = objabi.R_RISCV_PCREL_ITYPE
|
|
addr = &p.From
|
|
} else if p.Mark&NEED_PCREL_STYPE_RELOC == NEED_PCREL_STYPE_RELOC {
|
|
rt = objabi.R_RISCV_PCREL_STYPE
|
|
addr = &p.To
|
|
} else if p.Mark&NEED_GOT_PCREL_ITYPE_RELOC == NEED_GOT_PCREL_ITYPE_RELOC {
|
|
rt = objabi.R_RISCV_GOT_PCREL_ITYPE
|
|
addr = &p.From
|
|
} else {
|
|
break
|
|
}
|
|
if p.As == AAUIPC {
|
|
if p.Link == nil {
|
|
ctxt.Diag("AUIPC needing PC-relative reloc missing following instruction")
|
|
break
|
|
}
|
|
addr = &p.RestArgs[0].Addr
|
|
}
|
|
if addr.Sym == nil {
|
|
ctxt.Diag("PC-relative relocation missing symbol")
|
|
break
|
|
}
|
|
if addr.Sym.Type == objabi.STLSBSS {
|
|
if ctxt.Flag_shared {
|
|
rt = objabi.R_RISCV_TLS_IE
|
|
} else {
|
|
rt = objabi.R_RISCV_TLS_LE
|
|
}
|
|
}
|
|
|
|
cursym.AddRel(ctxt, obj.Reloc{
|
|
Type: rt,
|
|
Off: int32(p.Pc),
|
|
Siz: 8,
|
|
Sym: addr.Sym,
|
|
Add: addr.Offset,
|
|
})
|
|
|
|
case obj.APCALIGN:
|
|
alignedValue := p.From.Offset
|
|
v := pcAlignPadLength(p.Pc, alignedValue)
|
|
offset := p.Pc
|
|
for ; v >= 4; v -= 4 {
|
|
// NOP
|
|
cursym.WriteBytes(ctxt, offset, []byte{0x13, 0, 0, 0})
|
|
offset += 4
|
|
}
|
|
continue
|
|
}
|
|
|
|
offset := p.Pc
|
|
for _, ins := range instructionsForProg(p) {
|
|
if ic, err := ins.encode(); err == nil {
|
|
cursym.WriteInt(ctxt, offset, ins.length(), int64(ic))
|
|
offset += int64(ins.length())
|
|
}
|
|
if ins.usesRegTmp() {
|
|
p.Mark |= USES_REG_TMP
|
|
}
|
|
}
|
|
}
|
|
|
|
obj.MarkUnsafePoints(ctxt, cursym.Func().Text, newprog, isUnsafePoint, nil)
|
|
}
|
|
|
|
func isUnsafePoint(p *obj.Prog) bool {
|
|
return p.Mark&USES_REG_TMP == USES_REG_TMP || p.From.Reg == REG_TMP || p.To.Reg == REG_TMP || p.Reg == REG_TMP
|
|
}
|
|
|
|
func ParseSuffix(prog *obj.Prog, cond string) (err error) {
|
|
switch prog.As {
|
|
case AFCVTWS, AFCVTLS, AFCVTWUS, AFCVTLUS, AFCVTWD, AFCVTLD, AFCVTWUD, AFCVTLUD:
|
|
prog.Scond, err = rmSuffixEncode(strings.TrimPrefix(cond, "."))
|
|
}
|
|
return
|
|
}
|
|
|
|
var LinkRISCV64 = obj.LinkArch{
|
|
Arch: sys.ArchRISCV64,
|
|
Init: buildop,
|
|
Preprocess: preprocess,
|
|
Assemble: assemble,
|
|
Progedit: progedit,
|
|
UnaryDst: unaryDst,
|
|
DWARFRegisters: RISCV64DWARFRegisters,
|
|
}
|