go/src/pkg/reflect/value.go
Robert Griesemer d65a5cce89 1) Change default gofmt default settings for
parsing and printing to new syntax.

   Use -oldparser to parse the old syntax,
   use -oldprinter to print the old syntax.

2) Change default gofmt formatting settings
   to use tabs for indentation only and to use
   spaces for alignment. This will make the code
   alignment insensitive to an editor's tabwidth.

   Use -spaces=false to use tabs for alignment.

3) Manually changed src/exp/parser/parser_test.go
   so that it doesn't try to parse the parser's
   source files using the old syntax (they have
   new syntax now).

4) gofmt -w src misc test/bench

4th set of files.

R=rsc
CC=golang-dev
https://golang.org/cl/180049
2009-12-15 15:40:16 -08:00

1274 lines
30 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"runtime"
"unsafe"
)
const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
const cannotSet = "cannot set value obtained via unexported struct field"
type addr unsafe.Pointer
// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc addr, n uintptr) {
dst := uintptr(adst)
src := uintptr(asrc)
switch {
case src < dst && src+n > dst:
// byte copy backward
// careful: i is unsigned
for i := n; i > 0; {
i--
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
case (n|src|dst)&(ptrSize-1) != 0:
// byte copy forward
for i := uintptr(0); i < n; i++ {
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
default:
// word copy forward
for i := uintptr(0); i < n; i += ptrSize {
*(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i))
}
}
}
// Value is the common interface to reflection values.
// The implementations of Value (e.g., ArrayValue, StructValue)
// have additional type-specific methods.
type Value interface {
// Type returns the value's type.
Type() Type
// Interface returns the value as an interface{}.
Interface() interface{}
// CanSet returns whether the value can be changed.
// Values obtained by the use of non-exported struct fields
// can be used in Get but not Set.
// If CanSet() returns false, calling the type-specific Set
// will cause a crash.
CanSet() bool
// SetValue assigns v to the value; v must have the same type as the value.
SetValue(v Value)
// Addr returns a pointer to the underlying data.
// It is for advanced clients that also
// import the "unsafe" package.
Addr() uintptr
// Method returns a FuncValue corresponding to the value's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use
// the value as the receiver.
Method(i int) *FuncValue
getAddr() addr
}
type value struct {
typ Type
addr addr
canSet bool
}
func (v *value) Type() Type { return v.typ }
func (v *value) Addr() uintptr { return uintptr(v.addr) }
func (v *value) getAddr() addr { return v.addr }
func (v *value) Interface() interface{} {
if typ, ok := v.typ.(*InterfaceType); ok {
// There are two different representations of interface values,
// one if the interface type has methods and one if it doesn't.
// These two representations require different expressions
// to extract correctly.
if typ.NumMethod() == 0 {
// Extract as interface value without methods.
return *(*interface{})(v.addr)
}
// Extract from v.addr as interface value with methods.
return *(*interface {
m()
})(v.addr)
}
return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
}
func (v *value) CanSet() bool { return v.canSet }
/*
* basic types
*/
// BoolValue represents a bool value.
type BoolValue struct {
value
}
// Get returns the underlying bool value.
func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
// Set sets v to the value x.
func (v *BoolValue) Set(x bool) {
if !v.canSet {
panic(cannotSet)
}
*(*bool)(v.addr) = x
}
// Set sets v to the value x.
func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
// FloatValue represents a float value.
type FloatValue struct {
value
}
// Get returns the underlying float value.
func (v *FloatValue) Get() float { return *(*float)(v.addr) }
// Set sets v to the value x.
func (v *FloatValue) Set(x float) {
if !v.canSet {
panic(cannotSet)
}
*(*float)(v.addr) = x
}
// Set sets v to the value x.
func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
// Float32Value represents a float32 value.
type Float32Value struct {
value
}
// Get returns the underlying float32 value.
func (v *Float32Value) Get() float32 { return *(*float32)(v.addr) }
// Set sets v to the value x.
func (v *Float32Value) Set(x float32) {
if !v.canSet {
panic(cannotSet)
}
*(*float32)(v.addr) = x
}
// Set sets v to the value x.
func (v *Float32Value) SetValue(x Value) { v.Set(x.(*Float32Value).Get()) }
// Float64Value represents a float64 value.
type Float64Value struct {
value
}
// Get returns the underlying float64 value.
func (v *Float64Value) Get() float64 { return *(*float64)(v.addr) }
// Set sets v to the value x.
func (v *Float64Value) Set(x float64) {
if !v.canSet {
panic(cannotSet)
}
*(*float64)(v.addr) = x
}
// Set sets v to the value x.
func (v *Float64Value) SetValue(x Value) { v.Set(x.(*Float64Value).Get()) }
// IntValue represents an int value.
type IntValue struct {
value
}
// Get returns the underlying int value.
func (v *IntValue) Get() int { return *(*int)(v.addr) }
// Set sets v to the value x.
func (v *IntValue) Set(x int) {
if !v.canSet {
panic(cannotSet)
}
*(*int)(v.addr) = x
}
// Set sets v to the value x.
func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
// Int8Value represents an int8 value.
type Int8Value struct {
value
}
// Get returns the underlying int8 value.
func (v *Int8Value) Get() int8 { return *(*int8)(v.addr) }
// Set sets v to the value x.
func (v *Int8Value) Set(x int8) {
if !v.canSet {
panic(cannotSet)
}
*(*int8)(v.addr) = x
}
// Set sets v to the value x.
func (v *Int8Value) SetValue(x Value) { v.Set(x.(*Int8Value).Get()) }
// Int16Value represents an int16 value.
type Int16Value struct {
value
}
// Get returns the underlying int16 value.
func (v *Int16Value) Get() int16 { return *(*int16)(v.addr) }
// Set sets v to the value x.
func (v *Int16Value) Set(x int16) {
if !v.canSet {
panic(cannotSet)
}
*(*int16)(v.addr) = x
}
// Set sets v to the value x.
func (v *Int16Value) SetValue(x Value) { v.Set(x.(*Int16Value).Get()) }
// Int32Value represents an int32 value.
type Int32Value struct {
value
}
// Get returns the underlying int32 value.
func (v *Int32Value) Get() int32 { return *(*int32)(v.addr) }
// Set sets v to the value x.
func (v *Int32Value) Set(x int32) {
if !v.canSet {
panic(cannotSet)
}
*(*int32)(v.addr) = x
}
// Set sets v to the value x.
func (v *Int32Value) SetValue(x Value) { v.Set(x.(*Int32Value).Get()) }
// Int64Value represents an int64 value.
type Int64Value struct {
value
}
// Get returns the underlying int64 value.
func (v *Int64Value) Get() int64 { return *(*int64)(v.addr) }
// Set sets v to the value x.
func (v *Int64Value) Set(x int64) {
if !v.canSet {
panic(cannotSet)
}
*(*int64)(v.addr) = x
}
// Set sets v to the value x.
func (v *Int64Value) SetValue(x Value) { v.Set(x.(*Int64Value).Get()) }
// StringValue represents a string value.
type StringValue struct {
value
}
// Get returns the underlying string value.
func (v *StringValue) Get() string { return *(*string)(v.addr) }
// Set sets v to the value x.
func (v *StringValue) Set(x string) {
if !v.canSet {
panic(cannotSet)
}
*(*string)(v.addr) = x
}
// Set sets v to the value x.
func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
// UintValue represents a uint value.
type UintValue struct {
value
}
// Get returns the underlying uint value.
func (v *UintValue) Get() uint { return *(*uint)(v.addr) }
// Set sets v to the value x.
func (v *UintValue) Set(x uint) {
if !v.canSet {
panic(cannotSet)
}
*(*uint)(v.addr) = x
}
// Set sets v to the value x.
func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
// Uint8Value represents a uint8 value.
type Uint8Value struct {
value
}
// Get returns the underlying uint8 value.
func (v *Uint8Value) Get() uint8 { return *(*uint8)(v.addr) }
// Set sets v to the value x.
func (v *Uint8Value) Set(x uint8) {
if !v.canSet {
panic(cannotSet)
}
*(*uint8)(v.addr) = x
}
// Set sets v to the value x.
func (v *Uint8Value) SetValue(x Value) { v.Set(x.(*Uint8Value).Get()) }
// Uint16Value represents a uint16 value.
type Uint16Value struct {
value
}
// Get returns the underlying uint16 value.
func (v *Uint16Value) Get() uint16 { return *(*uint16)(v.addr) }
// Set sets v to the value x.
func (v *Uint16Value) Set(x uint16) {
if !v.canSet {
panic(cannotSet)
}
*(*uint16)(v.addr) = x
}
// Set sets v to the value x.
func (v *Uint16Value) SetValue(x Value) { v.Set(x.(*Uint16Value).Get()) }
// Uint32Value represents a uint32 value.
type Uint32Value struct {
value
}
// Get returns the underlying uint32 value.
func (v *Uint32Value) Get() uint32 { return *(*uint32)(v.addr) }
// Set sets v to the value x.
func (v *Uint32Value) Set(x uint32) {
if !v.canSet {
panic(cannotSet)
}
*(*uint32)(v.addr) = x
}
// Set sets v to the value x.
func (v *Uint32Value) SetValue(x Value) { v.Set(x.(*Uint32Value).Get()) }
// Uint64Value represents a uint64 value.
type Uint64Value struct {
value
}
// Get returns the underlying uint64 value.
func (v *Uint64Value) Get() uint64 { return *(*uint64)(v.addr) }
// Set sets v to the value x.
func (v *Uint64Value) Set(x uint64) {
if !v.canSet {
panic(cannotSet)
}
*(*uint64)(v.addr) = x
}
// Set sets v to the value x.
func (v *Uint64Value) SetValue(x Value) { v.Set(x.(*Uint64Value).Get()) }
// UintptrValue represents a uintptr value.
type UintptrValue struct {
value
}
// Get returns the underlying uintptr value.
func (v *UintptrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set sets v to the value x.
func (v *UintptrValue) Set(x uintptr) {
if !v.canSet {
panic(cannotSet)
}
*(*uintptr)(v.addr) = x
}
// Set sets v to the value x.
func (v *UintptrValue) SetValue(x Value) { v.Set(x.(*UintptrValue).Get()) }
// UnsafePointerValue represents an unsafe.Pointer value.
type UnsafePointerValue struct {
value
}
// Get returns the underlying uintptr value.
// Get returns uintptr, not unsafe.Pointer, so that
// programs that do not import "unsafe" cannot
// obtain a value of unsafe.Pointer type from "reflect".
func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
// Set sets v to the value x.
func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
if !v.canSet {
panic(cannotSet)
}
*(*unsafe.Pointer)(v.addr) = x
}
// Set sets v to the value x.
func (v *UnsafePointerValue) SetValue(x Value) {
v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
}
func typesMustMatch(t1, t2 Type) {
if t1 != t2 {
panicln("type mismatch:", t1.String(), "!=", t2.String())
}
}
/*
* array
*/
// ArrayOrSliceValue is the common interface
// implemented by both ArrayValue and SliceValue.
type ArrayOrSliceValue interface {
Value
Len() int
Cap() int
Elem(i int) Value
addr() addr
}
// ArrayCopy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// The arrays dst and src must have the same element type.
func ArrayCopy(dst, src ArrayOrSliceValue) int {
// TODO: This will have to move into the runtime
// once the real gc goes in.
de := dst.Type().(ArrayOrSliceType).Elem()
se := src.Type().(ArrayOrSliceType).Elem()
typesMustMatch(de, se)
n := dst.Len()
if xn := src.Len(); n > xn {
n = xn
}
memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
return n
}
// An ArrayValue represents an array.
type ArrayValue struct {
value
}
// Len returns the length of the array.
func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
// Cap returns the capacity of the array (equal to Len()).
func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
// addr returns the base address of the data in the array.
func (v *ArrayValue) addr() addr { return v.value.addr }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ArrayValue) Set(x *ArrayValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
ArrayCopy(v, x)
}
// Set sets v to the value x.
func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
// Elem returns the i'th element of v.
func (v *ArrayValue) Elem(i int) Value {
typ := v.typ.(*ArrayType).Elem()
n := v.Len()
if i < 0 || i >= n {
panic("index", i, "in array len", n)
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.canSet)
}
/*
* slice
*/
// runtime representation of slice
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
// A SliceValue represents a slice.
type SliceValue struct {
value
}
func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
// IsNil returns whether v is a nil slice.
func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
// Len returns the length of the slice.
func (v *SliceValue) Len() int { return int(v.slice().Len) }
// Cap returns the capacity of the slice.
func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
// addr returns the base address of the data in the slice.
func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
// SetLen changes the length of v.
// The new length n must be between 0 and the capacity, inclusive.
func (v *SliceValue) SetLen(n int) {
s := v.slice()
if n < 0 || n > int(s.Cap) {
panicln("SetLen", n, "with capacity", s.Cap)
}
s.Len = n
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *SliceValue) Set(x *SliceValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*v.slice() = *x.slice()
}
// Set sets v to the value x.
func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
// Slice returns a sub-slice of the slice v.
func (v *SliceValue) Slice(beg, end int) *SliceValue {
cap := v.Cap()
if beg < 0 || end < beg || end > cap {
panic("slice bounds [", beg, ":", end, "] with capacity ", cap)
}
typ := v.typ.(*SliceType)
s := new(SliceHeader)
s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
s.Len = end - beg
s.Cap = cap - beg
return newValue(typ, addr(s), v.canSet).(*SliceValue)
}
// Elem returns the i'th element of v.
func (v *SliceValue) Elem(i int) Value {
typ := v.typ.(*SliceType).Elem()
n := v.Len()
if i < 0 || i >= n {
panicln("index", i, "in array of length", n)
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.canSet)
}
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
s := &SliceHeader{
Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
Len: len,
Cap: cap,
}
return newValue(typ, addr(s), true).(*SliceValue)
}
/*
* chan
*/
// A ChanValue represents a chan.
type ChanValue struct {
value
}
// IsNil returns whether v is a nil channel.
func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ChanValue) Set(x *ChanValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chansend(ch, val *byte, pres *bool)
func chanrecv(ch, val *byte, pres *bool)
func chanclosed(ch *byte) bool
func chanclose(ch *byte)
func chanlen(ch *byte) int32
func chancap(ch *byte) int32
// Closed returns the result of closed(c) on the underlying channel.
func (v *ChanValue) Closed() bool {
ch := *(**byte)(v.addr)
return chanclosed(ch)
}
// Close closes the channel.
func (v *ChanValue) Close() {
ch := *(**byte)(v.addr)
chanclose(ch)
}
func (v *ChanValue) Len() int {
ch := *(**byte)(v.addr)
return int(chanlen(ch))
}
func (v *ChanValue) Cap() int {
ch := *(**byte)(v.addr)
return int(chancap(ch))
}
// internal send; non-blocking if b != nil
func (v *ChanValue) send(x Value, b *bool) {
t := v.Type().(*ChanType)
if t.Dir()&SendDir == 0 {
panic("send on recv-only channel")
}
typesMustMatch(t.Elem(), x.Type())
ch := *(**byte)(v.addr)
chansend(ch, (*byte)(x.getAddr()), b)
}
// internal recv; non-blocking if b != nil
func (v *ChanValue) recv(b *bool) Value {
t := v.Type().(*ChanType)
if t.Dir()&RecvDir == 0 {
panic("recv on send-only channel")
}
ch := *(**byte)(v.addr)
x := MakeZero(t.Elem())
chanrecv(ch, (*byte)(x.getAddr()), b)
return x
}
// Send sends x on the channel v.
func (v *ChanValue) Send(x Value) { v.send(x, nil) }
// Recv receives and returns a value from the channel v.
func (v *ChanValue) Recv() Value { return v.recv(nil) }
// TrySend attempts to sends x on the channel v but will not block.
// It returns true if the value was sent, false otherwise.
func (v *ChanValue) TrySend(x Value) bool {
var ok bool
v.send(x, &ok)
return ok
}
// TryRecv attempts to receive a value from the channel v but will not block.
// It returns the value if one is received, nil otherwise.
func (v *ChanValue) TryRecv() Value {
var ok bool
x := v.recv(&ok)
if !ok {
return nil
}
return x
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ *ChanType, buffer int) *ChanValue {
if buffer < 0 {
panic("MakeChan: negative buffer size")
}
if typ.Dir() != BothDir {
panic("MakeChan: unidirectional channel type")
}
v := MakeZero(typ).(*ChanValue)
*(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
return v
}
/*
* func
*/
// A FuncValue represents a function value.
type FuncValue struct {
value
first *value
isInterface bool
}
// IsNil returns whether v is a nil function.
func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *FuncValue) Set(x *FuncValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *value) Method(i int) *FuncValue {
t := v.Type().uncommon()
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
fn := p.tfn
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: v, isInterface: false}
return fv
}
// implemented in ../pkg/runtime/*/asm.s
func call(fn, arg *byte, n uint32)
type tiny struct {
b byte
}
// Call calls the function v with input parameters in.
// It returns the function's output parameters as Values.
func (fv *FuncValue) Call(in []Value) []Value {
var structAlign = Typeof((*tiny)(nil)).(*PtrType).Elem().Size()
t := fv.Type().(*FuncType)
nin := len(in)
if fv.first != nil && !fv.isInterface {
nin++
}
if nin != t.NumIn() {
panic("FuncValue: wrong argument count")
}
nout := t.NumOut()
// Compute arg size & allocate.
// This computation is 6g/8g-dependent
// and probably wrong for gccgo, but so
// is most of this function.
size := uintptr(0)
if fv.isInterface {
// extra word for interface value
size += ptrSize
}
for i := 0; i < nin; i++ {
tv := t.In(i)
a := uintptr(tv.Align())
size = (size + a - 1) &^ (a - 1)
size += tv.Size()
}
size = (size + structAlign - 1) &^ (structAlign - 1)
for i := 0; i < nout; i++ {
tv := t.Out(i)
a := uintptr(tv.Align())
size = (size + a - 1) &^ (a - 1)
size += tv.Size()
}
// size must be > 0 in order for &args[0] to be valid.
// the argument copying is going to round it up to
// a multiple of 8 anyway, so make it 8 to begin with.
if size < 8 {
size = 8
}
args := make([]byte, size)
ptr := uintptr(unsafe.Pointer(&args[0]))
// Copy into args.
//
// TODO(rsc): revisit when reference counting happens.
// This one may be fine. The values are holding up the
// references for us, so maybe this can be treated
// like any stack-to-stack copy.
off := uintptr(0)
delta := 0
if v := fv.first; v != nil {
// Hard-wired first argument.
if fv.isInterface {
// v is a single uninterpreted word
memmove(addr(ptr), v.getAddr(), ptrSize)
off = ptrSize
} else {
// v is a real value
tv := v.Type()
typesMustMatch(t.In(0), tv)
n := tv.Size()
memmove(addr(ptr), v.getAddr(), n)
off = n
delta = 1
}
}
for i, v := range in {
tv := v.Type()
typesMustMatch(t.In(i+delta), tv)
a := uintptr(tv.Align())
off = (off + a - 1) &^ (a - 1)
n := tv.Size()
memmove(addr(ptr+off), v.getAddr(), n)
off += n
}
off = (off + structAlign - 1) &^ (structAlign - 1)
// Call
call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size))
// Copy return values out of args.
//
// TODO(rsc): revisit like above.
ret := make([]Value, nout)
for i := 0; i < nout; i++ {
tv := t.Out(i)
a := uintptr(tv.Align())
off = (off + a - 1) &^ (a - 1)
v := MakeZero(tv)
n := tv.Size()
memmove(v.getAddr(), addr(ptr+off), n)
ret[i] = v
off += n
}
return ret
}
/*
* interface
*/
// An InterfaceValue represents an interface value.
type InterfaceValue struct {
value
}
// No Get because v.Interface() is available.
// IsNil returns whether v is a nil interface value.
func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
// Elem returns the concrete value stored in the interface value v.
func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
// ../runtime/reflect.cgo
func setiface(typ *InterfaceType, x *interface{}, addr addr)
// Set assigns x to v.
func (v *InterfaceValue) Set(x Value) {
var i interface{}
if x != nil {
i = x.Interface()
}
if !v.canSet {
panic(cannotSet)
}
// Two different representations; see comment in Get.
// Empty interface is easy.
t := v.typ.(*InterfaceType)
if t.NumMethod() == 0 {
*(*interface{})(v.addr) = i
return
}
// Non-empty interface requires a runtime check.
setiface(t, &i, v.addr)
}
// Set sets v to the value x.
func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *InterfaceValue) Method(i int) *FuncValue {
t := v.Type().(*InterfaceType)
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
// Interface is two words: itable, data.
tab := *(**runtime.Itable)(v.addr)
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), true}
// Function pointer is at p.perm in the table.
fn := tab.Fn[p.perm]
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: data, isInterface: true}
return fv
}
/*
* map
*/
// A MapValue represents a map value.
type MapValue struct {
value
}
// IsNil returns whether v is a nil map value.
func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *MapValue) Set(x *MapValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *MapValue) SetValue(x Value) { v.Set(x.(*MapValue)) }
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
func mapassign(m, key, val *byte)
func maplen(m *byte) int32
func mapiterinit(m *byte) *byte
func mapiternext(it *byte)
func mapiterkey(it *byte, key *byte) bool
func makemap(t *runtime.MapType) *byte
// Elem returns the value associated with key in the map v.
// It returns nil if key is not found in the map.
func (v *MapValue) Elem(key Value) Value {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
m := *(**byte)(v.addr)
if m == nil {
return nil
}
newval := MakeZero(t.Elem())
if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
return nil
}
return newval
}
// SetElem sets the value associated with key in the map v to val.
// If val is nil, Put deletes the key from map.
func (v *MapValue) SetElem(key, val Value) {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
var vaddr *byte
if val != nil {
typesMustMatch(t.Elem(), val.Type())
vaddr = (*byte)(val.getAddr())
}
m := *(**byte)(v.addr)
mapassign(m, (*byte)(key.getAddr()), vaddr)
}
// Len returns the number of keys in the map v.
func (v *MapValue) Len() int {
m := *(**byte)(v.addr)
if m == nil {
return 0
}
return int(maplen(m))
}
// Keys returns a slice containing all the keys present in the map,
// in unspecified order.
func (v *MapValue) Keys() []Value {
tk := v.Type().(*MapType).Key()
m := *(**byte)(v.addr)
mlen := int32(0)
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
k := MakeZero(tk)
if !mapiterkey(it, (*byte)(k.getAddr())) {
break
}
a[i] = k
mapiternext(it)
}
return a[0:i]
}
// MakeMap creates a new map of the specified type.
func MakeMap(typ *MapType) *MapValue {
v := MakeZero(typ).(*MapValue)
*(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
return v
}
/*
* ptr
*/
// A PtrValue represents a pointer.
type PtrValue struct {
value
}
// IsNil returns whether v is a nil pointer.
func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *PtrValue) Set(x *PtrValue) {
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
// TODO: This will have to move into the runtime
// once the new gc goes in
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *PtrValue) SetValue(x Value) { v.Set(x.(*PtrValue)) }
// PointTo changes v to point to x.
func (v *PtrValue) PointTo(x Value) {
if !x.CanSet() {
panic("cannot set x; cannot point to x")
}
typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.Addr()
}
// Elem returns the value that v points to.
// If v is a nil pointer, Elem returns a nil Value.
func (v *PtrValue) Elem() Value {
if v.IsNil() {
return nil
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet)
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
if pv, ok := v.(*PtrValue); ok {
return pv.Elem()
}
return v
}
/*
* struct
*/
// A StructValue represents a struct value.
type StructValue struct {
value
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *StructValue) Set(x *StructValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.canSet {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
memmove(v.addr, x.addr, v.typ.Size())
}
// Set sets v to the value x.
func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
// Field returns the i'th field of the struct.
func (v *StructValue) Field(i int) Value {
t := v.typ.(*StructType)
if i < 0 || i >= t.NumField() {
return nil
}
f := t.Field(i)
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "")
}
// FieldByIndex returns the nested field corresponding to index.
func (t *StructValue) FieldByIndex(index []int) (v Value) {
v = t
for i, x := range index {
if i > 0 {
if p, ok := v.(*PtrValue); ok {
v = p.Elem()
}
if s, ok := v.(*StructValue); ok {
t = s
} else {
v = nil
return
}
}
v = t.Field(x)
}
return
}
// FieldByName returns the struct field with the given name.
// The result is nil if no field was found.
func (t *StructValue) FieldByName(name string) Value {
if f, ok := t.Type().(*StructType).FieldByName(name); ok {
return t.FieldByIndex(f.Index)
}
return nil
}
// NumField returns the number of fields in the struct.
func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
/*
* constructors
*/
// NewValue returns a new Value initialized to the concrete value
// stored in the interface i. NewValue(nil) returns nil.
func NewValue(i interface{}) Value {
if i == nil {
return nil
}
t, a := unsafe.Reflect(i)
return newValue(toType(t), addr(a), true)
}
func newFuncValue(typ Type, addr addr, canSet bool) *FuncValue {
return &FuncValue{value: value{typ, addr, canSet}}
}
func newValue(typ Type, addr addr, canSet bool) Value {
// FuncValue has a different layout;
// it needs a extra space for the fixed receivers.
if _, ok := typ.(*FuncType); ok {
return newFuncValue(typ, addr, canSet)
}
// All values have same memory layout;
// build once and convert.
v := &struct{ value }{value{typ, addr, canSet}}
switch typ.(type) {
case *ArrayType:
// TODO(rsc): Something must prevent
// clients of the package from doing
// this same kind of cast.
// We should be allowed because
// they're our types.
// Something about implicit assignment
// to struct fields.
return (*ArrayValue)(v)
case *BoolType:
return (*BoolValue)(v)
case *ChanType:
return (*ChanValue)(v)
case *FloatType:
return (*FloatValue)(v)
case *Float32Type:
return (*Float32Value)(v)
case *Float64Type:
return (*Float64Value)(v)
case *IntType:
return (*IntValue)(v)
case *Int8Type:
return (*Int8Value)(v)
case *Int16Type:
return (*Int16Value)(v)
case *Int32Type:
return (*Int32Value)(v)
case *Int64Type:
return (*Int64Value)(v)
case *InterfaceType:
return (*InterfaceValue)(v)
case *MapType:
return (*MapValue)(v)
case *PtrType:
return (*PtrValue)(v)
case *SliceType:
return (*SliceValue)(v)
case *StringType:
return (*StringValue)(v)
case *StructType:
return (*StructValue)(v)
case *UintType:
return (*UintValue)(v)
case *Uint8Type:
return (*Uint8Value)(v)
case *Uint16Type:
return (*Uint16Value)(v)
case *Uint32Type:
return (*Uint32Value)(v)
case *Uint64Type:
return (*Uint64Value)(v)
case *UintptrType:
return (*UintptrValue)(v)
case *UnsafePointerType:
return (*UnsafePointerValue)(v)
}
panicln("newValue", typ.String())
}
// MakeZero returns a zero Value for the specified Type.
func MakeZero(typ Type) Value {
if typ == nil {
return nil
}
return newValue(typ, addr(unsafe.New(typ)), true)
}