go/src/cmd/internal/obj/pcln.go
Russ Cox d6f6e420fc [dev.cc] cmd/internal/obj: convert liblink C to Go
This CL adds the real cmd/internal/obj packages.
Collectively they correspond to the liblink library.
The conversion was done using rsc.io/c2go's run script
at rsc.io/c2go repo version 706fac7.

This is not the final conversion, just the first working draft.
There will be more updates, but this works well enough
to use with go tool objwriter and pass all.bash.

Change-Id: I9359e835425f995a392bb2fcdbebf29511477bed
Reviewed-on: https://go-review.googlesource.com/3046
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-01-21 03:02:27 +00:00

371 lines
9.1 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package obj
import (
"fmt"
"log"
)
func addvarint(ctxt *Link, d *Pcdata, val uint32) {
var v uint32
for v = val; v >= 0x80; v >>= 7 {
d.P = append(d.P, uint8(v|0x80))
}
d.P = append(d.P, uint8(v))
}
// funcpctab writes to dst a pc-value table mapping the code in func to the values
// returned by valfunc parameterized by arg. The invocation of valfunc to update the
// current value is, for each p,
//
// val = valfunc(func, val, p, 0, arg);
// record val as value at p->pc;
// val = valfunc(func, val, p, 1, arg);
//
// where func is the function, val is the current value, p is the instruction being
// considered, and arg can be used to further parameterize valfunc.
func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
var dbg int
var i int
var oldval int32
var val int32
var started int32
var delta uint32
var pc int64
var p *Prog
// To debug a specific function, uncomment second line and change name.
dbg = 0
//dbg = strcmp(func->name, "main.main") == 0;
//dbg = strcmp(desc, "pctofile") == 0;
ctxt.Debugpcln += int32(dbg)
dst.P = dst.P[:0]
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "funcpctab %s [valfunc=%s]\n", func_.Name, desc)
}
val = -1
oldval = val
if func_.Text == nil {
ctxt.Debugpcln -= int32(dbg)
return
}
pc = func_.Text.Pc
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(pc), val, func_.Text)
}
started = 0
for p = func_.Text; p != nil; p = p.Link {
// Update val. If it's not changing, keep going.
val = valfunc(ctxt, func_, val, p, 0, arg)
if val == oldval && started != 0 {
val = valfunc(ctxt, func_, val, p, 1, arg)
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
}
continue
}
// If the pc of the next instruction is the same as the
// pc of this instruction, this instruction is not a real
// instruction. Keep going, so that we only emit a delta
// for a true instruction boundary in the program.
if p.Link != nil && p.Link.Pc == p.Pc {
val = valfunc(ctxt, func_, val, p, 1, arg)
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
}
continue
}
// The table is a sequence of (value, pc) pairs, where each
// pair states that the given value is in effect from the current position
// up to the given pc, which becomes the new current position.
// To generate the table as we scan over the program instructions,
// we emit a "(value" when pc == func->value, and then
// each time we observe a change in value we emit ", pc) (value".
// When the scan is over, we emit the closing ", pc)".
//
// The table is delta-encoded. The value deltas are signed and
// transmitted in zig-zag form, where a complement bit is placed in bit 0,
// and the pc deltas are unsigned. Both kinds of deltas are sent
// as variable-length little-endian base-128 integers,
// where the 0x80 bit indicates that the integer continues.
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(int64(p.Pc)), val, p)
}
if started != 0 {
addvarint(ctxt, dst, uint32((p.Pc-pc)/int64(ctxt.Arch.Minlc)))
pc = p.Pc
}
delta = uint32(val) - uint32(oldval)
if delta>>31 != 0 {
delta = 1 | ^(delta << 1)
} else {
delta <<= 1
}
addvarint(ctxt, dst, delta)
oldval = val
started = 1
val = valfunc(ctxt, func_, val, p, 1, arg)
}
if started != 0 {
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "%6x done\n", uint64(int64(func_.Text.Pc)+func_.Size))
}
addvarint(ctxt, dst, uint32((func_.Value+func_.Size-pc)/int64(ctxt.Arch.Minlc)))
addvarint(ctxt, dst, 0) // terminator
}
if ctxt.Debugpcln != 0 {
fmt.Fprintf(ctxt.Bso, "wrote %d bytes to %p\n", len(dst.P), dst)
for i = 0; i < len(dst.P); i++ {
fmt.Fprintf(ctxt.Bso, " %02x", dst.P[i])
}
fmt.Fprintf(ctxt.Bso, "\n")
}
ctxt.Debugpcln -= int32(dbg)
}
// pctofileline computes either the file number (arg == 0)
// or the line number (arg == 1) to use at p.
// Because p->lineno applies to p, phase == 0 (before p)
// takes care of the update.
func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
var i int32
var l int32
var f *LSym
var pcln *Pcln
if int(p.As) == ctxt.Arch.ATEXT || int(p.As) == ctxt.Arch.ANOP || int(p.As) == ctxt.Arch.AUSEFIELD || p.Lineno == 0 || phase == 1 {
return oldval
}
linkgetline(ctxt, p.Lineno, &f, &l)
if f == nil {
// print("getline failed for %s %P\n", ctxt->cursym->name, p);
return oldval
}
if arg == nil {
return l
}
pcln = arg.(*Pcln)
if f == pcln.Lastfile {
return int32(pcln.Lastindex)
}
for i = 0; i < int32(len(pcln.File)); i++ {
file := pcln.File[i]
if file == f {
pcln.Lastfile = f
pcln.Lastindex = int(i)
return int32(i)
}
}
pcln.File = append(pcln.File, f)
pcln.Lastfile = f
pcln.Lastindex = int(i)
return i
}
// pctospadj computes the sp adjustment in effect.
// It is oldval plus any adjustment made by p itself.
// The adjustment by p takes effect only after p, so we
// apply the change during phase == 1.
func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
if oldval == -1 { // starting
oldval = 0
}
if phase == 0 {
return oldval
}
if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
log.Fatalf("bad code")
}
return oldval + p.Spadj
}
// pctopcdata computes the pcdata value in effect at p.
// A PCDATA instruction sets the value in effect at future
// non-PCDATA instructions.
// Since PCDATA instructions have no width in the final code,
// it does not matter which phase we use for the update.
func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
if phase == 0 || int(p.As) != ctxt.Arch.APCDATA || p.From.Offset != int64(arg.(uint32)) {
return oldval
}
if int64(int32(p.To.Offset)) != p.To.Offset {
ctxt.Diag("overflow in PCDATA instruction: %v", p)
log.Fatalf("bad code")
}
return int32(p.To.Offset)
}
func linkpcln(ctxt *Link, cursym *LSym) {
var p *Prog
var pcln *Pcln
var i int
var npcdata int
var nfuncdata int
ctxt.Cursym = cursym
pcln = new(Pcln)
cursym.Pcln = pcln
npcdata = 0
nfuncdata = 0
for p = cursym.Text; p != nil; p = p.Link {
if int(p.As) == ctxt.Arch.APCDATA && p.From.Offset >= int64(npcdata) {
npcdata = int(p.From.Offset + 1)
}
if int(p.As) == ctxt.Arch.AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
nfuncdata = int(p.From.Offset + 1)
}
}
pcln.Pcdata = make([]Pcdata, npcdata)
pcln.Pcdata = pcln.Pcdata[:npcdata]
pcln.Funcdata = make([]*LSym, nfuncdata)
pcln.Funcdataoff = make([]int64, nfuncdata)
pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
// tabulate which pc and func data we have.
havepc := make([]uint32, (npcdata+31)/32)
havefunc := make([]uint32, (nfuncdata+31)/32)
for p = cursym.Text; p != nil; p = p.Link {
if int(p.As) == ctxt.Arch.AFUNCDATA {
if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
}
havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
}
if int(p.As) == ctxt.Arch.APCDATA {
havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
}
}
// pcdata.
for i = 0; i < npcdata; i++ {
if (havepc[i/32]>>uint(i%32))&1 == 0 {
continue
}
funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
}
// funcdata
if nfuncdata > 0 {
for p = cursym.Text; p != nil; p = p.Link {
if int(p.As) == ctxt.Arch.AFUNCDATA {
i = int(p.From.Offset)
pcln.Funcdataoff[i] = p.To.Offset
if int(p.To.Type_) != ctxt.Arch.D_CONST {
// TODO: Dedup.
//funcdata_bytes += p->to.sym->size;
pcln.Funcdata[i] = p.To.Sym
}
}
}
}
}
// iteration over encoded pcdata tables.
func getvarint(pp *[]byte) uint32 {
var p []byte
var shift int
var v uint32
v = 0
p = *pp
for shift = 0; ; shift += 7 {
v |= uint32(p[0]&0x7F) << uint(shift)
tmp7 := p
p = p[1:]
if !(tmp7[0]&0x80 != 0) {
break
}
}
*pp = p
return v
}
func pciternext(it *Pciter) {
var v uint32
var dv int32
it.pc = it.nextpc
if it.done != 0 {
return
}
if -cap(it.p) >= -cap(it.d.P[len(it.d.P):]) {
it.done = 1
return
}
// value delta
v = getvarint(&it.p)
if v == 0 && !(it.start != 0) {
it.done = 1
return
}
it.start = 0
dv = int32(v>>1) ^ (int32(v<<31) >> 31)
it.value += dv
// pc delta
v = getvarint(&it.p)
it.nextpc = it.pc + v*it.pcscale
}
func pciterinit(ctxt *Link, it *Pciter, d *Pcdata) {
it.d = *d
it.p = it.d.P
it.pc = 0
it.nextpc = 0
it.value = -1
it.start = 1
it.done = 0
it.pcscale = uint32(ctxt.Arch.Minlc)
pciternext(it)
}