go/src/cmd/compile/internal/gc/closure.go
Dave Cheney d7012ca282 cmd/compile/internal/gc: unexport more helper functions
After the removal of the old backend many types are no longer referenced
outside internal/gc. Make these functions private so that tools like
honnef.co/go/unused can spot when they become dead code. In doing so
this CL identified several previously public helpers which are no longer
used, so removes them.

This should be the last of the public functions.

Change-Id: I7e9c4e72f86f391b428b9dddb6f0d516529706c3
Reviewed-on: https://go-review.googlesource.com/29134
Run-TryBot: Dave Cheney <dave@cheney.net>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-09-15 13:57:42 +00:00

715 lines
18 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"fmt"
)
// function literals aka closures
func closurehdr(ntype *Node) {
n := Nod(OCLOSURE, nil, nil)
n.Func.Ntype = ntype
n.Func.Depth = Funcdepth
n.Func.Outerfunc = Curfn
funchdr(n)
// steal ntype's argument names and
// leave a fresh copy in their place.
// references to these variables need to
// refer to the variables in the external
// function declared below; see walkclosure.
n.List.Set(ntype.List.Slice())
n.Rlist.Set(ntype.Rlist.Slice())
ntype.List.Set(nil)
ntype.Rlist.Set(nil)
for _, n1 := range n.List.Slice() {
name := n1.Left
if name != nil {
name = newname(name.Sym)
}
a := Nod(ODCLFIELD, name, n1.Right)
a.Isddd = n1.Isddd
if name != nil {
name.Isddd = a.Isddd
}
ntype.List.Append(a)
}
for _, n2 := range n.Rlist.Slice() {
name := n2.Left
if name != nil {
name = newname(name.Sym)
}
ntype.Rlist.Append(Nod(ODCLFIELD, name, n2.Right))
}
}
func closurebody(body []*Node) *Node {
if len(body) == 0 {
body = []*Node{Nod(OEMPTY, nil, nil)}
}
func_ := Curfn
func_.Nbody.Set(body)
func_.Func.Endlineno = lineno
funcbody(func_)
// closure-specific variables are hanging off the
// ordinary ones in the symbol table; see oldname.
// unhook them.
// make the list of pointers for the closure call.
for _, v := range func_.Func.Cvars.Slice() {
// Unlink from v1; see comment in syntax.go type Param for these fields.
v1 := v.Name.Defn
v1.Name.Param.Innermost = v.Name.Param.Outer
// If the closure usage of v is not dense,
// we need to make it dense; now that we're out
// of the function in which v appeared,
// look up v.Sym in the enclosing function
// and keep it around for use in the compiled code.
//
// That is, suppose we just finished parsing the innermost
// closure f4 in this code:
//
// func f() {
// v := 1
// func() { // f2
// use(v)
// func() { // f3
// func() { // f4
// use(v)
// }()
// }()
// }()
// }
//
// At this point v.Outer is f2's v; there is no f3's v.
// To construct the closure f4 from within f3,
// we need to use f3's v and in this case we need to create f3's v.
// We are now in the context of f3, so calling oldname(v.Sym)
// obtains f3's v, creating it if necessary (as it is in the example).
//
// capturevars will decide whether to use v directly or &v.
v.Name.Param.Outer = oldname(v.Sym)
}
return func_
}
func typecheckclosure(func_ *Node, top int) {
for _, ln := range func_.Func.Cvars.Slice() {
n := ln.Name.Defn
if !n.Name.Captured {
n.Name.Captured = true
if n.Name.Decldepth == 0 {
Fatalf("typecheckclosure: var %S does not have decldepth assigned", n)
}
// Ignore assignments to the variable in straightline code
// preceding the first capturing by a closure.
if n.Name.Decldepth == decldepth {
n.Assigned = false
}
}
}
for _, ln := range func_.Func.Dcl {
if ln.Op == ONAME && (ln.Class == PPARAM || ln.Class == PPARAMOUT) {
ln.Name.Decldepth = 1
}
}
oldfn := Curfn
func_.Func.Ntype = typecheck(func_.Func.Ntype, Etype)
func_.Type = func_.Func.Ntype.Type
func_.Func.Top = top
// Type check the body now, but only if we're inside a function.
// At top level (in a variable initialization: curfn==nil) we're not
// ready to type check code yet; we'll check it later, because the
// underlying closure function we create is added to xtop.
if Curfn != nil && func_.Type != nil {
Curfn = func_
olddd := decldepth
decldepth = 1
typecheckslice(func_.Nbody.Slice(), Etop)
decldepth = olddd
Curfn = oldfn
}
// Create top-level function
xtop = append(xtop, makeclosure(func_))
}
// closurename returns name for OCLOSURE n.
// It is not as simple as it ought to be, because we typecheck nested closures
// starting from the innermost one. So when we check the inner closure,
// we don't yet have name for the outer closure. This function uses recursion
// to generate names all the way up if necessary.
var closurename_closgen int
func closurename(n *Node) *Sym {
if n.Sym != nil {
return n.Sym
}
gen := 0
outer := ""
prefix := ""
switch {
case n.Func.Outerfunc == nil:
// Global closure.
outer = "glob."
prefix = "func"
closurename_closgen++
gen = closurename_closgen
case n.Func.Outerfunc.Op == ODCLFUNC:
// The outermost closure inside of a named function.
outer = n.Func.Outerfunc.Func.Nname.Sym.Name
prefix = "func"
// Yes, functions can be named _.
// Can't use function closgen in such case,
// because it would lead to name clashes.
if !isblank(n.Func.Outerfunc.Func.Nname) {
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
} else {
closurename_closgen++
gen = closurename_closgen
}
case n.Func.Outerfunc.Op == OCLOSURE:
// Nested closure, recurse.
outer = closurename(n.Func.Outerfunc).Name
prefix = ""
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
default:
Fatalf("closurename called for %S", n)
}
n.Sym = lookupf("%s.%s%d", outer, prefix, gen)
return n.Sym
}
func makeclosure(func_ *Node) *Node {
// wrap body in external function
// that begins by reading closure parameters.
xtype := Nod(OTFUNC, nil, nil)
xtype.List.Set(func_.List.Slice())
xtype.Rlist.Set(func_.Rlist.Slice())
// create the function
xfunc := Nod(ODCLFUNC, nil, nil)
xfunc.Func.Nname = newfuncname(closurename(func_))
xfunc.Func.Nname.Sym.Flags |= SymExported // disable export
xfunc.Func.Nname.Name.Param.Ntype = xtype
xfunc.Func.Nname.Name.Defn = xfunc
declare(xfunc.Func.Nname, PFUNC)
xfunc.Func.Nname.Name.Funcdepth = func_.Func.Depth
xfunc.Func.Depth = func_.Func.Depth
xfunc.Func.Endlineno = func_.Func.Endlineno
makefuncsym(xfunc.Func.Nname.Sym)
xfunc.Nbody.Set(func_.Nbody.Slice())
xfunc.Func.Dcl = append(func_.Func.Dcl, xfunc.Func.Dcl...)
func_.Func.Dcl = nil
if xfunc.Nbody.Len() == 0 {
Fatalf("empty body - won't generate any code")
}
xfunc = typecheck(xfunc, Etop)
xfunc.Func.Closure = func_
func_.Func.Closure = xfunc
func_.Nbody.Set(nil)
func_.List.Set(nil)
func_.Rlist.Set(nil)
return xfunc
}
// capturevars is called in a separate phase after all typechecking is done.
// It decides whether each variable captured by a closure should be captured
// by value or by reference.
// We use value capturing for values <= 128 bytes that are never reassigned
// after capturing (effectively constant).
func capturevars(xfunc *Node) {
lno := lineno
lineno = xfunc.Lineno
func_ := xfunc.Func.Closure
func_.Func.Enter.Set(nil)
for _, v := range func_.Func.Cvars.Slice() {
if v.Type == nil {
// if v->type is nil, it means v looked like it was
// going to be used in the closure but wasn't.
// this happens because when parsing a, b, c := f()
// the a, b, c gets parsed as references to older
// a, b, c before the parser figures out this is a
// declaration.
v.Op = OXXX
continue
}
// type check the & of closed variables outside the closure,
// so that the outer frame also grabs them and knows they escape.
dowidth(v.Type)
outer := v.Name.Param.Outer
outermost := v.Name.Defn
// out parameters will be assigned to implicitly upon return.
if outer.Class != PPARAMOUT && !outermost.Addrtaken && !outermost.Assigned && v.Type.Width <= 128 {
v.Name.Byval = true
} else {
outermost.Addrtaken = true
outer = Nod(OADDR, outer, nil)
}
if Debug['m'] > 1 {
var name *Sym
if v.Name.Curfn != nil && v.Name.Curfn.Func.Nname != nil {
name = v.Name.Curfn.Func.Nname.Sym
}
how := "ref"
if v.Name.Byval {
how = "value"
}
Warnl(v.Lineno, "%v capturing by %s: %v (addr=%v assign=%v width=%d)", name, how, v.Sym, outermost.Addrtaken, outermost.Assigned, int32(v.Type.Width))
}
outer = typecheck(outer, Erv)
func_.Func.Enter.Append(outer)
}
lineno = lno
}
// transformclosure is called in a separate phase after escape analysis.
// It transform closure bodies to properly reference captured variables.
func transformclosure(xfunc *Node) {
lno := lineno
lineno = xfunc.Lineno
func_ := xfunc.Func.Closure
if func_.Func.Top&Ecall != 0 {
// If the closure is directly called, we transform it to a plain function call
// with variables passed as args. This avoids allocation of a closure object.
// Here we do only a part of the transformation. Walk of OCALLFUNC(OCLOSURE)
// will complete the transformation later.
// For illustration, the following closure:
// func(a int) {
// println(byval)
// byref++
// }(42)
// becomes:
// func(a int, byval int, &byref *int) {
// println(byval)
// (*&byref)++
// }(byval, &byref, 42)
// f is ONAME of the actual function.
f := xfunc.Func.Nname
// We are going to insert captured variables before input args.
var params []*Field
var decls []*Node
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
fld := newField()
fld.Funarg = FunargParams
if v.Name.Byval {
// If v is captured by value, we merely downgrade it to PPARAM.
v.Class = PPARAM
v.Ullman = 1
fld.Nname = v
} else {
// If v of type T is captured by reference,
// we introduce function param &v *T
// and v remains PAUTOHEAP with &v heapaddr
// (accesses will implicitly deref &v).
addr := newname(lookupf("&%s", v.Sym.Name))
addr.Type = ptrto(v.Type)
addr.Class = PPARAM
v.Name.Heapaddr = addr
fld.Nname = addr
}
fld.Type = fld.Nname.Type
fld.Sym = fld.Nname.Sym
params = append(params, fld)
decls = append(decls, fld.Nname)
}
if len(params) > 0 {
// Prepend params and decls.
f.Type.Params().SetFields(append(params, f.Type.Params().FieldSlice()...))
xfunc.Func.Dcl = append(decls, xfunc.Func.Dcl...)
}
// Recalculate param offsets.
if f.Type.Width > 0 {
Fatalf("transformclosure: width is already calculated")
}
dowidth(f.Type)
xfunc.Type = f.Type // update type of ODCLFUNC
} else {
// The closure is not called, so it is going to stay as closure.
var body []*Node
offset := int64(Widthptr)
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
// cv refers to the field inside of closure OSTRUCTLIT.
cv := Nod(OCLOSUREVAR, nil, nil)
cv.Type = v.Type
if !v.Name.Byval {
cv.Type = ptrto(v.Type)
}
offset = Rnd(offset, int64(cv.Type.Align))
cv.Xoffset = offset
offset += cv.Type.Width
if v.Name.Byval && v.Type.Width <= int64(2*Widthptr) {
// If it is a small variable captured by value, downgrade it to PAUTO.
v.Class = PAUTO
v.Ullman = 1
xfunc.Func.Dcl = append(xfunc.Func.Dcl, v)
body = append(body, Nod(OAS, v, cv))
} else {
// Declare variable holding addresses taken from closure
// and initialize in entry prologue.
addr := newname(lookupf("&%s", v.Sym.Name))
addr.Name.Param.Ntype = Nod(OIND, typenod(v.Type), nil)
addr.Class = PAUTO
addr.Used = true
addr.Name.Curfn = xfunc
xfunc.Func.Dcl = append(xfunc.Func.Dcl, addr)
v.Name.Heapaddr = addr
if v.Name.Byval {
cv = Nod(OADDR, cv, nil)
}
body = append(body, Nod(OAS, addr, cv))
}
}
if len(body) > 0 {
typecheckslice(body, Etop)
walkstmtlist(body)
xfunc.Func.Enter.Set(body)
xfunc.Func.Needctxt = true
}
}
lineno = lno
}
// hasemptycvars returns true iff closure func_ has an
// empty list of captured vars. OXXX nodes don't count.
func hasemptycvars(func_ *Node) bool {
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
return false
}
return true
}
// closuredebugruntimecheck applies boilerplate checks for debug flags
// and compiling runtime
func closuredebugruntimecheck(r *Node) {
if Debug_closure > 0 {
if r.Esc == EscHeap {
Warnl(r.Lineno, "heap closure, captured vars = %v", r.Func.Cvars)
} else {
Warnl(r.Lineno, "stack closure, captured vars = %v", r.Func.Cvars)
}
}
if compiling_runtime && r.Esc == EscHeap {
yyerrorl(r.Lineno, "heap-allocated closure, not allowed in runtime.")
}
}
func walkclosure(func_ *Node, init *Nodes) *Node {
// If no closure vars, don't bother wrapping.
if hasemptycvars(func_) {
if Debug_closure > 0 {
Warnl(func_.Lineno, "closure converted to global")
}
return func_.Func.Closure.Func.Nname
} else {
closuredebugruntimecheck(func_)
}
// Create closure in the form of a composite literal.
// supposing the closure captures an int i and a string s
// and has one float64 argument and no results,
// the generated code looks like:
//
// clos = &struct{.F uintptr; i *int; s *string}{func.1, &i, &s}
//
// The use of the struct provides type information to the garbage
// collector so that it can walk the closure. We could use (in this case)
// [3]unsafe.Pointer instead, but that would leave the gc in the dark.
// The information appears in the binary in the form of type descriptors;
// the struct is unnamed so that closures in multiple packages with the
// same struct type can share the descriptor.
typ := Nod(OTSTRUCT, nil, nil)
typ.List.Set1(Nod(ODCLFIELD, newname(lookup(".F")), typenod(Types[TUINTPTR])))
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
typ1 := typenod(v.Type)
if !v.Name.Byval {
typ1 = Nod(OIND, typ1, nil)
}
typ.List.Append(Nod(ODCLFIELD, newname(v.Sym), typ1))
}
clos := Nod(OCOMPLIT, nil, Nod(OIND, typ, nil))
clos.Esc = func_.Esc
clos.Right.Implicit = true
clos.List.Set(append([]*Node{Nod(OCFUNC, func_.Func.Closure.Func.Nname, nil)}, func_.Func.Enter.Slice()...))
// Force type conversion from *struct to the func type.
clos = Nod(OCONVNOP, clos, nil)
clos.Type = func_.Type
clos = typecheck(clos, Erv)
// typecheck will insert a PTRLIT node under CONVNOP,
// tag it with escape analysis result.
clos.Left.Esc = func_.Esc
// non-escaping temp to use, if any.
// orderexpr did not compute the type; fill it in now.
if x := prealloc[func_]; x != nil {
x.Type = clos.Left.Left.Type
x.Orig.Type = x.Type
clos.Left.Right = x
delete(prealloc, func_)
}
return walkexpr(clos, init)
}
func typecheckpartialcall(fn *Node, sym *Sym) {
switch fn.Op {
case ODOTINTER, ODOTMETH:
break
default:
Fatalf("invalid typecheckpartialcall")
}
// Create top-level function.
xfunc := makepartialcall(fn, fn.Type, sym)
fn.Func = xfunc.Func
fn.Right = newname(sym)
fn.Op = OCALLPART
fn.Type = xfunc.Type
}
var makepartialcall_gopkg *Pkg
func makepartialcall(fn *Node, t0 *Type, meth *Sym) *Node {
var p string
rcvrtype := fn.Left.Type
if exportname(meth.Name) {
p = fmt.Sprintf("(%-S).%s-fm", rcvrtype, meth.Name)
} else {
p = fmt.Sprintf("(%-S).(%-v)-fm", rcvrtype, meth)
}
basetype := rcvrtype
if rcvrtype.IsPtr() {
basetype = basetype.Elem()
}
if !basetype.IsInterface() && basetype.Sym == nil {
Fatalf("missing base type for %v", rcvrtype)
}
var spkg *Pkg
if basetype.Sym != nil {
spkg = basetype.Sym.Pkg
}
if spkg == nil {
if makepartialcall_gopkg == nil {
makepartialcall_gopkg = mkpkg("go")
}
spkg = makepartialcall_gopkg
}
sym := Pkglookup(p, spkg)
if sym.Flags&SymUniq != 0 {
return sym.Def
}
sym.Flags |= SymUniq
savecurfn := Curfn
Curfn = nil
xtype := Nod(OTFUNC, nil, nil)
var l []*Node
var callargs []*Node
ddd := false
xfunc := Nod(ODCLFUNC, nil, nil)
Curfn = xfunc
for i, t := range t0.Params().Fields().Slice() {
n := newname(lookupN("a", i))
n.Class = PPARAM
xfunc.Func.Dcl = append(xfunc.Func.Dcl, n)
callargs = append(callargs, n)
fld := Nod(ODCLFIELD, n, typenod(t.Type))
if t.Isddd {
fld.Isddd = true
ddd = true
}
l = append(l, fld)
}
xtype.List.Set(l)
l = nil
var retargs []*Node
for i, t := range t0.Results().Fields().Slice() {
n := newname(lookupN("r", i))
n.Class = PPARAMOUT
xfunc.Func.Dcl = append(xfunc.Func.Dcl, n)
retargs = append(retargs, n)
l = append(l, Nod(ODCLFIELD, n, typenod(t.Type)))
}
xtype.Rlist.Set(l)
xfunc.Func.Dupok = true
xfunc.Func.Nname = newfuncname(sym)
xfunc.Func.Nname.Sym.Flags |= SymExported // disable export
xfunc.Func.Nname.Name.Param.Ntype = xtype
xfunc.Func.Nname.Name.Defn = xfunc
declare(xfunc.Func.Nname, PFUNC)
// Declare and initialize variable holding receiver.
xfunc.Func.Needctxt = true
cv := Nod(OCLOSUREVAR, nil, nil)
cv.Xoffset = int64(Widthptr)
cv.Type = rcvrtype
if int(cv.Type.Align) > Widthptr {
cv.Xoffset = int64(cv.Type.Align)
}
ptr := Nod(ONAME, nil, nil)
ptr.Sym = lookup("rcvr")
ptr.Class = PAUTO
ptr.Addable = true
ptr.Ullman = 1
ptr.Used = true
ptr.Name.Curfn = xfunc
ptr.Xoffset = 0
xfunc.Func.Dcl = append(xfunc.Func.Dcl, ptr)
var body []*Node
if rcvrtype.IsPtr() || rcvrtype.IsInterface() {
ptr.Name.Param.Ntype = typenod(rcvrtype)
body = append(body, Nod(OAS, ptr, cv))
} else {
ptr.Name.Param.Ntype = typenod(ptrto(rcvrtype))
body = append(body, Nod(OAS, ptr, Nod(OADDR, cv, nil)))
}
call := Nod(OCALL, nodSym(OXDOT, ptr, meth), nil)
call.List.Set(callargs)
call.Isddd = ddd
if t0.Results().NumFields() == 0 {
body = append(body, call)
} else {
n := Nod(OAS2, nil, nil)
n.List.Set(retargs)
n.Rlist.Set1(call)
body = append(body, n)
n = Nod(ORETURN, nil, nil)
body = append(body, n)
}
xfunc.Nbody.Set(body)
xfunc = typecheck(xfunc, Etop)
sym.Def = xfunc
xtop = append(xtop, xfunc)
Curfn = savecurfn
return xfunc
}
func walkpartialcall(n *Node, init *Nodes) *Node {
// Create closure in the form of a composite literal.
// For x.M with receiver (x) type T, the generated code looks like:
//
// clos = &struct{F uintptr; R T}{M.T·f, x}
//
// Like walkclosure above.
if n.Left.Type.IsInterface() {
// Trigger panic for method on nil interface now.
// Otherwise it happens in the wrapper and is confusing.
n.Left = cheapexpr(n.Left, init)
checknil(n.Left, init)
}
typ := Nod(OTSTRUCT, nil, nil)
typ.List.Set1(Nod(ODCLFIELD, newname(lookup("F")), typenod(Types[TUINTPTR])))
typ.List.Append(Nod(ODCLFIELD, newname(lookup("R")), typenod(n.Left.Type)))
clos := Nod(OCOMPLIT, nil, Nod(OIND, typ, nil))
clos.Esc = n.Esc
clos.Right.Implicit = true
clos.List.Set1(Nod(OCFUNC, n.Func.Nname, nil))
clos.List.Append(n.Left)
// Force type conversion from *struct to the func type.
clos = Nod(OCONVNOP, clos, nil)
clos.Type = n.Type
clos = typecheck(clos, Erv)
// typecheck will insert a PTRLIT node under CONVNOP,
// tag it with escape analysis result.
clos.Left.Esc = n.Esc
// non-escaping temp to use, if any.
// orderexpr did not compute the type; fill it in now.
if x := prealloc[n]; x != nil {
x.Type = clos.Left.Left.Type
x.Orig.Type = x.Type
clos.Left.Right = x
delete(prealloc, n)
}
return walkexpr(clos, init)
}