Dave Cheney d7012ca282 cmd/compile/internal/gc: unexport more helper functions
After the removal of the old backend many types are no longer referenced
outside internal/gc. Make these functions private so that tools like
honnef.co/go/unused can spot when they become dead code. In doing so
this CL identified several previously public helpers which are no longer
used, so removes them.

This should be the last of the public functions.

Change-Id: I7e9c4e72f86f391b428b9dddb6f0d516529706c3
Reviewed-on: https://go-review.googlesource.com/29134
Run-TryBot: Dave Cheney <dave@cheney.net>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-09-15 13:57:42 +00:00

1023 lines
24 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first caninl determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then inlcalls walks each function body to
// expand calls to inlinable functions.
//
// The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. -ll and more is useful to flush out bugs.
// These additional levels (beyond -l) may be buggy and are not supported.
// 0: disabled
// 1: 40-nodes leaf functions, oneliners, lazy typechecking (default)
// 2: early typechecking of all imported bodies
// 3: allow variadic functions
// 4: allow non-leaf functions , (breaks runtime.Caller)
//
// At some point this may get another default and become switch-offable with -N.
//
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.
//
// TODO:
// - inline functions with ... args
// - handle T.meth(f()) with func f() (t T, arg, arg, )
package gc
import "fmt"
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
func fnpkg(fn *Node) *Pkg {
if fn.IsMethod() {
// method
rcvr := fn.Type.Recv().Type
if rcvr.IsPtr() {
rcvr = rcvr.Elem()
}
if rcvr.Sym == nil {
Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr)
}
return rcvr.Sym.Pkg
}
// non-method
return fn.Sym.Pkg
}
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
func typecheckinl(fn *Node) {
lno := setlineno(fn)
// typecheckinl is only for imported functions;
// their bodies may refer to unsafe as long as the package
// was marked safe during import (which was checked then).
// the ->inl of a local function has been typechecked before caninl copied it.
pkg := fnpkg(fn)
if pkg == localpkg || pkg == nil {
return // typecheckinl on local function
}
if Debug['m'] > 2 || Debug_export != 0 {
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl)
}
save_safemode := safemode
safemode = false
savefn := Curfn
Curfn = fn
typecheckslice(fn.Func.Inl.Slice(), Etop)
Curfn = savefn
safemode = save_safemode
lineno = lno
}
// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
func caninl(fn *Node) {
if fn.Op != ODCLFUNC {
Fatalf("caninl %v", fn)
}
if fn.Func.Nname == nil {
Fatalf("caninl no nname %+v", fn)
}
var reason string // reason, if any, that the function was not inlined
if Debug['m'] > 1 {
defer func() {
if reason != "" {
fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
}
}()
}
// If marked "go:noinline", don't inline
if fn.Func.Pragma&Noinline != 0 {
reason = "marked go:noinline"
return
}
// If fn has no body (is defined outside of Go), cannot inline it.
if fn.Nbody.Len() == 0 {
reason = "no function body"
return
}
if fn.Typecheck == 0 {
Fatalf("caninl on non-typechecked function %v", fn)
}
// can't handle ... args yet
if Debug['l'] < 3 {
f := fn.Type.Params().Fields()
if len := f.Len(); len > 0 {
if t := f.Index(len - 1); t.Isddd {
reason = "has ... args"
return
}
}
}
// Runtime package must not be instrumented.
// Instrument skips runtime package. However, some runtime code can be
// inlined into other packages and instrumented there. To avoid this,
// we disable inlining of runtime functions when instrumenting.
// The example that we observed is inlining of LockOSThread,
// which lead to false race reports on m contents.
if instrumenting && myimportpath == "runtime" {
reason = "instrumenting and is runtime function"
return
}
const maxBudget = 80
budget := int32(maxBudget) // allowed hairyness
if ishairylist(fn.Nbody, &budget, &reason) {
return
}
if budget < 0 {
reason = "function too complex"
return
}
savefn := Curfn
Curfn = fn
n := fn.Func.Nname
n.Func.Inl.Set(fn.Nbody.Slice())
fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice()))
inldcl := inlcopylist(n.Name.Defn.Func.Dcl)
n.Func.Inldcl.Set(inldcl)
n.Func.InlCost = maxBudget - budget
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
// this is so export can find the body of a method
fn.Type.SetNname(n)
if Debug['m'] > 1 {
fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: can inline %v\n", fn.Line(), n)
}
Curfn = savefn
}
// Look for anything we want to punt on.
func ishairylist(ll Nodes, budget *int32, reason *string) bool {
for _, n := range ll.Slice() {
if ishairy(n, budget, reason) {
return true
}
}
return false
}
func ishairy(n *Node, budget *int32, reason *string) bool {
if n == nil {
return false
}
switch n.Op {
// Call is okay if inlinable and we have the budget for the body.
case OCALLFUNC:
if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 {
*budget -= fn.InlCost
break
}
if n.isMethodCalledAsFunction() {
if d := n.Left.Sym.Def; d != nil && d.Func.Inl.Len() != 0 {
*budget -= d.Func.InlCost
break
}
}
if Debug['l'] < 4 {
*reason = "non-leaf function"
return true
}
// Call is okay if inlinable and we have the budget for the body.
case OCALLMETH:
t := n.Left.Type
if t == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if t.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", t, t)
}
if inlfn := t.Nname().Func; inlfn.Inl.Len() != 0 {
*budget -= inlfn.InlCost
break
}
if Debug['l'] < 4 {
*reason = "non-leaf method"
return true
}
// Things that are too hairy, irrespective of the budget
case OCALL, OCALLINTER, OPANIC, ORECOVER:
if Debug['l'] < 4 {
*reason = "non-leaf op " + n.Op.String()
return true
}
case OCLOSURE,
OCALLPART,
ORANGE,
OFOR,
OSELECT,
OTYPESW,
OPROC,
ODEFER,
ODCLTYPE, // can't print yet
OBREAK,
ORETJMP:
*reason = "unhandled op " + n.Op.String()
return true
}
(*budget)--
return *budget < 0 || ishairy(n.Left, budget, reason) || ishairy(n.Right, budget, reason) ||
ishairylist(n.List, budget, reason) || ishairylist(n.Rlist, budget, reason) ||
ishairylist(n.Ninit, budget, reason) || ishairylist(n.Nbody, budget, reason)
}
// Inlcopy and inlcopylist recursively copy the body of a function.
// Any name-like node of non-local class is marked for re-export by adding it to
// the exportlist.
func inlcopylist(ll []*Node) []*Node {
s := make([]*Node, 0, len(ll))
for _, n := range ll {
s = append(s, inlcopy(n))
}
return s
}
func inlcopy(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME, OTYPE, OLITERAL:
return n
}
m := *n
if m.Func != nil {
m.Func.Inl.Set(nil)
}
m.Left = inlcopy(n.Left)
m.Right = inlcopy(n.Right)
m.List.Set(inlcopylist(n.List.Slice()))
m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
return &m
}
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func inlcalls(fn *Node) {
savefn := Curfn
Curfn = fn
fn = inlnode(fn)
if fn != Curfn {
Fatalf("inlnode replaced curfn")
}
Curfn = savefn
}
// Turn an OINLCALL into a statement.
func inlconv2stmt(n *Node) {
n.Op = OBLOCK
// n->ninit stays
n.List.Set(n.Nbody.Slice())
n.Nbody.Set(nil)
n.Rlist.Set(nil)
}
// Turn an OINLCALL into a single valued expression.
// The result of inlconv2expr MUST be assigned back to n, e.g.
// n.Left = inlconv2expr(n.Left)
func inlconv2expr(n *Node) *Node {
r := n.Rlist.First()
return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
}
// Turn the rlist (with the return values) of the OINLCALL in
// n into an expression list lumping the ninit and body
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
func inlconv2list(n *Node) []*Node {
if n.Op != OINLCALL || n.Rlist.Len() == 0 {
Fatalf("inlconv2list %+v\n", n)
}
s := n.Rlist.Slice()
s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
return s
}
func inlnodelist(l Nodes) {
s := l.Slice()
for i := range s {
s[i] = inlnode(s[i])
}
}
// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here. so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
// n.Left = inlnode(n.Left)
func inlnode(n *Node) *Node {
if n == nil {
return n
}
switch n.Op {
// inhibit inlining of their argument
case ODEFER, OPROC:
switch n.Left.Op {
case OCALLFUNC, OCALLMETH:
n.Left.setNoInline(true)
}
fallthrough
// TODO do them here (or earlier),
// so escape analysis can avoid more heapmoves.
case OCLOSURE:
return n
}
lno := setlineno(n)
inlnodelist(n.Ninit)
for _, n1 := range n.Ninit.Slice() {
if n1.Op == OINLCALL {
inlconv2stmt(n1)
}
}
n.Left = inlnode(n.Left)
if n.Left != nil && n.Left.Op == OINLCALL {
n.Left = inlconv2expr(n.Left)
}
n.Right = inlnode(n.Right)
if n.Right != nil && n.Right.Op == OINLCALL {
if n.Op == OFOR {
inlconv2stmt(n.Right)
} else {
n.Right = inlconv2expr(n.Right)
}
}
inlnodelist(n.List)
switch n.Op {
case OBLOCK:
for _, n2 := range n.List.Slice() {
if n2.Op == OINLCALL {
inlconv2stmt(n2)
}
}
// if we just replaced arg in f(arg()) or return arg with an inlined call
// and arg returns multiple values, glue as list
case ORETURN,
OCALLFUNC,
OCALLMETH,
OCALLINTER,
OAPPEND,
OCOMPLEX:
if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 {
n.List.Set(inlconv2list(n.List.First()))
break
}
fallthrough
default:
s := n.List.Slice()
for i1, n1 := range s {
if n1.Op == OINLCALL {
s[i1] = inlconv2expr(s[i1])
}
}
}
inlnodelist(n.Rlist)
switch n.Op {
case OAS2FUNC:
if n.Rlist.First().Op == OINLCALL {
n.Rlist.Set(inlconv2list(n.Rlist.First()))
n.Op = OAS2
n.Typecheck = 0
n = typecheck(n, Etop)
break
}
fallthrough
default:
s := n.Rlist.Slice()
for i1, n1 := range s {
if n1.Op == OINLCALL {
if n.Op == OIF {
inlconv2stmt(n1)
} else {
s[i1] = inlconv2expr(s[i1])
}
}
}
}
inlnodelist(n.Nbody)
for _, n := range n.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
// with all the branches out of the way, it is now time to
// transmogrify this node itself unless inhibited by the
// switch at the top of this function.
switch n.Op {
case OCALLFUNC, OCALLMETH:
if n.noInline() {
return n
}
}
switch n.Op {
case OCALLFUNC:
if Debug['m'] > 3 {
fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
}
if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case
n = mkinlcall(n, n.Left, n.Isddd)
} else if n.isMethodCalledAsFunction() && n.Left.Sym.Def != nil {
n = mkinlcall(n, n.Left.Sym.Def, n.Isddd)
}
case OCALLMETH:
if Debug['m'] > 3 {
fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
}
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
if n.Left.Type == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if n.Left.Type.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
}
n = mkinlcall(n, n.Left.Type.Nname(), n.Isddd)
}
lineno = lno
return n
}
// The result of mkinlcall MUST be assigned back to n, e.g.
// n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n *Node, fn *Node, isddd bool) *Node {
save_safemode := safemode
// imported functions may refer to unsafe as long as the
// package was marked safe during import (already checked).
pkg := fnpkg(fn)
if pkg != localpkg && pkg != nil {
safemode = false
}
n = mkinlcall1(n, fn, isddd)
safemode = save_safemode
return n
}
func tinlvar(t *Field) *Node {
if t.Nname != nil && !isblank(t.Nname) {
if t.Nname.Name.Inlvar == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
return t.Nname.Name.Inlvar
}
return typecheck(nblank, Erv|Easgn)
}
var inlgen int
// if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL.
// On return ninit has the parameter assignments, the nbody is the
// inlined function body and list, rlist contain the input, output
// parameters.
// The result of mkinlcall1 MUST be assigned back to n, e.g.
// n.Left = mkinlcall1(n.Left, fn, isddd)
func mkinlcall1(n *Node, fn *Node, isddd bool) *Node {
// For variadic fn.
if fn.Func.Inl.Len() == 0 {
return n
}
if fn == Curfn || fn.Name.Defn == Curfn {
return n
}
if Debug['l'] < 2 {
typecheckinl(fn)
}
// Bingo, we have a function node, and it has an inlineable body
if Debug['m'] > 1 {
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
}
if Debug['m'] > 2 {
fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
}
ninit := n.Ninit
//dumplist("ninit pre", ninit);
var dcl []*Node
if fn.Name.Defn != nil {
// local function
dcl = fn.Func.Inldcl.Slice()
} else {
// imported function
dcl = fn.Func.Dcl
}
var retvars []*Node
i := 0
// Make temp names to use instead of the originals
for _, ln := range dcl {
if ln.Class == PPARAMOUT { // return values handled below.
continue
}
if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
continue
}
if ln.Op == ONAME {
ln.Name.Inlvar = typecheck(inlvar(ln), Erv)
if ln.Class == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class == PPARAM {
ninit.Append(Nod(ODCL, ln.Name.Inlvar, nil))
}
}
}
// temporaries for return values.
var m *Node
for _, t := range fn.Type.Results().Fields().Slice() {
if t != nil && t.Nname != nil && !isblank(t.Nname) {
m = inlvar(t.Nname)
m = typecheck(m, Erv)
t.Nname.Name.Inlvar = m
} else {
// anonymous return values, synthesize names for use in assignment that replaces return
m = retvar(t, i)
i++
}
ninit.Append(Nod(ODCL, m, nil))
retvars = append(retvars, m)
}
// assign receiver.
if fn.IsMethod() && n.Left.Op == ODOTMETH {
// method call with a receiver.
t := fn.Type.Recv()
if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Name.Inlvar == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
if n.Left.Left == nil {
Fatalf("method call without receiver: %+v", n)
}
if t == nil {
Fatalf("method call unknown receiver type: %+v", n)
}
as := Nod(OAS, tinlvar(t), n.Left.Left)
if as != nil {
as = typecheck(as, Etop)
ninit.Append(as)
}
}
// check if inlined function is variadic.
variadic := false
var varargtype *Type
varargcount := 0
for _, t := range fn.Type.Params().Fields().Slice() {
if t.Isddd {
variadic = true
varargtype = t.Type
}
}
// but if argument is dotted too forget about variadicity.
if variadic && isddd {
variadic = false
}
// check if argument is actually a returned tuple from call.
multiret := 0
if n.List.Len() == 1 {
switch n.List.First().Op {
case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH:
if n.List.First().Left.Type.Results().NumFields() > 1 {
multiret = n.List.First().Left.Type.Results().NumFields() - 1
}
}
}
if variadic {
varargcount = n.List.Len() + multiret
if n.Left.Op != ODOTMETH {
varargcount -= fn.Type.Recvs().NumFields()
}
varargcount -= fn.Type.Params().NumFields() - 1
}
// assign arguments to the parameters' temp names
as := Nod(OAS2, nil, nil)
as.Rlist.Set(n.List.Slice())
li := 0
// TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call?
if fn.IsMethod() && n.Left.Op != ODOTMETH {
// non-method call to method
if n.List.Len() == 0 {
Fatalf("non-method call to method without first arg: %+v", n)
}
// append receiver inlvar to LHS.
t := fn.Type.Recv()
if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Name.Inlvar == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
if t == nil {
Fatalf("method call unknown receiver type: %+v", n)
}
as.List.Append(tinlvar(t))
li++
}
// append ordinary arguments to LHS.
chkargcount := n.List.Len() > 1
var vararg *Node // the slice argument to a variadic call
var varargs []*Node // the list of LHS names to put in vararg.
if !chkargcount {
// 0 or 1 expression on RHS.
var i int
for _, t := range fn.Type.Params().Fields().Slice() {
if variadic && t.Isddd {
vararg = tinlvar(t)
for i = 0; i < varargcount && li < n.List.Len(); i++ {
m = argvar(varargtype, i)
varargs = append(varargs, m)
as.List.Append(m)
}
break
}
as.List.Append(tinlvar(t))
}
} else {
// match arguments except final variadic (unless the call is dotted itself)
t, it := iterFields(fn.Type.Params())
for t != nil {
if li >= n.List.Len() {
break
}
if variadic && t.Isddd {
break
}
as.List.Append(tinlvar(t))
t = it.Next()
li++
}
// match varargcount arguments with variadic parameters.
if variadic && t != nil && t.Isddd {
vararg = tinlvar(t)
var i int
for i = 0; i < varargcount && li < n.List.Len(); i++ {
m = argvar(varargtype, i)
varargs = append(varargs, m)
as.List.Append(m)
li++
}
if i == varargcount {
t = it.Next()
}
}
if li < n.List.Len() || t != nil {
Fatalf("arg count mismatch: %#v vs %.v\n", fn.Type.Params(), n.List)
}
}
if as.Rlist.Len() != 0 {
as = typecheck(as, Etop)
ninit.Append(as)
}
// turn the variadic args into a slice.
if variadic {
as = Nod(OAS, vararg, nil)
if varargcount == 0 {
as.Right = nodnil()
as.Right.Type = varargtype
} else {
vararrtype := typArray(varargtype.Elem(), int64(varargcount))
as.Right = Nod(OCOMPLIT, nil, typenod(vararrtype))
as.Right.List.Set(varargs)
as.Right = Nod(OSLICE, as.Right, nil)
}
as = typecheck(as, Etop)
ninit.Append(as)
}
// zero the outparams
for _, n := range retvars {
as = Nod(OAS, n, nil)
as = typecheck(as, Etop)
ninit.Append(as)
}
retlabel := autolabel(".i")
retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps)
inlgen++
subst := inlsubst{
retlabel: retlabel,
retvars: retvars,
}
body := subst.list(fn.Func.Inl)
lab := Nod(OLABEL, retlabel, nil)
lab.Used = true // avoid 'not used' when function doesn't have return
body = append(body, lab)
typecheckslice(body, Etop)
//dumplist("ninit post", ninit);
call := Nod(OINLCALL, nil, nil)
call.Ninit.Set(ninit.Slice())
call.Nbody.Set(body)
call.Rlist.Set(retvars)
call.Type = n.Type
call.Typecheck = 1
// Hide the args from setlno -- the parameters to the inlined
// call already have good line numbers that should be preserved.
args := as.Rlist
as.Rlist.Set(nil)
setlno(call, n.Lineno)
as.Rlist.Set(args.Slice())
//dumplist("call body", body);
n = call
// transitive inlining
// might be nice to do this before exporting the body,
// but can't emit the body with inlining expanded.
// instead we emit the things that the body needs
// and each use must redo the inlining.
// luckily these are small.
body = fn.Func.Inl.Slice()
fn.Func.Inl.Set(nil) // prevent infinite recursion (shouldn't happen anyway)
inlnodelist(call.Nbody)
for _, n := range call.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
fn.Func.Inl.Set(body)
if Debug['m'] > 2 {
fmt.Printf("%v: After inlining %+v\n\n", n.Line(), n)
}
return n
}
// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
func inlvar(var_ *Node) *Node {
if Debug['m'] > 3 {
fmt.Printf("inlvar %+v\n", var_)
}
n := newname(var_.Sym)
n.Type = var_.Type
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
n.Addrtaken = var_.Addrtaken
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's results in.
func retvar(t *Field, i int) *Node {
n := newname(lookupN("~r", i))
n.Type = t.Type
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
func argvar(t *Type, i int) *Node {
n := newname(lookupN("~arg", i))
n.Type = t.Elem()
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// The inlsubst type implements the actual inlining of a single
// function call.
type inlsubst struct {
// Target of the goto substituted in place of a return.
retlabel *Node
// Temporary result variables.
retvars []*Node
}
// list inlines a list of nodes.
func (subst *inlsubst) list(ll Nodes) []*Node {
s := make([]*Node, 0, ll.Len())
for _, n := range ll.Slice() {
s = append(s, subst.node(n))
}
return s
}
// node recursively copies a node from the saved pristine body of the
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
func (subst *inlsubst) node(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME:
if n.Name.Inlvar != nil { // These will be set during inlnode
if Debug['m'] > 2 {
fmt.Printf("substituting name %+v -> %+v\n", n, n.Name.Inlvar)
}
return n.Name.Inlvar
}
if Debug['m'] > 2 {
fmt.Printf("not substituting name %+v\n", n)
}
return n
case OLITERAL, OTYPE:
return n
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
// dump("Return before substitution", n);
case ORETURN:
m := Nod(OGOTO, subst.retlabel, nil)
m.Ninit.Set(subst.list(n.Ninit))
if len(subst.retvars) != 0 && n.List.Len() != 0 {
as := Nod(OAS2, nil, nil)
// Make a shallow copy of retvars.
// Otherwise OINLCALL.Rlist will be the same list,
// and later walk and typecheck may clobber it.
for _, n := range subst.retvars {
as.List.Append(n)
}
as.Rlist.Set(subst.list(n.List))
as = typecheck(as, Etop)
m.Ninit.Append(as)
}
typecheckslice(m.Ninit.Slice(), Etop)
m = typecheck(m, Etop)
// dump("Return after substitution", m);
return m
case OGOTO, OLABEL:
m := Nod(OXXX, nil, nil)
*m = *n
m.Ninit.Set(nil)
p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen)
m.Left = newname(lookup(p))
return m
default:
m := Nod(OXXX, nil, nil)
*m = *n
m.Ninit.Set(nil)
if n.Op == OCLOSURE {
Fatalf("cannot inline function containing closure: %+v", n)
}
m.Left = subst.node(n.Left)
m.Right = subst.node(n.Right)
m.List.Set(subst.list(n.List))
m.Rlist.Set(subst.list(n.Rlist))
m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
m.Nbody.Set(subst.list(n.Nbody))
return m
}
}
// Plaster over linenumbers
func setlnolist(ll Nodes, lno int32) {
for _, n := range ll.Slice() {
setlno(n, lno)
}
}
func setlno(n *Node, lno int32) {
if n == nil {
return
}
// don't clobber names, unless they're freshly synthesized
if n.Op != ONAME || n.Lineno == 0 {
n.Lineno = lno
}
setlno(n.Left, lno)
setlno(n.Right, lno)
setlnolist(n.List, lno)
setlnolist(n.Rlist, lno)
setlnolist(n.Ninit, lno)
setlnolist(n.Nbody, lno)
}
func (n *Node) isMethodCalledAsFunction() bool {
return n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME
}