mirror of
https://github.com/golang/go.git
synced 2025-05-23 00:11:26 +00:00
On some architectures, for async preemption the injected call needs to clobber a register (usually REGTMP) in order to return to the preempted function. As a consequence, the PC ranges where REGTMP is live are not preemptible. The uses of REGTMP are usually generated by the assembler, where it needs to load or materialize a large constant or offset that doesn't fit into the instruction. In those cases, REGTMP is not live at the start of the instruction sequence. Instead of giving up preemption in those cases, we could preempt it and restart the sequence when resuming the execution. Basically, this is like reissuing an interrupted instruction, except that here the "instruction" is a Prog that consists of multiple machine instructions. For this to work, we need to generate PC data to mark the start of the Prog. Currently this is only done for ARM64. TODO: the split-stack function prologue is currently not async preemptible. We could use this mechanism, preempt it and restart at the function entry. Change-Id: I37cb282f8e606e7ab6f67b3edfdc6063097b4bd1 Reviewed-on: https://go-review.googlesource.com/c/go/+/208126 Run-TryBot: Cherry Zhang <cherryyz@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com>
5044 lines
174 KiB
Go
5044 lines
174 KiB
Go
// Based on cmd/internal/obj/ppc64/asm9.go.
|
|
//
|
|
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
|
|
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
|
|
// Portions Copyright © 1997-1999 Vita Nuova Limited
|
|
// Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
|
|
// Portions Copyright © 2004,2006 Bruce Ellis
|
|
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
|
|
// Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
|
|
// Portions Copyright © 2009 The Go Authors. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
package s390x
|
|
|
|
import (
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"fmt"
|
|
"log"
|
|
"math"
|
|
"sort"
|
|
)
|
|
|
|
// ctxtz holds state while assembling a single function.
|
|
// Each function gets a fresh ctxtz.
|
|
// This allows for multiple functions to be safely concurrently assembled.
|
|
type ctxtz struct {
|
|
ctxt *obj.Link
|
|
newprog obj.ProgAlloc
|
|
cursym *obj.LSym
|
|
autosize int32
|
|
instoffset int64
|
|
pc int64
|
|
}
|
|
|
|
// instruction layout.
|
|
const (
|
|
funcAlign = 16
|
|
)
|
|
|
|
type Optab struct {
|
|
as obj.As // opcode
|
|
i uint8 // handler index
|
|
a1 uint8 // From
|
|
a2 uint8 // Reg
|
|
a3 uint8 // RestArgs[0]
|
|
a4 uint8 // RestArgs[1]
|
|
a5 uint8 // RestArgs[2]
|
|
a6 uint8 // To
|
|
}
|
|
|
|
var optab = []Optab{
|
|
// zero-length instructions
|
|
{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
|
|
{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
|
|
{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
|
|
{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
|
|
{i: 0, as: obj.ANOP},
|
|
{i: 0, as: obj.ANOP, a1: C_SAUTO},
|
|
|
|
// move register
|
|
{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
|
|
{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
|
|
{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
|
|
{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
|
|
{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
|
|
{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
|
|
{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},
|
|
|
|
// load constant
|
|
{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
|
|
{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
|
|
{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
|
|
{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
|
|
{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
|
|
{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
|
|
{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
|
|
{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},
|
|
|
|
// store constant
|
|
{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
|
|
{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
|
|
{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},
|
|
|
|
// store
|
|
{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
|
|
{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
|
|
{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
|
|
{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
|
|
{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
|
|
{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
|
|
{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
|
|
{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},
|
|
|
|
// load
|
|
{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
|
|
{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
|
|
{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
|
|
{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
|
|
{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
|
|
{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
|
|
{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
|
|
{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},
|
|
|
|
// interlocked load and op
|
|
{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},
|
|
|
|
// integer arithmetic
|
|
{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 2, as: AADD, a1: C_REG, a6: C_REG},
|
|
{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
|
|
{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
|
|
{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
|
|
{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
|
|
{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
|
|
{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
|
|
{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
|
|
{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
|
|
{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
|
|
{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
|
|
{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
|
|
{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
|
|
{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
|
|
{i: 47, as: ANEG, a6: C_REG},
|
|
|
|
// integer logical
|
|
{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 6, as: AAND, a1: C_REG, a6: C_REG},
|
|
{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
|
|
{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
|
|
{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
|
|
{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
|
|
{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
|
|
{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
|
|
{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
|
|
{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
|
|
{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
|
|
{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
|
|
{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
|
|
{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},
|
|
|
|
// compare and swap
|
|
{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},
|
|
|
|
// floating point
|
|
{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
|
|
{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
|
|
{i: 33, as: AFABS, a6: C_FREG},
|
|
{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
|
|
{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
|
|
{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
|
|
{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
|
|
{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
|
|
{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
|
|
{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
|
|
{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
|
|
{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
|
|
{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
|
|
{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
|
|
{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
|
|
{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
|
|
{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
|
|
{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
|
|
{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
|
|
{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},
|
|
|
|
// load symbol address (plus offset)
|
|
{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
|
|
{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
|
|
{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
|
|
{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},
|
|
|
|
// system call
|
|
{i: 5, as: ASYSCALL},
|
|
{i: 77, as: ASYSCALL, a1: C_SCON},
|
|
|
|
// branch
|
|
{i: 16, as: ABEQ, a6: C_SBRA},
|
|
{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
|
|
{i: 11, as: ABR, a6: C_LBRA},
|
|
{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
|
|
{i: 18, as: ABR, a6: C_REG},
|
|
{i: 18, as: ABR, a1: C_REG, a6: C_REG},
|
|
{i: 15, as: ABR, a6: C_ZOREG},
|
|
{i: 15, as: ABC, a6: C_ZOREG},
|
|
|
|
// compare and branch
|
|
{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
|
|
{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
|
|
{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
|
|
{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
|
|
{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
|
|
{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
|
|
{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
|
|
{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
|
|
{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
|
|
{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},
|
|
|
|
// branch on count
|
|
{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
|
|
{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},
|
|
|
|
// move on condition
|
|
{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},
|
|
|
|
// load on condition
|
|
{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},
|
|
|
|
// find leftmost one
|
|
{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},
|
|
|
|
// population count
|
|
{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},
|
|
|
|
// compare
|
|
{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
|
|
{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
|
|
{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
|
|
{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
|
|
{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
|
|
{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},
|
|
|
|
// test under mask
|
|
{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},
|
|
|
|
// insert program mask
|
|
{i: 92, as: AIPM, a1: C_REG},
|
|
|
|
// set program mask
|
|
{i: 76, as: ASPM, a1: C_REG},
|
|
|
|
// 32-bit access registers
|
|
{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
|
|
{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
|
|
{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
|
|
{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},
|
|
|
|
// macros
|
|
{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
|
|
{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},
|
|
|
|
// load/store multiple
|
|
{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
|
|
{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
|
|
{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
|
|
{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},
|
|
|
|
// bytes
|
|
{i: 40, as: ABYTE, a1: C_SCON},
|
|
{i: 40, as: AWORD, a1: C_LCON},
|
|
{i: 31, as: ADWORD, a1: C_LCON},
|
|
{i: 31, as: ADWORD, a1: C_DCON},
|
|
|
|
// fast synchronization
|
|
{i: 80, as: ASYNC},
|
|
|
|
// store clock
|
|
{i: 88, as: ASTCK, a6: C_SAUTO},
|
|
{i: 88, as: ASTCK, a6: C_SOREG},
|
|
|
|
// storage and storage
|
|
{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
|
|
{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
|
|
{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},
|
|
|
|
// address
|
|
{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
|
|
{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
|
|
{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
|
|
{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
|
|
{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},
|
|
|
|
// undefined (deliberate illegal instruction)
|
|
{i: 78, as: obj.AUNDEF},
|
|
|
|
// 2 byte no-operation
|
|
{i: 66, as: ANOPH},
|
|
|
|
// vector instructions
|
|
|
|
// VRX store
|
|
{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
|
|
{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
|
|
{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
|
|
{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
|
|
|
|
// VRX load
|
|
{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
|
|
{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
|
|
{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
|
|
{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
|
|
|
|
// VRV scatter
|
|
{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
|
|
{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
|
|
|
|
// VRV gather
|
|
{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
|
|
{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
|
|
|
|
// VRS element shift/rotate and load gr to/from vr element
|
|
{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
|
|
{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
|
|
{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
|
|
{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
|
|
{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
|
|
{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
|
|
{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
|
|
{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},
|
|
|
|
// VRS store multiple
|
|
{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
|
|
{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},
|
|
|
|
// VRS load multiple
|
|
{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
|
|
{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},
|
|
|
|
// VRS store with length
|
|
{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
|
|
{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},
|
|
|
|
// VRS load with length
|
|
{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
|
|
{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},
|
|
|
|
// VRI-a
|
|
{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
|
|
{i: 109, as: AVZERO, a6: C_VREG},
|
|
{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
|
|
{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
|
|
{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
|
|
{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
|
|
|
|
// VRI-b generate mask
|
|
{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
|
|
|
|
// VRI-c replicate
|
|
{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},
|
|
|
|
// VRI-d element rotate and insert under mask and
|
|
// shift left double by byte
|
|
{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
|
|
{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
|
|
|
|
// VRI-d fp test data class immediate
|
|
{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-a load reg
|
|
{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-a compare
|
|
{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-b
|
|
{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
|
|
{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
|
|
{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-c
|
|
{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
|
|
{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
|
|
{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
|
|
{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-c shifts
|
|
{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
|
|
{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-d
|
|
{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-e
|
|
{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
|
|
|
|
// VRR-f
|
|
{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
|
|
}
|
|
|
|
var oprange [ALAST & obj.AMask][]Optab
|
|
|
|
var xcmp [C_NCLASS][C_NCLASS]bool
|
|
|
|
func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
|
|
if ctxt.Retpoline {
|
|
ctxt.Diag("-spectre=ret not supported on s390x")
|
|
ctxt.Retpoline = false // don't keep printing
|
|
}
|
|
|
|
p := cursym.Func.Text
|
|
if p == nil || p.Link == nil { // handle external functions and ELF section symbols
|
|
return
|
|
}
|
|
|
|
if oprange[AORW&obj.AMask] == nil {
|
|
ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
|
|
}
|
|
|
|
c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
|
|
|
|
buffer := make([]byte, 0)
|
|
changed := true
|
|
loop := 0
|
|
for changed {
|
|
if loop > 100 {
|
|
c.ctxt.Diag("stuck in spanz loop")
|
|
break
|
|
}
|
|
changed = false
|
|
buffer = buffer[:0]
|
|
c.cursym.R = make([]obj.Reloc, 0)
|
|
for p := c.cursym.Func.Text; p != nil; p = p.Link {
|
|
pc := int64(len(buffer))
|
|
if pc != p.Pc {
|
|
changed = true
|
|
}
|
|
p.Pc = pc
|
|
c.pc = p.Pc
|
|
c.asmout(p, &buffer)
|
|
if pc == int64(len(buffer)) {
|
|
switch p.As {
|
|
case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
|
|
// ok
|
|
default:
|
|
c.ctxt.Diag("zero-width instruction\n%v", p)
|
|
}
|
|
}
|
|
}
|
|
loop++
|
|
}
|
|
|
|
c.cursym.Size = int64(len(buffer))
|
|
if c.cursym.Size%funcAlign != 0 {
|
|
c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
|
|
}
|
|
c.cursym.Grow(c.cursym.Size)
|
|
copy(c.cursym.P, buffer)
|
|
|
|
// Mark nonpreemptible instruction sequences.
|
|
// We use REGTMP as a scratch register during call injection,
|
|
// so instruction sequences that use REGTMP are unsafe to
|
|
// preempt asynchronously.
|
|
obj.MarkUnsafePoints(c.ctxt, c.cursym.Func.Text, c.newprog, c.isUnsafePoint, nil)
|
|
}
|
|
|
|
// Return whether p is an unsafe point.
|
|
func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
|
|
if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
|
|
return true
|
|
}
|
|
for _, a := range p.RestArgs {
|
|
if a.Reg == REGTMP {
|
|
return true
|
|
}
|
|
}
|
|
return p.Mark&USETMP != 0
|
|
}
|
|
|
|
func isint32(v int64) bool {
|
|
return int64(int32(v)) == v
|
|
}
|
|
|
|
func isuint32(v uint64) bool {
|
|
return uint64(uint32(v)) == v
|
|
}
|
|
|
|
func (c *ctxtz) aclass(a *obj.Addr) int {
|
|
switch a.Type {
|
|
case obj.TYPE_NONE:
|
|
return C_NONE
|
|
|
|
case obj.TYPE_REG:
|
|
if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
|
|
return C_REG
|
|
}
|
|
if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
|
|
return C_FREG
|
|
}
|
|
if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
|
|
return C_AREG
|
|
}
|
|
if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
|
|
return C_VREG
|
|
}
|
|
return C_GOK
|
|
|
|
case obj.TYPE_MEM:
|
|
switch a.Name {
|
|
case obj.NAME_EXTERN,
|
|
obj.NAME_STATIC:
|
|
if a.Sym == nil {
|
|
// must have a symbol
|
|
break
|
|
}
|
|
c.instoffset = a.Offset
|
|
if a.Sym.Type == objabi.STLSBSS {
|
|
if c.ctxt.Flag_shared {
|
|
return C_TLS_IE // initial exec model
|
|
}
|
|
return C_TLS_LE // local exec model
|
|
}
|
|
return C_ADDR
|
|
|
|
case obj.NAME_GOTREF:
|
|
return C_GOTADDR
|
|
|
|
case obj.NAME_AUTO:
|
|
if a.Reg == REGSP {
|
|
// unset base register for better printing, since
|
|
// a.Offset is still relative to pseudo-SP.
|
|
a.Reg = obj.REG_NONE
|
|
}
|
|
c.instoffset = int64(c.autosize) + a.Offset
|
|
if c.instoffset >= -BIG && c.instoffset < BIG {
|
|
return C_SAUTO
|
|
}
|
|
return C_LAUTO
|
|
|
|
case obj.NAME_PARAM:
|
|
if a.Reg == REGSP {
|
|
// unset base register for better printing, since
|
|
// a.Offset is still relative to pseudo-FP.
|
|
a.Reg = obj.REG_NONE
|
|
}
|
|
c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
|
|
if c.instoffset >= -BIG && c.instoffset < BIG {
|
|
return C_SAUTO
|
|
}
|
|
return C_LAUTO
|
|
|
|
case obj.NAME_NONE:
|
|
c.instoffset = a.Offset
|
|
if c.instoffset == 0 {
|
|
return C_ZOREG
|
|
}
|
|
if c.instoffset >= -BIG && c.instoffset < BIG {
|
|
return C_SOREG
|
|
}
|
|
return C_LOREG
|
|
}
|
|
|
|
return C_GOK
|
|
|
|
case obj.TYPE_TEXTSIZE:
|
|
return C_TEXTSIZE
|
|
|
|
case obj.TYPE_FCONST:
|
|
if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
|
|
return C_ZCON
|
|
}
|
|
c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
|
|
|
|
case obj.TYPE_CONST,
|
|
obj.TYPE_ADDR:
|
|
switch a.Name {
|
|
case obj.NAME_NONE:
|
|
c.instoffset = a.Offset
|
|
if a.Reg != 0 {
|
|
if -BIG <= c.instoffset && c.instoffset <= BIG {
|
|
return C_SACON
|
|
}
|
|
if isint32(c.instoffset) {
|
|
return C_LACON
|
|
}
|
|
return C_DACON
|
|
}
|
|
|
|
case obj.NAME_EXTERN,
|
|
obj.NAME_STATIC:
|
|
s := a.Sym
|
|
if s == nil {
|
|
return C_GOK
|
|
}
|
|
c.instoffset = a.Offset
|
|
|
|
return C_SYMADDR
|
|
|
|
case obj.NAME_AUTO:
|
|
if a.Reg == REGSP {
|
|
// unset base register for better printing, since
|
|
// a.Offset is still relative to pseudo-SP.
|
|
a.Reg = obj.REG_NONE
|
|
}
|
|
c.instoffset = int64(c.autosize) + a.Offset
|
|
if c.instoffset >= -BIG && c.instoffset < BIG {
|
|
return C_SACON
|
|
}
|
|
return C_LACON
|
|
|
|
case obj.NAME_PARAM:
|
|
if a.Reg == REGSP {
|
|
// unset base register for better printing, since
|
|
// a.Offset is still relative to pseudo-FP.
|
|
a.Reg = obj.REG_NONE
|
|
}
|
|
c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
|
|
if c.instoffset >= -BIG && c.instoffset < BIG {
|
|
return C_SACON
|
|
}
|
|
return C_LACON
|
|
|
|
default:
|
|
return C_GOK
|
|
}
|
|
|
|
if c.instoffset == 0 {
|
|
return C_ZCON
|
|
}
|
|
if c.instoffset >= 0 {
|
|
if c.instoffset <= 0x7fff {
|
|
return C_SCON
|
|
}
|
|
if c.instoffset <= 0xffff {
|
|
return C_ANDCON
|
|
}
|
|
if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
|
|
return C_UCON
|
|
}
|
|
if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
|
|
return C_LCON
|
|
}
|
|
return C_DCON
|
|
}
|
|
|
|
if c.instoffset >= -0x8000 {
|
|
return C_ADDCON
|
|
}
|
|
if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
|
|
return C_UCON
|
|
}
|
|
if isint32(c.instoffset) {
|
|
return C_LCON
|
|
}
|
|
return C_DCON
|
|
|
|
case obj.TYPE_BRANCH:
|
|
return C_SBRA
|
|
}
|
|
|
|
return C_GOK
|
|
}
|
|
|
|
func (c *ctxtz) oplook(p *obj.Prog) *Optab {
|
|
// Return cached optab entry if available.
|
|
if p.Optab != 0 {
|
|
return &optab[p.Optab-1]
|
|
}
|
|
if len(p.RestArgs) > 3 {
|
|
c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
|
|
return nil
|
|
}
|
|
|
|
// Initialize classes for all arguments.
|
|
p.From.Class = int8(c.aclass(&p.From) + 1)
|
|
p.To.Class = int8(c.aclass(&p.To) + 1)
|
|
for i := range p.RestArgs {
|
|
p.RestArgs[i].Class = int8(c.aclass(&p.RestArgs[i]) + 1)
|
|
}
|
|
|
|
// Mirrors the argument list in Optab.
|
|
args := [...]int8{
|
|
p.From.Class - 1,
|
|
C_NONE, // p.Reg
|
|
C_NONE, // p.RestArgs[0]
|
|
C_NONE, // p.RestArgs[1]
|
|
C_NONE, // p.RestArgs[2]
|
|
p.To.Class - 1,
|
|
}
|
|
// Fill in argument class for p.Reg.
|
|
switch {
|
|
case REG_R0 <= p.Reg && p.Reg <= REG_R15:
|
|
args[1] = C_REG
|
|
case REG_V0 <= p.Reg && p.Reg <= REG_V31:
|
|
args[1] = C_VREG
|
|
case REG_F0 <= p.Reg && p.Reg <= REG_F15:
|
|
args[1] = C_FREG
|
|
case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
|
|
args[1] = C_AREG
|
|
}
|
|
// Fill in argument classes for p.RestArgs.
|
|
for i, a := range p.RestArgs {
|
|
args[2+i] = a.Class - 1
|
|
}
|
|
|
|
// Lookup op in optab.
|
|
ops := oprange[p.As&obj.AMask]
|
|
cmp := [len(args)]*[C_NCLASS]bool{}
|
|
for i := range cmp {
|
|
cmp[i] = &xcmp[args[i]]
|
|
}
|
|
for i := range ops {
|
|
op := &ops[i]
|
|
if cmp[0][op.a1] && cmp[1][op.a2] &&
|
|
cmp[2][op.a3] && cmp[3][op.a4] &&
|
|
cmp[4][op.a5] && cmp[5][op.a6] {
|
|
p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
|
|
return op
|
|
}
|
|
}
|
|
|
|
// Cannot find a case; abort.
|
|
s := ""
|
|
for _, a := range args {
|
|
s += fmt.Sprintf(" %v", DRconv(int(a)))
|
|
}
|
|
c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
|
|
c.ctxt.Diag("prog: %v\n", p)
|
|
return nil
|
|
}
|
|
|
|
func cmp(a int, b int) bool {
|
|
if a == b {
|
|
return true
|
|
}
|
|
switch a {
|
|
case C_DCON:
|
|
if b == C_LCON {
|
|
return true
|
|
}
|
|
fallthrough
|
|
case C_LCON:
|
|
if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
|
|
return true
|
|
}
|
|
|
|
case C_ADDCON:
|
|
if b == C_ZCON || b == C_SCON {
|
|
return true
|
|
}
|
|
|
|
case C_ANDCON:
|
|
if b == C_ZCON || b == C_SCON {
|
|
return true
|
|
}
|
|
|
|
case C_UCON:
|
|
if b == C_ZCON || b == C_SCON {
|
|
return true
|
|
}
|
|
|
|
case C_SCON:
|
|
if b == C_ZCON {
|
|
return true
|
|
}
|
|
|
|
case C_LACON:
|
|
if b == C_SACON {
|
|
return true
|
|
}
|
|
|
|
case C_LBRA:
|
|
if b == C_SBRA {
|
|
return true
|
|
}
|
|
|
|
case C_LAUTO:
|
|
if b == C_SAUTO {
|
|
return true
|
|
}
|
|
|
|
case C_LOREG:
|
|
if b == C_ZOREG || b == C_SOREG {
|
|
return true
|
|
}
|
|
|
|
case C_SOREG:
|
|
if b == C_ZOREG {
|
|
return true
|
|
}
|
|
|
|
case C_ANY:
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
type ocmp []Optab
|
|
|
|
func (x ocmp) Len() int {
|
|
return len(x)
|
|
}
|
|
|
|
func (x ocmp) Swap(i, j int) {
|
|
x[i], x[j] = x[j], x[i]
|
|
}
|
|
|
|
func (x ocmp) Less(i, j int) bool {
|
|
p1 := &x[i]
|
|
p2 := &x[j]
|
|
n := int(p1.as) - int(p2.as)
|
|
if n != 0 {
|
|
return n < 0
|
|
}
|
|
n = int(p1.a1) - int(p2.a1)
|
|
if n != 0 {
|
|
return n < 0
|
|
}
|
|
n = int(p1.a2) - int(p2.a2)
|
|
if n != 0 {
|
|
return n < 0
|
|
}
|
|
n = int(p1.a3) - int(p2.a3)
|
|
if n != 0 {
|
|
return n < 0
|
|
}
|
|
n = int(p1.a4) - int(p2.a4)
|
|
if n != 0 {
|
|
return n < 0
|
|
}
|
|
return false
|
|
}
|
|
func opset(a, b obj.As) {
|
|
oprange[a&obj.AMask] = oprange[b&obj.AMask]
|
|
}
|
|
|
|
func buildop(ctxt *obj.Link) {
|
|
if oprange[AORW&obj.AMask] != nil {
|
|
// Already initialized; stop now.
|
|
// This happens in the cmd/asm tests,
|
|
// each of which re-initializes the arch.
|
|
return
|
|
}
|
|
|
|
for i := 0; i < C_NCLASS; i++ {
|
|
for n := 0; n < C_NCLASS; n++ {
|
|
if cmp(n, i) {
|
|
xcmp[i][n] = true
|
|
}
|
|
}
|
|
}
|
|
sort.Sort(ocmp(optab))
|
|
for i := 0; i < len(optab); i++ {
|
|
r := optab[i].as
|
|
start := i
|
|
for ; i+1 < len(optab); i++ {
|
|
if optab[i+1].as != r {
|
|
break
|
|
}
|
|
}
|
|
oprange[r&obj.AMask] = optab[start : i+1]
|
|
|
|
// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
|
|
// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
|
|
switch r {
|
|
case AADD:
|
|
opset(AADDC, r)
|
|
opset(AADDW, r)
|
|
opset(AADDE, r)
|
|
opset(AMULLD, r)
|
|
opset(AMULLW, r)
|
|
case ADIVW:
|
|
opset(ADIVD, r)
|
|
opset(ADIVDU, r)
|
|
opset(ADIVWU, r)
|
|
opset(AMODD, r)
|
|
opset(AMODDU, r)
|
|
opset(AMODW, r)
|
|
opset(AMODWU, r)
|
|
case AMULHD:
|
|
opset(AMULHDU, r)
|
|
case AMOVBZ:
|
|
opset(AMOVH, r)
|
|
opset(AMOVHZ, r)
|
|
case ALA:
|
|
opset(ALAY, r)
|
|
case AMVC:
|
|
opset(AMVCIN, r)
|
|
opset(ACLC, r)
|
|
opset(AXC, r)
|
|
opset(AOC, r)
|
|
opset(ANC, r)
|
|
case ASTCK:
|
|
opset(ASTCKC, r)
|
|
opset(ASTCKE, r)
|
|
opset(ASTCKF, r)
|
|
case ALAAG:
|
|
opset(ALAA, r)
|
|
opset(ALAAL, r)
|
|
opset(ALAALG, r)
|
|
opset(ALAN, r)
|
|
opset(ALANG, r)
|
|
opset(ALAX, r)
|
|
opset(ALAXG, r)
|
|
opset(ALAO, r)
|
|
opset(ALAOG, r)
|
|
case ASTMG:
|
|
opset(ASTMY, r)
|
|
case ALMG:
|
|
opset(ALMY, r)
|
|
case ABEQ:
|
|
opset(ABGE, r)
|
|
opset(ABGT, r)
|
|
opset(ABLE, r)
|
|
opset(ABLT, r)
|
|
opset(ABNE, r)
|
|
opset(ABVC, r)
|
|
opset(ABVS, r)
|
|
opset(ABLEU, r)
|
|
opset(ABLTU, r)
|
|
case ABR:
|
|
opset(ABL, r)
|
|
case ABC:
|
|
opset(ABCL, r)
|
|
case AFABS:
|
|
opset(AFNABS, r)
|
|
opset(ALPDFR, r)
|
|
opset(ALNDFR, r)
|
|
opset(AFNEG, r)
|
|
opset(AFNEGS, r)
|
|
opset(ALEDBR, r)
|
|
opset(ALDEBR, r)
|
|
opset(AFSQRT, r)
|
|
opset(AFSQRTS, r)
|
|
case AFADD:
|
|
opset(AFADDS, r)
|
|
opset(AFDIV, r)
|
|
opset(AFDIVS, r)
|
|
opset(AFSUB, r)
|
|
opset(AFSUBS, r)
|
|
case AFMADD:
|
|
opset(AFMADDS, r)
|
|
opset(AFMSUB, r)
|
|
opset(AFMSUBS, r)
|
|
case AFMUL:
|
|
opset(AFMULS, r)
|
|
case AFCMPO:
|
|
opset(AFCMPU, r)
|
|
opset(ACEBR, r)
|
|
case AAND:
|
|
opset(AOR, r)
|
|
opset(AXOR, r)
|
|
case AANDW:
|
|
opset(AORW, r)
|
|
opset(AXORW, r)
|
|
case ASLD:
|
|
opset(ASRD, r)
|
|
opset(ASLW, r)
|
|
opset(ASRW, r)
|
|
opset(ASRAD, r)
|
|
opset(ASRAW, r)
|
|
opset(ARLL, r)
|
|
opset(ARLLG, r)
|
|
case ARNSBG:
|
|
opset(ARXSBG, r)
|
|
opset(AROSBG, r)
|
|
opset(ARNSBGT, r)
|
|
opset(ARXSBGT, r)
|
|
opset(AROSBGT, r)
|
|
opset(ARISBG, r)
|
|
opset(ARISBGN, r)
|
|
opset(ARISBGZ, r)
|
|
opset(ARISBGNZ, r)
|
|
opset(ARISBHG, r)
|
|
opset(ARISBLG, r)
|
|
opset(ARISBHGZ, r)
|
|
opset(ARISBLGZ, r)
|
|
case ACSG:
|
|
opset(ACS, r)
|
|
case ASUB:
|
|
opset(ASUBC, r)
|
|
opset(ASUBE, r)
|
|
opset(ASUBW, r)
|
|
case ANEG:
|
|
opset(ANEGW, r)
|
|
case AFMOVD:
|
|
opset(AFMOVS, r)
|
|
case AMOVDBR:
|
|
opset(AMOVWBR, r)
|
|
case ACMP:
|
|
opset(ACMPW, r)
|
|
case ACMPU:
|
|
opset(ACMPWU, r)
|
|
case ATMHH:
|
|
opset(ATMHL, r)
|
|
opset(ATMLH, r)
|
|
opset(ATMLL, r)
|
|
case ACEFBRA:
|
|
opset(ACDFBRA, r)
|
|
opset(ACEGBRA, r)
|
|
opset(ACDGBRA, r)
|
|
opset(ACELFBR, r)
|
|
opset(ACDLFBR, r)
|
|
opset(ACELGBR, r)
|
|
opset(ACDLGBR, r)
|
|
case ACFEBRA:
|
|
opset(ACFDBRA, r)
|
|
opset(ACGEBRA, r)
|
|
opset(ACGDBRA, r)
|
|
opset(ACLFEBR, r)
|
|
opset(ACLFDBR, r)
|
|
opset(ACLGEBR, r)
|
|
opset(ACLGDBR, r)
|
|
case AFIEBR:
|
|
opset(AFIDBR, r)
|
|
case ACMPBEQ:
|
|
opset(ACMPBGE, r)
|
|
opset(ACMPBGT, r)
|
|
opset(ACMPBLE, r)
|
|
opset(ACMPBLT, r)
|
|
opset(ACMPBNE, r)
|
|
case ACMPUBEQ:
|
|
opset(ACMPUBGE, r)
|
|
opset(ACMPUBGT, r)
|
|
opset(ACMPUBLE, r)
|
|
opset(ACMPUBLT, r)
|
|
opset(ACMPUBNE, r)
|
|
case ACGRJ:
|
|
opset(ACRJ, r)
|
|
case ACLGRJ:
|
|
opset(ACLRJ, r)
|
|
case ACGIJ:
|
|
opset(ACIJ, r)
|
|
case ACLGIJ:
|
|
opset(ACLIJ, r)
|
|
case AMOVDEQ:
|
|
opset(AMOVDGE, r)
|
|
opset(AMOVDGT, r)
|
|
opset(AMOVDLE, r)
|
|
opset(AMOVDLT, r)
|
|
opset(AMOVDNE, r)
|
|
case ALOCGR:
|
|
opset(ALOCR, r)
|
|
case ALTDBR:
|
|
opset(ALTEBR, r)
|
|
case ATCDB:
|
|
opset(ATCEB, r)
|
|
case AVL:
|
|
opset(AVLLEZB, r)
|
|
opset(AVLLEZH, r)
|
|
opset(AVLLEZF, r)
|
|
opset(AVLLEZG, r)
|
|
opset(AVLREPB, r)
|
|
opset(AVLREPH, r)
|
|
opset(AVLREPF, r)
|
|
opset(AVLREPG, r)
|
|
case AVLEG:
|
|
opset(AVLBB, r)
|
|
opset(AVLEB, r)
|
|
opset(AVLEH, r)
|
|
opset(AVLEF, r)
|
|
opset(AVLEG, r)
|
|
opset(AVLREP, r)
|
|
case AVSTEG:
|
|
opset(AVSTEB, r)
|
|
opset(AVSTEH, r)
|
|
opset(AVSTEF, r)
|
|
case AVSCEG:
|
|
opset(AVSCEF, r)
|
|
case AVGEG:
|
|
opset(AVGEF, r)
|
|
case AVESLG:
|
|
opset(AVESLB, r)
|
|
opset(AVESLH, r)
|
|
opset(AVESLF, r)
|
|
opset(AVERLLB, r)
|
|
opset(AVERLLH, r)
|
|
opset(AVERLLF, r)
|
|
opset(AVERLLG, r)
|
|
opset(AVESRAB, r)
|
|
opset(AVESRAH, r)
|
|
opset(AVESRAF, r)
|
|
opset(AVESRAG, r)
|
|
opset(AVESRLB, r)
|
|
opset(AVESRLH, r)
|
|
opset(AVESRLF, r)
|
|
opset(AVESRLG, r)
|
|
case AVLGVG:
|
|
opset(AVLGVB, r)
|
|
opset(AVLGVH, r)
|
|
opset(AVLGVF, r)
|
|
case AVLVGG:
|
|
opset(AVLVGB, r)
|
|
opset(AVLVGH, r)
|
|
opset(AVLVGF, r)
|
|
case AVZERO:
|
|
opset(AVONE, r)
|
|
case AVREPIG:
|
|
opset(AVREPIB, r)
|
|
opset(AVREPIH, r)
|
|
opset(AVREPIF, r)
|
|
case AVLEIG:
|
|
opset(AVLEIB, r)
|
|
opset(AVLEIH, r)
|
|
opset(AVLEIF, r)
|
|
case AVGMG:
|
|
opset(AVGMB, r)
|
|
opset(AVGMH, r)
|
|
opset(AVGMF, r)
|
|
case AVREPG:
|
|
opset(AVREPB, r)
|
|
opset(AVREPH, r)
|
|
opset(AVREPF, r)
|
|
case AVERIMG:
|
|
opset(AVERIMB, r)
|
|
opset(AVERIMH, r)
|
|
opset(AVERIMF, r)
|
|
case AVFTCIDB:
|
|
opset(AWFTCIDB, r)
|
|
case AVLR:
|
|
opset(AVUPHB, r)
|
|
opset(AVUPHH, r)
|
|
opset(AVUPHF, r)
|
|
opset(AVUPLHB, r)
|
|
opset(AVUPLHH, r)
|
|
opset(AVUPLHF, r)
|
|
opset(AVUPLB, r)
|
|
opset(AVUPLHW, r)
|
|
opset(AVUPLF, r)
|
|
opset(AVUPLLB, r)
|
|
opset(AVUPLLH, r)
|
|
opset(AVUPLLF, r)
|
|
opset(AVCLZB, r)
|
|
opset(AVCLZH, r)
|
|
opset(AVCLZF, r)
|
|
opset(AVCLZG, r)
|
|
opset(AVCTZB, r)
|
|
opset(AVCTZH, r)
|
|
opset(AVCTZF, r)
|
|
opset(AVCTZG, r)
|
|
opset(AVLDEB, r)
|
|
opset(AWLDEB, r)
|
|
opset(AVFLCDB, r)
|
|
opset(AWFLCDB, r)
|
|
opset(AVFLNDB, r)
|
|
opset(AWFLNDB, r)
|
|
opset(AVFLPDB, r)
|
|
opset(AWFLPDB, r)
|
|
opset(AVFSQDB, r)
|
|
opset(AWFSQDB, r)
|
|
opset(AVISTRB, r)
|
|
opset(AVISTRH, r)
|
|
opset(AVISTRF, r)
|
|
opset(AVISTRBS, r)
|
|
opset(AVISTRHS, r)
|
|
opset(AVISTRFS, r)
|
|
opset(AVLCB, r)
|
|
opset(AVLCH, r)
|
|
opset(AVLCF, r)
|
|
opset(AVLCG, r)
|
|
opset(AVLPB, r)
|
|
opset(AVLPH, r)
|
|
opset(AVLPF, r)
|
|
opset(AVLPG, r)
|
|
opset(AVPOPCT, r)
|
|
opset(AVSEGB, r)
|
|
opset(AVSEGH, r)
|
|
opset(AVSEGF, r)
|
|
case AVECG:
|
|
opset(AVECB, r)
|
|
opset(AVECH, r)
|
|
opset(AVECF, r)
|
|
opset(AVECLB, r)
|
|
opset(AVECLH, r)
|
|
opset(AVECLF, r)
|
|
opset(AVECLG, r)
|
|
opset(AWFCDB, r)
|
|
opset(AWFKDB, r)
|
|
case AVCEQG:
|
|
opset(AVCEQB, r)
|
|
opset(AVCEQH, r)
|
|
opset(AVCEQF, r)
|
|
opset(AVCEQBS, r)
|
|
opset(AVCEQHS, r)
|
|
opset(AVCEQFS, r)
|
|
opset(AVCEQGS, r)
|
|
opset(AVCHB, r)
|
|
opset(AVCHH, r)
|
|
opset(AVCHF, r)
|
|
opset(AVCHG, r)
|
|
opset(AVCHBS, r)
|
|
opset(AVCHHS, r)
|
|
opset(AVCHFS, r)
|
|
opset(AVCHGS, r)
|
|
opset(AVCHLB, r)
|
|
opset(AVCHLH, r)
|
|
opset(AVCHLF, r)
|
|
opset(AVCHLG, r)
|
|
opset(AVCHLBS, r)
|
|
opset(AVCHLHS, r)
|
|
opset(AVCHLFS, r)
|
|
opset(AVCHLGS, r)
|
|
case AVFAEF:
|
|
opset(AVFAEB, r)
|
|
opset(AVFAEH, r)
|
|
opset(AVFAEBS, r)
|
|
opset(AVFAEHS, r)
|
|
opset(AVFAEFS, r)
|
|
opset(AVFAEZB, r)
|
|
opset(AVFAEZH, r)
|
|
opset(AVFAEZF, r)
|
|
opset(AVFAEZBS, r)
|
|
opset(AVFAEZHS, r)
|
|
opset(AVFAEZFS, r)
|
|
opset(AVFEEB, r)
|
|
opset(AVFEEH, r)
|
|
opset(AVFEEF, r)
|
|
opset(AVFEEBS, r)
|
|
opset(AVFEEHS, r)
|
|
opset(AVFEEFS, r)
|
|
opset(AVFEEZB, r)
|
|
opset(AVFEEZH, r)
|
|
opset(AVFEEZF, r)
|
|
opset(AVFEEZBS, r)
|
|
opset(AVFEEZHS, r)
|
|
opset(AVFEEZFS, r)
|
|
opset(AVFENEB, r)
|
|
opset(AVFENEH, r)
|
|
opset(AVFENEF, r)
|
|
opset(AVFENEBS, r)
|
|
opset(AVFENEHS, r)
|
|
opset(AVFENEFS, r)
|
|
opset(AVFENEZB, r)
|
|
opset(AVFENEZH, r)
|
|
opset(AVFENEZF, r)
|
|
opset(AVFENEZBS, r)
|
|
opset(AVFENEZHS, r)
|
|
opset(AVFENEZFS, r)
|
|
case AVPKSG:
|
|
opset(AVPKSH, r)
|
|
opset(AVPKSF, r)
|
|
opset(AVPKSHS, r)
|
|
opset(AVPKSFS, r)
|
|
opset(AVPKSGS, r)
|
|
opset(AVPKLSH, r)
|
|
opset(AVPKLSF, r)
|
|
opset(AVPKLSG, r)
|
|
opset(AVPKLSHS, r)
|
|
opset(AVPKLSFS, r)
|
|
opset(AVPKLSGS, r)
|
|
case AVAQ:
|
|
opset(AVAB, r)
|
|
opset(AVAH, r)
|
|
opset(AVAF, r)
|
|
opset(AVAG, r)
|
|
opset(AVACCB, r)
|
|
opset(AVACCH, r)
|
|
opset(AVACCF, r)
|
|
opset(AVACCG, r)
|
|
opset(AVACCQ, r)
|
|
opset(AVN, r)
|
|
opset(AVNC, r)
|
|
opset(AVAVGB, r)
|
|
opset(AVAVGH, r)
|
|
opset(AVAVGF, r)
|
|
opset(AVAVGG, r)
|
|
opset(AVAVGLB, r)
|
|
opset(AVAVGLH, r)
|
|
opset(AVAVGLF, r)
|
|
opset(AVAVGLG, r)
|
|
opset(AVCKSM, r)
|
|
opset(AVX, r)
|
|
opset(AVFADB, r)
|
|
opset(AWFADB, r)
|
|
opset(AVFCEDB, r)
|
|
opset(AVFCEDBS, r)
|
|
opset(AWFCEDB, r)
|
|
opset(AWFCEDBS, r)
|
|
opset(AVFCHDB, r)
|
|
opset(AVFCHDBS, r)
|
|
opset(AWFCHDB, r)
|
|
opset(AWFCHDBS, r)
|
|
opset(AVFCHEDB, r)
|
|
opset(AVFCHEDBS, r)
|
|
opset(AWFCHEDB, r)
|
|
opset(AWFCHEDBS, r)
|
|
opset(AVFMDB, r)
|
|
opset(AWFMDB, r)
|
|
opset(AVGFMB, r)
|
|
opset(AVGFMH, r)
|
|
opset(AVGFMF, r)
|
|
opset(AVGFMG, r)
|
|
opset(AVMXB, r)
|
|
opset(AVMXH, r)
|
|
opset(AVMXF, r)
|
|
opset(AVMXG, r)
|
|
opset(AVMXLB, r)
|
|
opset(AVMXLH, r)
|
|
opset(AVMXLF, r)
|
|
opset(AVMXLG, r)
|
|
opset(AVMNB, r)
|
|
opset(AVMNH, r)
|
|
opset(AVMNF, r)
|
|
opset(AVMNG, r)
|
|
opset(AVMNLB, r)
|
|
opset(AVMNLH, r)
|
|
opset(AVMNLF, r)
|
|
opset(AVMNLG, r)
|
|
opset(AVMRHB, r)
|
|
opset(AVMRHH, r)
|
|
opset(AVMRHF, r)
|
|
opset(AVMRHG, r)
|
|
opset(AVMRLB, r)
|
|
opset(AVMRLH, r)
|
|
opset(AVMRLF, r)
|
|
opset(AVMRLG, r)
|
|
opset(AVMEB, r)
|
|
opset(AVMEH, r)
|
|
opset(AVMEF, r)
|
|
opset(AVMLEB, r)
|
|
opset(AVMLEH, r)
|
|
opset(AVMLEF, r)
|
|
opset(AVMOB, r)
|
|
opset(AVMOH, r)
|
|
opset(AVMOF, r)
|
|
opset(AVMLOB, r)
|
|
opset(AVMLOH, r)
|
|
opset(AVMLOF, r)
|
|
opset(AVMHB, r)
|
|
opset(AVMHH, r)
|
|
opset(AVMHF, r)
|
|
opset(AVMLHB, r)
|
|
opset(AVMLHH, r)
|
|
opset(AVMLHF, r)
|
|
opset(AVMLH, r)
|
|
opset(AVMLHW, r)
|
|
opset(AVMLF, r)
|
|
opset(AVNO, r)
|
|
opset(AVO, r)
|
|
opset(AVPKH, r)
|
|
opset(AVPKF, r)
|
|
opset(AVPKG, r)
|
|
opset(AVSUMGH, r)
|
|
opset(AVSUMGF, r)
|
|
opset(AVSUMQF, r)
|
|
opset(AVSUMQG, r)
|
|
opset(AVSUMB, r)
|
|
opset(AVSUMH, r)
|
|
case AVERLLVG:
|
|
opset(AVERLLVB, r)
|
|
opset(AVERLLVH, r)
|
|
opset(AVERLLVF, r)
|
|
opset(AVESLVB, r)
|
|
opset(AVESLVH, r)
|
|
opset(AVESLVF, r)
|
|
opset(AVESLVG, r)
|
|
opset(AVESRAVB, r)
|
|
opset(AVESRAVH, r)
|
|
opset(AVESRAVF, r)
|
|
opset(AVESRAVG, r)
|
|
opset(AVESRLVB, r)
|
|
opset(AVESRLVH, r)
|
|
opset(AVESRLVF, r)
|
|
opset(AVESRLVG, r)
|
|
opset(AVFDDB, r)
|
|
opset(AWFDDB, r)
|
|
opset(AVFSDB, r)
|
|
opset(AWFSDB, r)
|
|
opset(AVSL, r)
|
|
opset(AVSLB, r)
|
|
opset(AVSRA, r)
|
|
opset(AVSRAB, r)
|
|
opset(AVSRL, r)
|
|
opset(AVSRLB, r)
|
|
opset(AVSB, r)
|
|
opset(AVSH, r)
|
|
opset(AVSF, r)
|
|
opset(AVSG, r)
|
|
opset(AVSQ, r)
|
|
opset(AVSCBIB, r)
|
|
opset(AVSCBIH, r)
|
|
opset(AVSCBIF, r)
|
|
opset(AVSCBIG, r)
|
|
opset(AVSCBIQ, r)
|
|
case AVACQ:
|
|
opset(AVACCCQ, r)
|
|
opset(AVGFMAB, r)
|
|
opset(AVGFMAH, r)
|
|
opset(AVGFMAF, r)
|
|
opset(AVGFMAG, r)
|
|
opset(AVMALB, r)
|
|
opset(AVMALHW, r)
|
|
opset(AVMALF, r)
|
|
opset(AVMAHB, r)
|
|
opset(AVMAHH, r)
|
|
opset(AVMAHF, r)
|
|
opset(AVMALHB, r)
|
|
opset(AVMALHH, r)
|
|
opset(AVMALHF, r)
|
|
opset(AVMAEB, r)
|
|
opset(AVMAEH, r)
|
|
opset(AVMAEF, r)
|
|
opset(AVMALEB, r)
|
|
opset(AVMALEH, r)
|
|
opset(AVMALEF, r)
|
|
opset(AVMAOB, r)
|
|
opset(AVMAOH, r)
|
|
opset(AVMAOF, r)
|
|
opset(AVMALOB, r)
|
|
opset(AVMALOH, r)
|
|
opset(AVMALOF, r)
|
|
opset(AVSTRCB, r)
|
|
opset(AVSTRCH, r)
|
|
opset(AVSTRCF, r)
|
|
opset(AVSTRCBS, r)
|
|
opset(AVSTRCHS, r)
|
|
opset(AVSTRCFS, r)
|
|
opset(AVSTRCZB, r)
|
|
opset(AVSTRCZH, r)
|
|
opset(AVSTRCZF, r)
|
|
opset(AVSTRCZBS, r)
|
|
opset(AVSTRCZHS, r)
|
|
opset(AVSTRCZFS, r)
|
|
opset(AVSBCBIQ, r)
|
|
opset(AVSBIQ, r)
|
|
opset(AVMSLG, r)
|
|
opset(AVMSLEG, r)
|
|
opset(AVMSLOG, r)
|
|
opset(AVMSLEOG, r)
|
|
case AVSEL:
|
|
opset(AVFMADB, r)
|
|
opset(AWFMADB, r)
|
|
opset(AVFMSDB, r)
|
|
opset(AWFMSDB, r)
|
|
opset(AVPERM, r)
|
|
}
|
|
}
|
|
}
|
|
|
|
const (
|
|
op_A uint32 = 0x5A00 // FORMAT_RX1 ADD (32)
|
|
op_AD uint32 = 0x6A00 // FORMAT_RX1 ADD NORMALIZED (long HFP)
|
|
op_ADB uint32 = 0xED1A // FORMAT_RXE ADD (long BFP)
|
|
op_ADBR uint32 = 0xB31A // FORMAT_RRE ADD (long BFP)
|
|
op_ADR uint32 = 0x2A00 // FORMAT_RR ADD NORMALIZED (long HFP)
|
|
op_ADTR uint32 = 0xB3D2 // FORMAT_RRF1 ADD (long DFP)
|
|
op_ADTRA uint32 = 0xB3D2 // FORMAT_RRF1 ADD (long DFP)
|
|
op_AE uint32 = 0x7A00 // FORMAT_RX1 ADD NORMALIZED (short HFP)
|
|
op_AEB uint32 = 0xED0A // FORMAT_RXE ADD (short BFP)
|
|
op_AEBR uint32 = 0xB30A // FORMAT_RRE ADD (short BFP)
|
|
op_AER uint32 = 0x3A00 // FORMAT_RR ADD NORMALIZED (short HFP)
|
|
op_AFI uint32 = 0xC209 // FORMAT_RIL1 ADD IMMEDIATE (32)
|
|
op_AG uint32 = 0xE308 // FORMAT_RXY1 ADD (64)
|
|
op_AGF uint32 = 0xE318 // FORMAT_RXY1 ADD (64<-32)
|
|
op_AGFI uint32 = 0xC208 // FORMAT_RIL1 ADD IMMEDIATE (64<-32)
|
|
op_AGFR uint32 = 0xB918 // FORMAT_RRE ADD (64<-32)
|
|
op_AGHI uint32 = 0xA70B // FORMAT_RI1 ADD HALFWORD IMMEDIATE (64)
|
|
op_AGHIK uint32 = 0xECD9 // FORMAT_RIE4 ADD IMMEDIATE (64<-16)
|
|
op_AGR uint32 = 0xB908 // FORMAT_RRE ADD (64)
|
|
op_AGRK uint32 = 0xB9E8 // FORMAT_RRF1 ADD (64)
|
|
op_AGSI uint32 = 0xEB7A // FORMAT_SIY ADD IMMEDIATE (64<-8)
|
|
op_AH uint32 = 0x4A00 // FORMAT_RX1 ADD HALFWORD
|
|
op_AHHHR uint32 = 0xB9C8 // FORMAT_RRF1 ADD HIGH (32)
|
|
op_AHHLR uint32 = 0xB9D8 // FORMAT_RRF1 ADD HIGH (32)
|
|
op_AHI uint32 = 0xA70A // FORMAT_RI1 ADD HALFWORD IMMEDIATE (32)
|
|
op_AHIK uint32 = 0xECD8 // FORMAT_RIE4 ADD IMMEDIATE (32<-16)
|
|
op_AHY uint32 = 0xE37A // FORMAT_RXY1 ADD HALFWORD
|
|
op_AIH uint32 = 0xCC08 // FORMAT_RIL1 ADD IMMEDIATE HIGH (32)
|
|
op_AL uint32 = 0x5E00 // FORMAT_RX1 ADD LOGICAL (32)
|
|
op_ALC uint32 = 0xE398 // FORMAT_RXY1 ADD LOGICAL WITH CARRY (32)
|
|
op_ALCG uint32 = 0xE388 // FORMAT_RXY1 ADD LOGICAL WITH CARRY (64)
|
|
op_ALCGR uint32 = 0xB988 // FORMAT_RRE ADD LOGICAL WITH CARRY (64)
|
|
op_ALCR uint32 = 0xB998 // FORMAT_RRE ADD LOGICAL WITH CARRY (32)
|
|
op_ALFI uint32 = 0xC20B // FORMAT_RIL1 ADD LOGICAL IMMEDIATE (32)
|
|
op_ALG uint32 = 0xE30A // FORMAT_RXY1 ADD LOGICAL (64)
|
|
op_ALGF uint32 = 0xE31A // FORMAT_RXY1 ADD LOGICAL (64<-32)
|
|
op_ALGFI uint32 = 0xC20A // FORMAT_RIL1 ADD LOGICAL IMMEDIATE (64<-32)
|
|
op_ALGFR uint32 = 0xB91A // FORMAT_RRE ADD LOGICAL (64<-32)
|
|
op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4 ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
|
|
op_ALGR uint32 = 0xB90A // FORMAT_RRE ADD LOGICAL (64)
|
|
op_ALGRK uint32 = 0xB9EA // FORMAT_RRF1 ADD LOGICAL (64)
|
|
op_ALGSI uint32 = 0xEB7E // FORMAT_SIY ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
|
|
op_ALHHHR uint32 = 0xB9CA // FORMAT_RRF1 ADD LOGICAL HIGH (32)
|
|
op_ALHHLR uint32 = 0xB9DA // FORMAT_RRF1 ADD LOGICAL HIGH (32)
|
|
op_ALHSIK uint32 = 0xECDA // FORMAT_RIE4 ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
|
|
op_ALR uint32 = 0x1E00 // FORMAT_RR ADD LOGICAL (32)
|
|
op_ALRK uint32 = 0xB9FA // FORMAT_RRF1 ADD LOGICAL (32)
|
|
op_ALSI uint32 = 0xEB6E // FORMAT_SIY ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
|
|
op_ALSIH uint32 = 0xCC0A // FORMAT_RIL1 ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
|
|
op_ALSIHN uint32 = 0xCC0B // FORMAT_RIL1 ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
|
|
op_ALY uint32 = 0xE35E // FORMAT_RXY1 ADD LOGICAL (32)
|
|
op_AP uint32 = 0xFA00 // FORMAT_SS2 ADD DECIMAL
|
|
op_AR uint32 = 0x1A00 // FORMAT_RR ADD (32)
|
|
op_ARK uint32 = 0xB9F8 // FORMAT_RRF1 ADD (32)
|
|
op_ASI uint32 = 0xEB6A // FORMAT_SIY ADD IMMEDIATE (32<-8)
|
|
op_AU uint32 = 0x7E00 // FORMAT_RX1 ADD UNNORMALIZED (short HFP)
|
|
op_AUR uint32 = 0x3E00 // FORMAT_RR ADD UNNORMALIZED (short HFP)
|
|
op_AW uint32 = 0x6E00 // FORMAT_RX1 ADD UNNORMALIZED (long HFP)
|
|
op_AWR uint32 = 0x2E00 // FORMAT_RR ADD UNNORMALIZED (long HFP)
|
|
op_AXBR uint32 = 0xB34A // FORMAT_RRE ADD (extended BFP)
|
|
op_AXR uint32 = 0x3600 // FORMAT_RR ADD NORMALIZED (extended HFP)
|
|
op_AXTR uint32 = 0xB3DA // FORMAT_RRF1 ADD (extended DFP)
|
|
op_AXTRA uint32 = 0xB3DA // FORMAT_RRF1 ADD (extended DFP)
|
|
op_AY uint32 = 0xE35A // FORMAT_RXY1 ADD (32)
|
|
op_BAKR uint32 = 0xB240 // FORMAT_RRE BRANCH AND STACK
|
|
op_BAL uint32 = 0x4500 // FORMAT_RX1 BRANCH AND LINK
|
|
op_BALR uint32 = 0x0500 // FORMAT_RR BRANCH AND LINK
|
|
op_BAS uint32 = 0x4D00 // FORMAT_RX1 BRANCH AND SAVE
|
|
op_BASR uint32 = 0x0D00 // FORMAT_RR BRANCH AND SAVE
|
|
op_BASSM uint32 = 0x0C00 // FORMAT_RR BRANCH AND SAVE AND SET MODE
|
|
op_BC uint32 = 0x4700 // FORMAT_RX2 BRANCH ON CONDITION
|
|
op_BCR uint32 = 0x0700 // FORMAT_RR BRANCH ON CONDITION
|
|
op_BCT uint32 = 0x4600 // FORMAT_RX1 BRANCH ON COUNT (32)
|
|
op_BCTG uint32 = 0xE346 // FORMAT_RXY1 BRANCH ON COUNT (64)
|
|
op_BCTGR uint32 = 0xB946 // FORMAT_RRE BRANCH ON COUNT (64)
|
|
op_BCTR uint32 = 0x0600 // FORMAT_RR BRANCH ON COUNT (32)
|
|
op_BPP uint32 = 0xC700 // FORMAT_SMI BRANCH PREDICTION PRELOAD
|
|
op_BPRP uint32 = 0xC500 // FORMAT_MII BRANCH PREDICTION RELATIVE PRELOAD
|
|
op_BRAS uint32 = 0xA705 // FORMAT_RI2 BRANCH RELATIVE AND SAVE
|
|
op_BRASL uint32 = 0xC005 // FORMAT_RIL2 BRANCH RELATIVE AND SAVE LONG
|
|
op_BRC uint32 = 0xA704 // FORMAT_RI3 BRANCH RELATIVE ON CONDITION
|
|
op_BRCL uint32 = 0xC004 // FORMAT_RIL3 BRANCH RELATIVE ON CONDITION LONG
|
|
op_BRCT uint32 = 0xA706 // FORMAT_RI2 BRANCH RELATIVE ON COUNT (32)
|
|
op_BRCTG uint32 = 0xA707 // FORMAT_RI2 BRANCH RELATIVE ON COUNT (64)
|
|
op_BRCTH uint32 = 0xCC06 // FORMAT_RIL2 BRANCH RELATIVE ON COUNT HIGH (32)
|
|
op_BRXH uint32 = 0x8400 // FORMAT_RSI BRANCH RELATIVE ON INDEX HIGH (32)
|
|
op_BRXHG uint32 = 0xEC44 // FORMAT_RIE5 BRANCH RELATIVE ON INDEX HIGH (64)
|
|
op_BRXLE uint32 = 0x8500 // FORMAT_RSI BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
|
|
op_BRXLG uint32 = 0xEC45 // FORMAT_RIE5 BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
|
|
op_BSA uint32 = 0xB25A // FORMAT_RRE BRANCH AND SET AUTHORITY
|
|
op_BSG uint32 = 0xB258 // FORMAT_RRE BRANCH IN SUBSPACE GROUP
|
|
op_BSM uint32 = 0x0B00 // FORMAT_RR BRANCH AND SET MODE
|
|
op_BXH uint32 = 0x8600 // FORMAT_RS1 BRANCH ON INDEX HIGH (32)
|
|
op_BXHG uint32 = 0xEB44 // FORMAT_RSY1 BRANCH ON INDEX HIGH (64)
|
|
op_BXLE uint32 = 0x8700 // FORMAT_RS1 BRANCH ON INDEX LOW OR EQUAL (32)
|
|
op_BXLEG uint32 = 0xEB45 // FORMAT_RSY1 BRANCH ON INDEX LOW OR EQUAL (64)
|
|
op_C uint32 = 0x5900 // FORMAT_RX1 COMPARE (32)
|
|
op_CD uint32 = 0x6900 // FORMAT_RX1 COMPARE (long HFP)
|
|
op_CDB uint32 = 0xED19 // FORMAT_RXE COMPARE (long BFP)
|
|
op_CDBR uint32 = 0xB319 // FORMAT_RRE COMPARE (long BFP)
|
|
op_CDFBR uint32 = 0xB395 // FORMAT_RRE CONVERT FROM FIXED (32 to long BFP)
|
|
op_CDFBRA uint32 = 0xB395 // FORMAT_RRF5 CONVERT FROM FIXED (32 to long BFP)
|
|
op_CDFR uint32 = 0xB3B5 // FORMAT_RRE CONVERT FROM FIXED (32 to long HFP)
|
|
op_CDFTR uint32 = 0xB951 // FORMAT_RRE CONVERT FROM FIXED (32 to long DFP)
|
|
op_CDGBR uint32 = 0xB3A5 // FORMAT_RRE CONVERT FROM FIXED (64 to long BFP)
|
|
op_CDGBRA uint32 = 0xB3A5 // FORMAT_RRF5 CONVERT FROM FIXED (64 to long BFP)
|
|
op_CDGR uint32 = 0xB3C5 // FORMAT_RRE CONVERT FROM FIXED (64 to long HFP)
|
|
op_CDGTR uint32 = 0xB3F1 // FORMAT_RRE CONVERT FROM FIXED (64 to long DFP)
|
|
op_CDGTRA uint32 = 0xB3F1 // FORMAT_RRF5 CONVERT FROM FIXED (64 to long DFP)
|
|
op_CDLFBR uint32 = 0xB391 // FORMAT_RRF5 CONVERT FROM LOGICAL (32 to long BFP)
|
|
op_CDLFTR uint32 = 0xB953 // FORMAT_RRF5 CONVERT FROM LOGICAL (32 to long DFP)
|
|
op_CDLGBR uint32 = 0xB3A1 // FORMAT_RRF5 CONVERT FROM LOGICAL (64 to long BFP)
|
|
op_CDLGTR uint32 = 0xB952 // FORMAT_RRF5 CONVERT FROM LOGICAL (64 to long DFP)
|
|
op_CDR uint32 = 0x2900 // FORMAT_RR COMPARE (long HFP)
|
|
op_CDS uint32 = 0xBB00 // FORMAT_RS1 COMPARE DOUBLE AND SWAP (32)
|
|
op_CDSG uint32 = 0xEB3E // FORMAT_RSY1 COMPARE DOUBLE AND SWAP (64)
|
|
op_CDSTR uint32 = 0xB3F3 // FORMAT_RRE CONVERT FROM SIGNED PACKED (64 to long DFP)
|
|
op_CDSY uint32 = 0xEB31 // FORMAT_RSY1 COMPARE DOUBLE AND SWAP (32)
|
|
op_CDTR uint32 = 0xB3E4 // FORMAT_RRE COMPARE (long DFP)
|
|
op_CDUTR uint32 = 0xB3F2 // FORMAT_RRE CONVERT FROM UNSIGNED PACKED (64 to long DFP)
|
|
op_CDZT uint32 = 0xEDAA // FORMAT_RSL CONVERT FROM ZONED (to long DFP)
|
|
op_CE uint32 = 0x7900 // FORMAT_RX1 COMPARE (short HFP)
|
|
op_CEB uint32 = 0xED09 // FORMAT_RXE COMPARE (short BFP)
|
|
op_CEBR uint32 = 0xB309 // FORMAT_RRE COMPARE (short BFP)
|
|
op_CEDTR uint32 = 0xB3F4 // FORMAT_RRE COMPARE BIASED EXPONENT (long DFP)
|
|
op_CEFBR uint32 = 0xB394 // FORMAT_RRE CONVERT FROM FIXED (32 to short BFP)
|
|
op_CEFBRA uint32 = 0xB394 // FORMAT_RRF5 CONVERT FROM FIXED (32 to short BFP)
|
|
op_CEFR uint32 = 0xB3B4 // FORMAT_RRE CONVERT FROM FIXED (32 to short HFP)
|
|
op_CEGBR uint32 = 0xB3A4 // FORMAT_RRE CONVERT FROM FIXED (64 to short BFP)
|
|
op_CEGBRA uint32 = 0xB3A4 // FORMAT_RRF5 CONVERT FROM FIXED (64 to short BFP)
|
|
op_CEGR uint32 = 0xB3C4 // FORMAT_RRE CONVERT FROM FIXED (64 to short HFP)
|
|
op_CELFBR uint32 = 0xB390 // FORMAT_RRF5 CONVERT FROM LOGICAL (32 to short BFP)
|
|
op_CELGBR uint32 = 0xB3A0 // FORMAT_RRF5 CONVERT FROM LOGICAL (64 to short BFP)
|
|
op_CER uint32 = 0x3900 // FORMAT_RR COMPARE (short HFP)
|
|
op_CEXTR uint32 = 0xB3FC // FORMAT_RRE COMPARE BIASED EXPONENT (extended DFP)
|
|
op_CFC uint32 = 0xB21A // FORMAT_S COMPARE AND FORM CODEWORD
|
|
op_CFDBR uint32 = 0xB399 // FORMAT_RRF5 CONVERT TO FIXED (long BFP to 32)
|
|
op_CFDBRA uint32 = 0xB399 // FORMAT_RRF5 CONVERT TO FIXED (long BFP to 32)
|
|
op_CFDR uint32 = 0xB3B9 // FORMAT_RRF5 CONVERT TO FIXED (long HFP to 32)
|
|
op_CFDTR uint32 = 0xB941 // FORMAT_RRF5 CONVERT TO FIXED (long DFP to 32)
|
|
op_CFEBR uint32 = 0xB398 // FORMAT_RRF5 CONVERT TO FIXED (short BFP to 32)
|
|
op_CFEBRA uint32 = 0xB398 // FORMAT_RRF5 CONVERT TO FIXED (short BFP to 32)
|
|
op_CFER uint32 = 0xB3B8 // FORMAT_RRF5 CONVERT TO FIXED (short HFP to 32)
|
|
op_CFI uint32 = 0xC20D // FORMAT_RIL1 COMPARE IMMEDIATE (32)
|
|
op_CFXBR uint32 = 0xB39A // FORMAT_RRF5 CONVERT TO FIXED (extended BFP to 32)
|
|
op_CFXBRA uint32 = 0xB39A // FORMAT_RRF5 CONVERT TO FIXED (extended BFP to 32)
|
|
op_CFXR uint32 = 0xB3BA // FORMAT_RRF5 CONVERT TO FIXED (extended HFP to 32)
|
|
op_CFXTR uint32 = 0xB949 // FORMAT_RRF5 CONVERT TO FIXED (extended DFP to 32)
|
|
op_CG uint32 = 0xE320 // FORMAT_RXY1 COMPARE (64)
|
|
op_CGDBR uint32 = 0xB3A9 // FORMAT_RRF5 CONVERT TO FIXED (long BFP to 64)
|
|
op_CGDBRA uint32 = 0xB3A9 // FORMAT_RRF5 CONVERT TO FIXED (long BFP to 64)
|
|
op_CGDR uint32 = 0xB3C9 // FORMAT_RRF5 CONVERT TO FIXED (long HFP to 64)
|
|
op_CGDTR uint32 = 0xB3E1 // FORMAT_RRF5 CONVERT TO FIXED (long DFP to 64)
|
|
op_CGDTRA uint32 = 0xB3E1 // FORMAT_RRF5 CONVERT TO FIXED (long DFP to 64)
|
|
op_CGEBR uint32 = 0xB3A8 // FORMAT_RRF5 CONVERT TO FIXED (short BFP to 64)
|
|
op_CGEBRA uint32 = 0xB3A8 // FORMAT_RRF5 CONVERT TO FIXED (short BFP to 64)
|
|
op_CGER uint32 = 0xB3C8 // FORMAT_RRF5 CONVERT TO FIXED (short HFP to 64)
|
|
op_CGF uint32 = 0xE330 // FORMAT_RXY1 COMPARE (64<-32)
|
|
op_CGFI uint32 = 0xC20C // FORMAT_RIL1 COMPARE IMMEDIATE (64<-32)
|
|
op_CGFR uint32 = 0xB930 // FORMAT_RRE COMPARE (64<-32)
|
|
op_CGFRL uint32 = 0xC60C // FORMAT_RIL2 COMPARE RELATIVE LONG (64<-32)
|
|
op_CGH uint32 = 0xE334 // FORMAT_RXY1 COMPARE HALFWORD (64<-16)
|
|
op_CGHI uint32 = 0xA70F // FORMAT_RI1 COMPARE HALFWORD IMMEDIATE (64<-16)
|
|
op_CGHRL uint32 = 0xC604 // FORMAT_RIL2 COMPARE HALFWORD RELATIVE LONG (64<-16)
|
|
op_CGHSI uint32 = 0xE558 // FORMAT_SIL COMPARE HALFWORD IMMEDIATE (64<-16)
|
|
op_CGIB uint32 = 0xECFC // FORMAT_RIS COMPARE IMMEDIATE AND BRANCH (64<-8)
|
|
op_CGIJ uint32 = 0xEC7C // FORMAT_RIE3 COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
|
|
op_CGIT uint32 = 0xEC70 // FORMAT_RIE1 COMPARE IMMEDIATE AND TRAP (64<-16)
|
|
op_CGR uint32 = 0xB920 // FORMAT_RRE COMPARE (64)
|
|
op_CGRB uint32 = 0xECE4 // FORMAT_RRS COMPARE AND BRANCH (64)
|
|
op_CGRJ uint32 = 0xEC64 // FORMAT_RIE2 COMPARE AND BRANCH RELATIVE (64)
|
|
op_CGRL uint32 = 0xC608 // FORMAT_RIL2 COMPARE RELATIVE LONG (64)
|
|
op_CGRT uint32 = 0xB960 // FORMAT_RRF3 COMPARE AND TRAP (64)
|
|
op_CGXBR uint32 = 0xB3AA // FORMAT_RRF5 CONVERT TO FIXED (extended BFP to 64)
|
|
op_CGXBRA uint32 = 0xB3AA // FORMAT_RRF5 CONVERT TO FIXED (extended BFP to 64)
|
|
op_CGXR uint32 = 0xB3CA // FORMAT_RRF5 CONVERT TO FIXED (extended HFP to 64)
|
|
op_CGXTR uint32 = 0xB3E9 // FORMAT_RRF5 CONVERT TO FIXED (extended DFP to 64)
|
|
op_CGXTRA uint32 = 0xB3E9 // FORMAT_RRF5 CONVERT TO FIXED (extended DFP to 64)
|
|
op_CH uint32 = 0x4900 // FORMAT_RX1 COMPARE HALFWORD (32<-16)
|
|
op_CHF uint32 = 0xE3CD // FORMAT_RXY1 COMPARE HIGH (32)
|
|
op_CHHR uint32 = 0xB9CD // FORMAT_RRE COMPARE HIGH (32)
|
|
op_CHHSI uint32 = 0xE554 // FORMAT_SIL COMPARE HALFWORD IMMEDIATE (16)
|
|
op_CHI uint32 = 0xA70E // FORMAT_RI1 COMPARE HALFWORD IMMEDIATE (32<-16)
|
|
op_CHLR uint32 = 0xB9DD // FORMAT_RRE COMPARE HIGH (32)
|
|
op_CHRL uint32 = 0xC605 // FORMAT_RIL2 COMPARE HALFWORD RELATIVE LONG (32<-16)
|
|
op_CHSI uint32 = 0xE55C // FORMAT_SIL COMPARE HALFWORD IMMEDIATE (32<-16)
|
|
op_CHY uint32 = 0xE379 // FORMAT_RXY1 COMPARE HALFWORD (32<-16)
|
|
op_CIB uint32 = 0xECFE // FORMAT_RIS COMPARE IMMEDIATE AND BRANCH (32<-8)
|
|
op_CIH uint32 = 0xCC0D // FORMAT_RIL1 COMPARE IMMEDIATE HIGH (32)
|
|
op_CIJ uint32 = 0xEC7E // FORMAT_RIE3 COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
|
|
op_CIT uint32 = 0xEC72 // FORMAT_RIE1 COMPARE IMMEDIATE AND TRAP (32<-16)
|
|
op_CKSM uint32 = 0xB241 // FORMAT_RRE CHECKSUM
|
|
op_CL uint32 = 0x5500 // FORMAT_RX1 COMPARE LOGICAL (32)
|
|
op_CLC uint32 = 0xD500 // FORMAT_SS1 COMPARE LOGICAL (character)
|
|
op_CLCL uint32 = 0x0F00 // FORMAT_RR COMPARE LOGICAL LONG
|
|
op_CLCLE uint32 = 0xA900 // FORMAT_RS1 COMPARE LOGICAL LONG EXTENDED
|
|
op_CLCLU uint32 = 0xEB8F // FORMAT_RSY1 COMPARE LOGICAL LONG UNICODE
|
|
op_CLFDBR uint32 = 0xB39D // FORMAT_RRF5 CONVERT TO LOGICAL (long BFP to 32)
|
|
op_CLFDTR uint32 = 0xB943 // FORMAT_RRF5 CONVERT TO LOGICAL (long DFP to 32)
|
|
op_CLFEBR uint32 = 0xB39C // FORMAT_RRF5 CONVERT TO LOGICAL (short BFP to 32)
|
|
op_CLFHSI uint32 = 0xE55D // FORMAT_SIL COMPARE LOGICAL IMMEDIATE (32<-16)
|
|
op_CLFI uint32 = 0xC20F // FORMAT_RIL1 COMPARE LOGICAL IMMEDIATE (32)
|
|
op_CLFIT uint32 = 0xEC73 // FORMAT_RIE1 COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
|
|
op_CLFXBR uint32 = 0xB39E // FORMAT_RRF5 CONVERT TO LOGICAL (extended BFP to 32)
|
|
op_CLFXTR uint32 = 0xB94B // FORMAT_RRF5 CONVERT TO LOGICAL (extended DFP to 32)
|
|
op_CLG uint32 = 0xE321 // FORMAT_RXY1 COMPARE LOGICAL (64)
|
|
op_CLGDBR uint32 = 0xB3AD // FORMAT_RRF5 CONVERT TO LOGICAL (long BFP to 64)
|
|
op_CLGDTR uint32 = 0xB942 // FORMAT_RRF5 CONVERT TO LOGICAL (long DFP to 64)
|
|
op_CLGEBR uint32 = 0xB3AC // FORMAT_RRF5 CONVERT TO LOGICAL (short BFP to 64)
|
|
op_CLGF uint32 = 0xE331 // FORMAT_RXY1 COMPARE LOGICAL (64<-32)
|
|
op_CLGFI uint32 = 0xC20E // FORMAT_RIL1 COMPARE LOGICAL IMMEDIATE (64<-32)
|
|
op_CLGFR uint32 = 0xB931 // FORMAT_RRE COMPARE LOGICAL (64<-32)
|
|
op_CLGFRL uint32 = 0xC60E // FORMAT_RIL2 COMPARE LOGICAL RELATIVE LONG (64<-32)
|
|
op_CLGHRL uint32 = 0xC606 // FORMAT_RIL2 COMPARE LOGICAL RELATIVE LONG (64<-16)
|
|
op_CLGHSI uint32 = 0xE559 // FORMAT_SIL COMPARE LOGICAL IMMEDIATE (64<-16)
|
|
op_CLGIB uint32 = 0xECFD // FORMAT_RIS COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
|
|
op_CLGIJ uint32 = 0xEC7D // FORMAT_RIE3 COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
|
|
op_CLGIT uint32 = 0xEC71 // FORMAT_RIE1 COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
|
|
op_CLGR uint32 = 0xB921 // FORMAT_RRE COMPARE LOGICAL (64)
|
|
op_CLGRB uint32 = 0xECE5 // FORMAT_RRS COMPARE LOGICAL AND BRANCH (64)
|
|
op_CLGRJ uint32 = 0xEC65 // FORMAT_RIE2 COMPARE LOGICAL AND BRANCH RELATIVE (64)
|
|
op_CLGRL uint32 = 0xC60A // FORMAT_RIL2 COMPARE LOGICAL RELATIVE LONG (64)
|
|
op_CLGRT uint32 = 0xB961 // FORMAT_RRF3 COMPARE LOGICAL AND TRAP (64)
|
|
op_CLGT uint32 = 0xEB2B // FORMAT_RSY2 COMPARE LOGICAL AND TRAP (64)
|
|
op_CLGXBR uint32 = 0xB3AE // FORMAT_RRF5 CONVERT TO LOGICAL (extended BFP to 64)
|
|
op_CLGXTR uint32 = 0xB94A // FORMAT_RRF5 CONVERT TO LOGICAL (extended DFP to 64)
|
|
op_CLHF uint32 = 0xE3CF // FORMAT_RXY1 COMPARE LOGICAL HIGH (32)
|
|
op_CLHHR uint32 = 0xB9CF // FORMAT_RRE COMPARE LOGICAL HIGH (32)
|
|
op_CLHHSI uint32 = 0xE555 // FORMAT_SIL COMPARE LOGICAL IMMEDIATE (16)
|
|
op_CLHLR uint32 = 0xB9DF // FORMAT_RRE COMPARE LOGICAL HIGH (32)
|
|
op_CLHRL uint32 = 0xC607 // FORMAT_RIL2 COMPARE LOGICAL RELATIVE LONG (32<-16)
|
|
op_CLI uint32 = 0x9500 // FORMAT_SI COMPARE LOGICAL (immediate)
|
|
op_CLIB uint32 = 0xECFF // FORMAT_RIS COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
|
|
op_CLIH uint32 = 0xCC0F // FORMAT_RIL1 COMPARE LOGICAL IMMEDIATE HIGH (32)
|
|
op_CLIJ uint32 = 0xEC7F // FORMAT_RIE3 COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
|
|
op_CLIY uint32 = 0xEB55 // FORMAT_SIY COMPARE LOGICAL (immediate)
|
|
op_CLM uint32 = 0xBD00 // FORMAT_RS2 COMPARE LOGICAL CHAR. UNDER MASK (low)
|
|
op_CLMH uint32 = 0xEB20 // FORMAT_RSY2 COMPARE LOGICAL CHAR. UNDER MASK (high)
|
|
op_CLMY uint32 = 0xEB21 // FORMAT_RSY2 COMPARE LOGICAL CHAR. UNDER MASK (low)
|
|
op_CLR uint32 = 0x1500 // FORMAT_RR COMPARE LOGICAL (32)
|
|
op_CLRB uint32 = 0xECF7 // FORMAT_RRS COMPARE LOGICAL AND BRANCH (32)
|
|
op_CLRJ uint32 = 0xEC77 // FORMAT_RIE2 COMPARE LOGICAL AND BRANCH RELATIVE (32)
|
|
op_CLRL uint32 = 0xC60F // FORMAT_RIL2 COMPARE LOGICAL RELATIVE LONG (32)
|
|
op_CLRT uint32 = 0xB973 // FORMAT_RRF3 COMPARE LOGICAL AND TRAP (32)
|
|
op_CLST uint32 = 0xB25D // FORMAT_RRE COMPARE LOGICAL STRING
|
|
op_CLT uint32 = 0xEB23 // FORMAT_RSY2 COMPARE LOGICAL AND TRAP (32)
|
|
op_CLY uint32 = 0xE355 // FORMAT_RXY1 COMPARE LOGICAL (32)
|
|
op_CMPSC uint32 = 0xB263 // FORMAT_RRE COMPRESSION CALL
|
|
op_CP uint32 = 0xF900 // FORMAT_SS2 COMPARE DECIMAL
|
|
op_CPSDR uint32 = 0xB372 // FORMAT_RRF2 COPY SIGN (long)
|
|
op_CPYA uint32 = 0xB24D // FORMAT_RRE COPY ACCESS
|
|
op_CR uint32 = 0x1900 // FORMAT_RR COMPARE (32)
|
|
op_CRB uint32 = 0xECF6 // FORMAT_RRS COMPARE AND BRANCH (32)
|
|
op_CRDTE uint32 = 0xB98F // FORMAT_RRF2 COMPARE AND REPLACE DAT TABLE ENTRY
|
|
op_CRJ uint32 = 0xEC76 // FORMAT_RIE2 COMPARE AND BRANCH RELATIVE (32)
|
|
op_CRL uint32 = 0xC60D // FORMAT_RIL2 COMPARE RELATIVE LONG (32)
|
|
op_CRT uint32 = 0xB972 // FORMAT_RRF3 COMPARE AND TRAP (32)
|
|
op_CS uint32 = 0xBA00 // FORMAT_RS1 COMPARE AND SWAP (32)
|
|
op_CSCH uint32 = 0xB230 // FORMAT_S CLEAR SUBCHANNEL
|
|
op_CSDTR uint32 = 0xB3E3 // FORMAT_RRF4 CONVERT TO SIGNED PACKED (long DFP to 64)
|
|
op_CSG uint32 = 0xEB30 // FORMAT_RSY1 COMPARE AND SWAP (64)
|
|
op_CSP uint32 = 0xB250 // FORMAT_RRE COMPARE AND SWAP AND PURGE
|
|
op_CSPG uint32 = 0xB98A // FORMAT_RRE COMPARE AND SWAP AND PURGE
|
|
op_CSST uint32 = 0xC802 // FORMAT_SSF COMPARE AND SWAP AND STORE
|
|
op_CSXTR uint32 = 0xB3EB // FORMAT_RRF4 CONVERT TO SIGNED PACKED (extended DFP to 128)
|
|
op_CSY uint32 = 0xEB14 // FORMAT_RSY1 COMPARE AND SWAP (32)
|
|
op_CU12 uint32 = 0xB2A7 // FORMAT_RRF3 CONVERT UTF-8 TO UTF-16
|
|
op_CU14 uint32 = 0xB9B0 // FORMAT_RRF3 CONVERT UTF-8 TO UTF-32
|
|
op_CU21 uint32 = 0xB2A6 // FORMAT_RRF3 CONVERT UTF-16 TO UTF-8
|
|
op_CU24 uint32 = 0xB9B1 // FORMAT_RRF3 CONVERT UTF-16 TO UTF-32
|
|
op_CU41 uint32 = 0xB9B2 // FORMAT_RRE CONVERT UTF-32 TO UTF-8
|
|
op_CU42 uint32 = 0xB9B3 // FORMAT_RRE CONVERT UTF-32 TO UTF-16
|
|
op_CUDTR uint32 = 0xB3E2 // FORMAT_RRE CONVERT TO UNSIGNED PACKED (long DFP to 64)
|
|
op_CUSE uint32 = 0xB257 // FORMAT_RRE COMPARE UNTIL SUBSTRING EQUAL
|
|
op_CUTFU uint32 = 0xB2A7 // FORMAT_RRF3 CONVERT UTF-8 TO UNICODE
|
|
op_CUUTF uint32 = 0xB2A6 // FORMAT_RRF3 CONVERT UNICODE TO UTF-8
|
|
op_CUXTR uint32 = 0xB3EA // FORMAT_RRE CONVERT TO UNSIGNED PACKED (extended DFP to 128)
|
|
op_CVB uint32 = 0x4F00 // FORMAT_RX1 CONVERT TO BINARY (32)
|
|
op_CVBG uint32 = 0xE30E // FORMAT_RXY1 CONVERT TO BINARY (64)
|
|
op_CVBY uint32 = 0xE306 // FORMAT_RXY1 CONVERT TO BINARY (32)
|
|
op_CVD uint32 = 0x4E00 // FORMAT_RX1 CONVERT TO DECIMAL (32)
|
|
op_CVDG uint32 = 0xE32E // FORMAT_RXY1 CONVERT TO DECIMAL (64)
|
|
op_CVDY uint32 = 0xE326 // FORMAT_RXY1 CONVERT TO DECIMAL (32)
|
|
op_CXBR uint32 = 0xB349 // FORMAT_RRE COMPARE (extended BFP)
|
|
op_CXFBR uint32 = 0xB396 // FORMAT_RRE CONVERT FROM FIXED (32 to extended BFP)
|
|
op_CXFBRA uint32 = 0xB396 // FORMAT_RRF5 CONVERT FROM FIXED (32 to extended BFP)
|
|
op_CXFR uint32 = 0xB3B6 // FORMAT_RRE CONVERT FROM FIXED (32 to extended HFP)
|
|
op_CXFTR uint32 = 0xB959 // FORMAT_RRE CONVERT FROM FIXED (32 to extended DFP)
|
|
op_CXGBR uint32 = 0xB3A6 // FORMAT_RRE CONVERT FROM FIXED (64 to extended BFP)
|
|
op_CXGBRA uint32 = 0xB3A6 // FORMAT_RRF5 CONVERT FROM FIXED (64 to extended BFP)
|
|
op_CXGR uint32 = 0xB3C6 // FORMAT_RRE CONVERT FROM FIXED (64 to extended HFP)
|
|
op_CXGTR uint32 = 0xB3F9 // FORMAT_RRE CONVERT FROM FIXED (64 to extended DFP)
|
|
op_CXGTRA uint32 = 0xB3F9 // FORMAT_RRF5 CONVERT FROM FIXED (64 to extended DFP)
|
|
op_CXLFBR uint32 = 0xB392 // FORMAT_RRF5 CONVERT FROM LOGICAL (32 to extended BFP)
|
|
op_CXLFTR uint32 = 0xB95B // FORMAT_RRF5 CONVERT FROM LOGICAL (32 to extended DFP)
|
|
op_CXLGBR uint32 = 0xB3A2 // FORMAT_RRF5 CONVERT FROM LOGICAL (64 to extended BFP)
|
|
op_CXLGTR uint32 = 0xB95A // FORMAT_RRF5 CONVERT FROM LOGICAL (64 to extended DFP)
|
|
op_CXR uint32 = 0xB369 // FORMAT_RRE COMPARE (extended HFP)
|
|
op_CXSTR uint32 = 0xB3FB // FORMAT_RRE CONVERT FROM SIGNED PACKED (128 to extended DFP)
|
|
op_CXTR uint32 = 0xB3EC // FORMAT_RRE COMPARE (extended DFP)
|
|
op_CXUTR uint32 = 0xB3FA // FORMAT_RRE CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
|
|
op_CXZT uint32 = 0xEDAB // FORMAT_RSL CONVERT FROM ZONED (to extended DFP)
|
|
op_CY uint32 = 0xE359 // FORMAT_RXY1 COMPARE (32)
|
|
op_CZDT uint32 = 0xEDA8 // FORMAT_RSL CONVERT TO ZONED (from long DFP)
|
|
op_CZXT uint32 = 0xEDA9 // FORMAT_RSL CONVERT TO ZONED (from extended DFP)
|
|
op_D uint32 = 0x5D00 // FORMAT_RX1 DIVIDE (32<-64)
|
|
op_DD uint32 = 0x6D00 // FORMAT_RX1 DIVIDE (long HFP)
|
|
op_DDB uint32 = 0xED1D // FORMAT_RXE DIVIDE (long BFP)
|
|
op_DDBR uint32 = 0xB31D // FORMAT_RRE DIVIDE (long BFP)
|
|
op_DDR uint32 = 0x2D00 // FORMAT_RR DIVIDE (long HFP)
|
|
op_DDTR uint32 = 0xB3D1 // FORMAT_RRF1 DIVIDE (long DFP)
|
|
op_DDTRA uint32 = 0xB3D1 // FORMAT_RRF1 DIVIDE (long DFP)
|
|
op_DE uint32 = 0x7D00 // FORMAT_RX1 DIVIDE (short HFP)
|
|
op_DEB uint32 = 0xED0D // FORMAT_RXE DIVIDE (short BFP)
|
|
op_DEBR uint32 = 0xB30D // FORMAT_RRE DIVIDE (short BFP)
|
|
op_DER uint32 = 0x3D00 // FORMAT_RR DIVIDE (short HFP)
|
|
op_DIDBR uint32 = 0xB35B // FORMAT_RRF2 DIVIDE TO INTEGER (long BFP)
|
|
op_DIEBR uint32 = 0xB353 // FORMAT_RRF2 DIVIDE TO INTEGER (short BFP)
|
|
op_DL uint32 = 0xE397 // FORMAT_RXY1 DIVIDE LOGICAL (32<-64)
|
|
op_DLG uint32 = 0xE387 // FORMAT_RXY1 DIVIDE LOGICAL (64<-128)
|
|
op_DLGR uint32 = 0xB987 // FORMAT_RRE DIVIDE LOGICAL (64<-128)
|
|
op_DLR uint32 = 0xB997 // FORMAT_RRE DIVIDE LOGICAL (32<-64)
|
|
op_DP uint32 = 0xFD00 // FORMAT_SS2 DIVIDE DECIMAL
|
|
op_DR uint32 = 0x1D00 // FORMAT_RR DIVIDE (32<-64)
|
|
op_DSG uint32 = 0xE30D // FORMAT_RXY1 DIVIDE SINGLE (64)
|
|
op_DSGF uint32 = 0xE31D // FORMAT_RXY1 DIVIDE SINGLE (64<-32)
|
|
op_DSGFR uint32 = 0xB91D // FORMAT_RRE DIVIDE SINGLE (64<-32)
|
|
op_DSGR uint32 = 0xB90D // FORMAT_RRE DIVIDE SINGLE (64)
|
|
op_DXBR uint32 = 0xB34D // FORMAT_RRE DIVIDE (extended BFP)
|
|
op_DXR uint32 = 0xB22D // FORMAT_RRE DIVIDE (extended HFP)
|
|
op_DXTR uint32 = 0xB3D9 // FORMAT_RRF1 DIVIDE (extended DFP)
|
|
op_DXTRA uint32 = 0xB3D9 // FORMAT_RRF1 DIVIDE (extended DFP)
|
|
op_EAR uint32 = 0xB24F // FORMAT_RRE EXTRACT ACCESS
|
|
op_ECAG uint32 = 0xEB4C // FORMAT_RSY1 EXTRACT CACHE ATTRIBUTE
|
|
op_ECTG uint32 = 0xC801 // FORMAT_SSF EXTRACT CPU TIME
|
|
op_ED uint32 = 0xDE00 // FORMAT_SS1 EDIT
|
|
op_EDMK uint32 = 0xDF00 // FORMAT_SS1 EDIT AND MARK
|
|
op_EEDTR uint32 = 0xB3E5 // FORMAT_RRE EXTRACT BIASED EXPONENT (long DFP to 64)
|
|
op_EEXTR uint32 = 0xB3ED // FORMAT_RRE EXTRACT BIASED EXPONENT (extended DFP to 64)
|
|
op_EFPC uint32 = 0xB38C // FORMAT_RRE EXTRACT FPC
|
|
op_EPAIR uint32 = 0xB99A // FORMAT_RRE EXTRACT PRIMARY ASN AND INSTANCE
|
|
op_EPAR uint32 = 0xB226 // FORMAT_RRE EXTRACT PRIMARY ASN
|
|
op_EPSW uint32 = 0xB98D // FORMAT_RRE EXTRACT PSW
|
|
op_EREG uint32 = 0xB249 // FORMAT_RRE EXTRACT STACKED REGISTERS (32)
|
|
op_EREGG uint32 = 0xB90E // FORMAT_RRE EXTRACT STACKED REGISTERS (64)
|
|
op_ESAIR uint32 = 0xB99B // FORMAT_RRE EXTRACT SECONDARY ASN AND INSTANCE
|
|
op_ESAR uint32 = 0xB227 // FORMAT_RRE EXTRACT SECONDARY ASN
|
|
op_ESDTR uint32 = 0xB3E7 // FORMAT_RRE EXTRACT SIGNIFICANCE (long DFP)
|
|
op_ESEA uint32 = 0xB99D // FORMAT_RRE EXTRACT AND SET EXTENDED AUTHORITY
|
|
op_ESTA uint32 = 0xB24A // FORMAT_RRE EXTRACT STACKED STATE
|
|
op_ESXTR uint32 = 0xB3EF // FORMAT_RRE EXTRACT SIGNIFICANCE (extended DFP)
|
|
op_ETND uint32 = 0xB2EC // FORMAT_RRE EXTRACT TRANSACTION NESTING DEPTH
|
|
op_EX uint32 = 0x4400 // FORMAT_RX1 EXECUTE
|
|
op_EXRL uint32 = 0xC600 // FORMAT_RIL2 EXECUTE RELATIVE LONG
|
|
op_FIDBR uint32 = 0xB35F // FORMAT_RRF5 LOAD FP INTEGER (long BFP)
|
|
op_FIDBRA uint32 = 0xB35F // FORMAT_RRF5 LOAD FP INTEGER (long BFP)
|
|
op_FIDR uint32 = 0xB37F // FORMAT_RRE LOAD FP INTEGER (long HFP)
|
|
op_FIDTR uint32 = 0xB3D7 // FORMAT_RRF5 LOAD FP INTEGER (long DFP)
|
|
op_FIEBR uint32 = 0xB357 // FORMAT_RRF5 LOAD FP INTEGER (short BFP)
|
|
op_FIEBRA uint32 = 0xB357 // FORMAT_RRF5 LOAD FP INTEGER (short BFP)
|
|
op_FIER uint32 = 0xB377 // FORMAT_RRE LOAD FP INTEGER (short HFP)
|
|
op_FIXBR uint32 = 0xB347 // FORMAT_RRF5 LOAD FP INTEGER (extended BFP)
|
|
op_FIXBRA uint32 = 0xB347 // FORMAT_RRF5 LOAD FP INTEGER (extended BFP)
|
|
op_FIXR uint32 = 0xB367 // FORMAT_RRE LOAD FP INTEGER (extended HFP)
|
|
op_FIXTR uint32 = 0xB3DF // FORMAT_RRF5 LOAD FP INTEGER (extended DFP)
|
|
op_FLOGR uint32 = 0xB983 // FORMAT_RRE FIND LEFTMOST ONE
|
|
op_HDR uint32 = 0x2400 // FORMAT_RR HALVE (long HFP)
|
|
op_HER uint32 = 0x3400 // FORMAT_RR HALVE (short HFP)
|
|
op_HSCH uint32 = 0xB231 // FORMAT_S HALT SUBCHANNEL
|
|
op_IAC uint32 = 0xB224 // FORMAT_RRE INSERT ADDRESS SPACE CONTROL
|
|
op_IC uint32 = 0x4300 // FORMAT_RX1 INSERT CHARACTER
|
|
op_ICM uint32 = 0xBF00 // FORMAT_RS2 INSERT CHARACTERS UNDER MASK (low)
|
|
op_ICMH uint32 = 0xEB80 // FORMAT_RSY2 INSERT CHARACTERS UNDER MASK (high)
|
|
op_ICMY uint32 = 0xEB81 // FORMAT_RSY2 INSERT CHARACTERS UNDER MASK (low)
|
|
op_ICY uint32 = 0xE373 // FORMAT_RXY1 INSERT CHARACTER
|
|
op_IDTE uint32 = 0xB98E // FORMAT_RRF2 INVALIDATE DAT TABLE ENTRY
|
|
op_IEDTR uint32 = 0xB3F6 // FORMAT_RRF2 INSERT BIASED EXPONENT (64 to long DFP)
|
|
op_IEXTR uint32 = 0xB3FE // FORMAT_RRF2 INSERT BIASED EXPONENT (64 to extended DFP)
|
|
op_IIHF uint32 = 0xC008 // FORMAT_RIL1 INSERT IMMEDIATE (high)
|
|
op_IIHH uint32 = 0xA500 // FORMAT_RI1 INSERT IMMEDIATE (high high)
|
|
op_IIHL uint32 = 0xA501 // FORMAT_RI1 INSERT IMMEDIATE (high low)
|
|
op_IILF uint32 = 0xC009 // FORMAT_RIL1 INSERT IMMEDIATE (low)
|
|
op_IILH uint32 = 0xA502 // FORMAT_RI1 INSERT IMMEDIATE (low high)
|
|
op_IILL uint32 = 0xA503 // FORMAT_RI1 INSERT IMMEDIATE (low low)
|
|
op_IPK uint32 = 0xB20B // FORMAT_S INSERT PSW KEY
|
|
op_IPM uint32 = 0xB222 // FORMAT_RRE INSERT PROGRAM MASK
|
|
op_IPTE uint32 = 0xB221 // FORMAT_RRF1 INVALIDATE PAGE TABLE ENTRY
|
|
op_ISKE uint32 = 0xB229 // FORMAT_RRE INSERT STORAGE KEY EXTENDED
|
|
op_IVSK uint32 = 0xB223 // FORMAT_RRE INSERT VIRTUAL STORAGE KEY
|
|
op_KDB uint32 = 0xED18 // FORMAT_RXE COMPARE AND SIGNAL (long BFP)
|
|
op_KDBR uint32 = 0xB318 // FORMAT_RRE COMPARE AND SIGNAL (long BFP)
|
|
op_KDTR uint32 = 0xB3E0 // FORMAT_RRE COMPARE AND SIGNAL (long DFP)
|
|
op_KEB uint32 = 0xED08 // FORMAT_RXE COMPARE AND SIGNAL (short BFP)
|
|
op_KEBR uint32 = 0xB308 // FORMAT_RRE COMPARE AND SIGNAL (short BFP)
|
|
op_KIMD uint32 = 0xB93E // FORMAT_RRE COMPUTE INTERMEDIATE MESSAGE DIGEST
|
|
op_KLMD uint32 = 0xB93F // FORMAT_RRE COMPUTE LAST MESSAGE DIGEST
|
|
op_KM uint32 = 0xB92E // FORMAT_RRE CIPHER MESSAGE
|
|
op_KMAC uint32 = 0xB91E // FORMAT_RRE COMPUTE MESSAGE AUTHENTICATION CODE
|
|
op_KMC uint32 = 0xB92F // FORMAT_RRE CIPHER MESSAGE WITH CHAINING
|
|
op_KMCTR uint32 = 0xB92D // FORMAT_RRF2 CIPHER MESSAGE WITH COUNTER
|
|
op_KMF uint32 = 0xB92A // FORMAT_RRE CIPHER MESSAGE WITH CFB
|
|
op_KMO uint32 = 0xB92B // FORMAT_RRE CIPHER MESSAGE WITH OFB
|
|
op_KXBR uint32 = 0xB348 // FORMAT_RRE COMPARE AND SIGNAL (extended BFP)
|
|
op_KXTR uint32 = 0xB3E8 // FORMAT_RRE COMPARE AND SIGNAL (extended DFP)
|
|
op_L uint32 = 0x5800 // FORMAT_RX1 LOAD (32)
|
|
op_LA uint32 = 0x4100 // FORMAT_RX1 LOAD ADDRESS
|
|
op_LAA uint32 = 0xEBF8 // FORMAT_RSY1 LOAD AND ADD (32)
|
|
op_LAAG uint32 = 0xEBE8 // FORMAT_RSY1 LOAD AND ADD (64)
|
|
op_LAAL uint32 = 0xEBFA // FORMAT_RSY1 LOAD AND ADD LOGICAL (32)
|
|
op_LAALG uint32 = 0xEBEA // FORMAT_RSY1 LOAD AND ADD LOGICAL (64)
|
|
op_LAE uint32 = 0x5100 // FORMAT_RX1 LOAD ADDRESS EXTENDED
|
|
op_LAEY uint32 = 0xE375 // FORMAT_RXY1 LOAD ADDRESS EXTENDED
|
|
op_LAM uint32 = 0x9A00 // FORMAT_RS1 LOAD ACCESS MULTIPLE
|
|
op_LAMY uint32 = 0xEB9A // FORMAT_RSY1 LOAD ACCESS MULTIPLE
|
|
op_LAN uint32 = 0xEBF4 // FORMAT_RSY1 LOAD AND AND (32)
|
|
op_LANG uint32 = 0xEBE4 // FORMAT_RSY1 LOAD AND AND (64)
|
|
op_LAO uint32 = 0xEBF6 // FORMAT_RSY1 LOAD AND OR (32)
|
|
op_LAOG uint32 = 0xEBE6 // FORMAT_RSY1 LOAD AND OR (64)
|
|
op_LARL uint32 = 0xC000 // FORMAT_RIL2 LOAD ADDRESS RELATIVE LONG
|
|
op_LASP uint32 = 0xE500 // FORMAT_SSE LOAD ADDRESS SPACE PARAMETERS
|
|
op_LAT uint32 = 0xE39F // FORMAT_RXY1 LOAD AND TRAP (32L<-32)
|
|
op_LAX uint32 = 0xEBF7 // FORMAT_RSY1 LOAD AND EXCLUSIVE OR (32)
|
|
op_LAXG uint32 = 0xEBE7 // FORMAT_RSY1 LOAD AND EXCLUSIVE OR (64)
|
|
op_LAY uint32 = 0xE371 // FORMAT_RXY1 LOAD ADDRESS
|
|
op_LB uint32 = 0xE376 // FORMAT_RXY1 LOAD BYTE (32)
|
|
op_LBH uint32 = 0xE3C0 // FORMAT_RXY1 LOAD BYTE HIGH (32<-8)
|
|
op_LBR uint32 = 0xB926 // FORMAT_RRE LOAD BYTE (32)
|
|
op_LCDBR uint32 = 0xB313 // FORMAT_RRE LOAD COMPLEMENT (long BFP)
|
|
op_LCDFR uint32 = 0xB373 // FORMAT_RRE LOAD COMPLEMENT (long)
|
|
op_LCDR uint32 = 0x2300 // FORMAT_RR LOAD COMPLEMENT (long HFP)
|
|
op_LCEBR uint32 = 0xB303 // FORMAT_RRE LOAD COMPLEMENT (short BFP)
|
|
op_LCER uint32 = 0x3300 // FORMAT_RR LOAD COMPLEMENT (short HFP)
|
|
op_LCGFR uint32 = 0xB913 // FORMAT_RRE LOAD COMPLEMENT (64<-32)
|
|
op_LCGR uint32 = 0xB903 // FORMAT_RRE LOAD COMPLEMENT (64)
|
|
op_LCR uint32 = 0x1300 // FORMAT_RR LOAD COMPLEMENT (32)
|
|
op_LCTL uint32 = 0xB700 // FORMAT_RS1 LOAD CONTROL (32)
|
|
op_LCTLG uint32 = 0xEB2F // FORMAT_RSY1 LOAD CONTROL (64)
|
|
op_LCXBR uint32 = 0xB343 // FORMAT_RRE LOAD COMPLEMENT (extended BFP)
|
|
op_LCXR uint32 = 0xB363 // FORMAT_RRE LOAD COMPLEMENT (extended HFP)
|
|
op_LD uint32 = 0x6800 // FORMAT_RX1 LOAD (long)
|
|
op_LDE uint32 = 0xED24 // FORMAT_RXE LOAD LENGTHENED (short to long HFP)
|
|
op_LDEB uint32 = 0xED04 // FORMAT_RXE LOAD LENGTHENED (short to long BFP)
|
|
op_LDEBR uint32 = 0xB304 // FORMAT_RRE LOAD LENGTHENED (short to long BFP)
|
|
op_LDER uint32 = 0xB324 // FORMAT_RRE LOAD LENGTHENED (short to long HFP)
|
|
op_LDETR uint32 = 0xB3D4 // FORMAT_RRF4 LOAD LENGTHENED (short to long DFP)
|
|
op_LDGR uint32 = 0xB3C1 // FORMAT_RRE LOAD FPR FROM GR (64 to long)
|
|
op_LDR uint32 = 0x2800 // FORMAT_RR LOAD (long)
|
|
op_LDXBR uint32 = 0xB345 // FORMAT_RRE LOAD ROUNDED (extended to long BFP)
|
|
op_LDXBRA uint32 = 0xB345 // FORMAT_RRF5 LOAD ROUNDED (extended to long BFP)
|
|
op_LDXR uint32 = 0x2500 // FORMAT_RR LOAD ROUNDED (extended to long HFP)
|
|
op_LDXTR uint32 = 0xB3DD // FORMAT_RRF5 LOAD ROUNDED (extended to long DFP)
|
|
op_LDY uint32 = 0xED65 // FORMAT_RXY1 LOAD (long)
|
|
op_LE uint32 = 0x7800 // FORMAT_RX1 LOAD (short)
|
|
op_LEDBR uint32 = 0xB344 // FORMAT_RRE LOAD ROUNDED (long to short BFP)
|
|
op_LEDBRA uint32 = 0xB344 // FORMAT_RRF5 LOAD ROUNDED (long to short BFP)
|
|
op_LEDR uint32 = 0x3500 // FORMAT_RR LOAD ROUNDED (long to short HFP)
|
|
op_LEDTR uint32 = 0xB3D5 // FORMAT_RRF5 LOAD ROUNDED (long to short DFP)
|
|
op_LER uint32 = 0x3800 // FORMAT_RR LOAD (short)
|
|
op_LEXBR uint32 = 0xB346 // FORMAT_RRE LOAD ROUNDED (extended to short BFP)
|
|
op_LEXBRA uint32 = 0xB346 // FORMAT_RRF5 LOAD ROUNDED (extended to short BFP)
|
|
op_LEXR uint32 = 0xB366 // FORMAT_RRE LOAD ROUNDED (extended to short HFP)
|
|
op_LEY uint32 = 0xED64 // FORMAT_RXY1 LOAD (short)
|
|
op_LFAS uint32 = 0xB2BD // FORMAT_S LOAD FPC AND SIGNAL
|
|
op_LFH uint32 = 0xE3CA // FORMAT_RXY1 LOAD HIGH (32)
|
|
op_LFHAT uint32 = 0xE3C8 // FORMAT_RXY1 LOAD HIGH AND TRAP (32H<-32)
|
|
op_LFPC uint32 = 0xB29D // FORMAT_S LOAD FPC
|
|
op_LG uint32 = 0xE304 // FORMAT_RXY1 LOAD (64)
|
|
op_LGAT uint32 = 0xE385 // FORMAT_RXY1 LOAD AND TRAP (64)
|
|
op_LGB uint32 = 0xE377 // FORMAT_RXY1 LOAD BYTE (64)
|
|
op_LGBR uint32 = 0xB906 // FORMAT_RRE LOAD BYTE (64)
|
|
op_LGDR uint32 = 0xB3CD // FORMAT_RRE LOAD GR FROM FPR (long to 64)
|
|
op_LGF uint32 = 0xE314 // FORMAT_RXY1 LOAD (64<-32)
|
|
op_LGFI uint32 = 0xC001 // FORMAT_RIL1 LOAD IMMEDIATE (64<-32)
|
|
op_LGFR uint32 = 0xB914 // FORMAT_RRE LOAD (64<-32)
|
|
op_LGFRL uint32 = 0xC40C // FORMAT_RIL2 LOAD RELATIVE LONG (64<-32)
|
|
op_LGH uint32 = 0xE315 // FORMAT_RXY1 LOAD HALFWORD (64)
|
|
op_LGHI uint32 = 0xA709 // FORMAT_RI1 LOAD HALFWORD IMMEDIATE (64)
|
|
op_LGHR uint32 = 0xB907 // FORMAT_RRE LOAD HALFWORD (64)
|
|
op_LGHRL uint32 = 0xC404 // FORMAT_RIL2 LOAD HALFWORD RELATIVE LONG (64<-16)
|
|
op_LGR uint32 = 0xB904 // FORMAT_RRE LOAD (64)
|
|
op_LGRL uint32 = 0xC408 // FORMAT_RIL2 LOAD RELATIVE LONG (64)
|
|
op_LH uint32 = 0x4800 // FORMAT_RX1 LOAD HALFWORD (32)
|
|
op_LHH uint32 = 0xE3C4 // FORMAT_RXY1 LOAD HALFWORD HIGH (32<-16)
|
|
op_LHI uint32 = 0xA708 // FORMAT_RI1 LOAD HALFWORD IMMEDIATE (32)
|
|
op_LHR uint32 = 0xB927 // FORMAT_RRE LOAD HALFWORD (32)
|
|
op_LHRL uint32 = 0xC405 // FORMAT_RIL2 LOAD HALFWORD RELATIVE LONG (32<-16)
|
|
op_LHY uint32 = 0xE378 // FORMAT_RXY1 LOAD HALFWORD (32)
|
|
op_LLC uint32 = 0xE394 // FORMAT_RXY1 LOAD LOGICAL CHARACTER (32)
|
|
op_LLCH uint32 = 0xE3C2 // FORMAT_RXY1 LOAD LOGICAL CHARACTER HIGH (32<-8)
|
|
op_LLCR uint32 = 0xB994 // FORMAT_RRE LOAD LOGICAL CHARACTER (32)
|
|
op_LLGC uint32 = 0xE390 // FORMAT_RXY1 LOAD LOGICAL CHARACTER (64)
|
|
op_LLGCR uint32 = 0xB984 // FORMAT_RRE LOAD LOGICAL CHARACTER (64)
|
|
op_LLGF uint32 = 0xE316 // FORMAT_RXY1 LOAD LOGICAL (64<-32)
|
|
op_LLGFAT uint32 = 0xE39D // FORMAT_RXY1 LOAD LOGICAL AND TRAP (64<-32)
|
|
op_LLGFR uint32 = 0xB916 // FORMAT_RRE LOAD LOGICAL (64<-32)
|
|
op_LLGFRL uint32 = 0xC40E // FORMAT_RIL2 LOAD LOGICAL RELATIVE LONG (64<-32)
|
|
op_LLGH uint32 = 0xE391 // FORMAT_RXY1 LOAD LOGICAL HALFWORD (64)
|
|
op_LLGHR uint32 = 0xB985 // FORMAT_RRE LOAD LOGICAL HALFWORD (64)
|
|
op_LLGHRL uint32 = 0xC406 // FORMAT_RIL2 LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
|
|
op_LLGT uint32 = 0xE317 // FORMAT_RXY1 LOAD LOGICAL THIRTY ONE BITS
|
|
op_LLGTAT uint32 = 0xE39C // FORMAT_RXY1 LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
|
|
op_LLGTR uint32 = 0xB917 // FORMAT_RRE LOAD LOGICAL THIRTY ONE BITS
|
|
op_LLH uint32 = 0xE395 // FORMAT_RXY1 LOAD LOGICAL HALFWORD (32)
|
|
op_LLHH uint32 = 0xE3C6 // FORMAT_RXY1 LOAD LOGICAL HALFWORD HIGH (32<-16)
|
|
op_LLHR uint32 = 0xB995 // FORMAT_RRE LOAD LOGICAL HALFWORD (32)
|
|
op_LLHRL uint32 = 0xC402 // FORMAT_RIL2 LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
|
|
op_LLIHF uint32 = 0xC00E // FORMAT_RIL1 LOAD LOGICAL IMMEDIATE (high)
|
|
op_LLIHH uint32 = 0xA50C // FORMAT_RI1 LOAD LOGICAL IMMEDIATE (high high)
|
|
op_LLIHL uint32 = 0xA50D // FORMAT_RI1 LOAD LOGICAL IMMEDIATE (high low)
|
|
op_LLILF uint32 = 0xC00F // FORMAT_RIL1 LOAD LOGICAL IMMEDIATE (low)
|
|
op_LLILH uint32 = 0xA50E // FORMAT_RI1 LOAD LOGICAL IMMEDIATE (low high)
|
|
op_LLILL uint32 = 0xA50F // FORMAT_RI1 LOAD LOGICAL IMMEDIATE (low low)
|
|
op_LM uint32 = 0x9800 // FORMAT_RS1 LOAD MULTIPLE (32)
|
|
op_LMD uint32 = 0xEF00 // FORMAT_SS5 LOAD MULTIPLE DISJOINT
|
|
op_LMG uint32 = 0xEB04 // FORMAT_RSY1 LOAD MULTIPLE (64)
|
|
op_LMH uint32 = 0xEB96 // FORMAT_RSY1 LOAD MULTIPLE HIGH
|
|
op_LMY uint32 = 0xEB98 // FORMAT_RSY1 LOAD MULTIPLE (32)
|
|
op_LNDBR uint32 = 0xB311 // FORMAT_RRE LOAD NEGATIVE (long BFP)
|
|
op_LNDFR uint32 = 0xB371 // FORMAT_RRE LOAD NEGATIVE (long)
|
|
op_LNDR uint32 = 0x2100 // FORMAT_RR LOAD NEGATIVE (long HFP)
|
|
op_LNEBR uint32 = 0xB301 // FORMAT_RRE LOAD NEGATIVE (short BFP)
|
|
op_LNER uint32 = 0x3100 // FORMAT_RR LOAD NEGATIVE (short HFP)
|
|
op_LNGFR uint32 = 0xB911 // FORMAT_RRE LOAD NEGATIVE (64<-32)
|
|
op_LNGR uint32 = 0xB901 // FORMAT_RRE LOAD NEGATIVE (64)
|
|
op_LNR uint32 = 0x1100 // FORMAT_RR LOAD NEGATIVE (32)
|
|
op_LNXBR uint32 = 0xB341 // FORMAT_RRE LOAD NEGATIVE (extended BFP)
|
|
op_LNXR uint32 = 0xB361 // FORMAT_RRE LOAD NEGATIVE (extended HFP)
|
|
op_LOC uint32 = 0xEBF2 // FORMAT_RSY2 LOAD ON CONDITION (32)
|
|
op_LOCG uint32 = 0xEBE2 // FORMAT_RSY2 LOAD ON CONDITION (64)
|
|
op_LOCGR uint32 = 0xB9E2 // FORMAT_RRF3 LOAD ON CONDITION (64)
|
|
op_LOCR uint32 = 0xB9F2 // FORMAT_RRF3 LOAD ON CONDITION (32)
|
|
op_LPD uint32 = 0xC804 // FORMAT_SSF LOAD PAIR DISJOINT (32)
|
|
op_LPDBR uint32 = 0xB310 // FORMAT_RRE LOAD POSITIVE (long BFP)
|
|
op_LPDFR uint32 = 0xB370 // FORMAT_RRE LOAD POSITIVE (long)
|
|
op_LPDG uint32 = 0xC805 // FORMAT_SSF LOAD PAIR DISJOINT (64)
|
|
op_LPDR uint32 = 0x2000 // FORMAT_RR LOAD POSITIVE (long HFP)
|
|
op_LPEBR uint32 = 0xB300 // FORMAT_RRE LOAD POSITIVE (short BFP)
|
|
op_LPER uint32 = 0x3000 // FORMAT_RR LOAD POSITIVE (short HFP)
|
|
op_LPGFR uint32 = 0xB910 // FORMAT_RRE LOAD POSITIVE (64<-32)
|
|
op_LPGR uint32 = 0xB900 // FORMAT_RRE LOAD POSITIVE (64)
|
|
op_LPQ uint32 = 0xE38F // FORMAT_RXY1 LOAD PAIR FROM QUADWORD
|
|
op_LPR uint32 = 0x1000 // FORMAT_RR LOAD POSITIVE (32)
|
|
op_LPSW uint32 = 0x8200 // FORMAT_S LOAD PSW
|
|
op_LPSWE uint32 = 0xB2B2 // FORMAT_S LOAD PSW EXTENDED
|
|
op_LPTEA uint32 = 0xB9AA // FORMAT_RRF2 LOAD PAGE TABLE ENTRY ADDRESS
|
|
op_LPXBR uint32 = 0xB340 // FORMAT_RRE LOAD POSITIVE (extended BFP)
|
|
op_LPXR uint32 = 0xB360 // FORMAT_RRE LOAD POSITIVE (extended HFP)
|
|
op_LR uint32 = 0x1800 // FORMAT_RR LOAD (32)
|
|
op_LRA uint32 = 0xB100 // FORMAT_RX1 LOAD REAL ADDRESS (32)
|
|
op_LRAG uint32 = 0xE303 // FORMAT_RXY1 LOAD REAL ADDRESS (64)
|
|
op_LRAY uint32 = 0xE313 // FORMAT_RXY1 LOAD REAL ADDRESS (32)
|
|
op_LRDR uint32 = 0x2500 // FORMAT_RR LOAD ROUNDED (extended to long HFP)
|
|
op_LRER uint32 = 0x3500 // FORMAT_RR LOAD ROUNDED (long to short HFP)
|
|
op_LRL uint32 = 0xC40D // FORMAT_RIL2 LOAD RELATIVE LONG (32)
|
|
op_LRV uint32 = 0xE31E // FORMAT_RXY1 LOAD REVERSED (32)
|
|
op_LRVG uint32 = 0xE30F // FORMAT_RXY1 LOAD REVERSED (64)
|
|
op_LRVGR uint32 = 0xB90F // FORMAT_RRE LOAD REVERSED (64)
|
|
op_LRVH uint32 = 0xE31F // FORMAT_RXY1 LOAD REVERSED (16)
|
|
op_LRVR uint32 = 0xB91F // FORMAT_RRE LOAD REVERSED (32)
|
|
op_LT uint32 = 0xE312 // FORMAT_RXY1 LOAD AND TEST (32)
|
|
op_LTDBR uint32 = 0xB312 // FORMAT_RRE LOAD AND TEST (long BFP)
|
|
op_LTDR uint32 = 0x2200 // FORMAT_RR LOAD AND TEST (long HFP)
|
|
op_LTDTR uint32 = 0xB3D6 // FORMAT_RRE LOAD AND TEST (long DFP)
|
|
op_LTEBR uint32 = 0xB302 // FORMAT_RRE LOAD AND TEST (short BFP)
|
|
op_LTER uint32 = 0x3200 // FORMAT_RR LOAD AND TEST (short HFP)
|
|
op_LTG uint32 = 0xE302 // FORMAT_RXY1 LOAD AND TEST (64)
|
|
op_LTGF uint32 = 0xE332 // FORMAT_RXY1 LOAD AND TEST (64<-32)
|
|
op_LTGFR uint32 = 0xB912 // FORMAT_RRE LOAD AND TEST (64<-32)
|
|
op_LTGR uint32 = 0xB902 // FORMAT_RRE LOAD AND TEST (64)
|
|
op_LTR uint32 = 0x1200 // FORMAT_RR LOAD AND TEST (32)
|
|
op_LTXBR uint32 = 0xB342 // FORMAT_RRE LOAD AND TEST (extended BFP)
|
|
op_LTXR uint32 = 0xB362 // FORMAT_RRE LOAD AND TEST (extended HFP)
|
|
op_LTXTR uint32 = 0xB3DE // FORMAT_RRE LOAD AND TEST (extended DFP)
|
|
op_LURA uint32 = 0xB24B // FORMAT_RRE LOAD USING REAL ADDRESS (32)
|
|
op_LURAG uint32 = 0xB905 // FORMAT_RRE LOAD USING REAL ADDRESS (64)
|
|
op_LXD uint32 = 0xED25 // FORMAT_RXE LOAD LENGTHENED (long to extended HFP)
|
|
op_LXDB uint32 = 0xED05 // FORMAT_RXE LOAD LENGTHENED (long to extended BFP)
|
|
op_LXDBR uint32 = 0xB305 // FORMAT_RRE LOAD LENGTHENED (long to extended BFP)
|
|
op_LXDR uint32 = 0xB325 // FORMAT_RRE LOAD LENGTHENED (long to extended HFP)
|
|
op_LXDTR uint32 = 0xB3DC // FORMAT_RRF4 LOAD LENGTHENED (long to extended DFP)
|
|
op_LXE uint32 = 0xED26 // FORMAT_RXE LOAD LENGTHENED (short to extended HFP)
|
|
op_LXEB uint32 = 0xED06 // FORMAT_RXE LOAD LENGTHENED (short to extended BFP)
|
|
op_LXEBR uint32 = 0xB306 // FORMAT_RRE LOAD LENGTHENED (short to extended BFP)
|
|
op_LXER uint32 = 0xB326 // FORMAT_RRE LOAD LENGTHENED (short to extended HFP)
|
|
op_LXR uint32 = 0xB365 // FORMAT_RRE LOAD (extended)
|
|
op_LY uint32 = 0xE358 // FORMAT_RXY1 LOAD (32)
|
|
op_LZDR uint32 = 0xB375 // FORMAT_RRE LOAD ZERO (long)
|
|
op_LZER uint32 = 0xB374 // FORMAT_RRE LOAD ZERO (short)
|
|
op_LZXR uint32 = 0xB376 // FORMAT_RRE LOAD ZERO (extended)
|
|
op_M uint32 = 0x5C00 // FORMAT_RX1 MULTIPLY (64<-32)
|
|
op_MAD uint32 = 0xED3E // FORMAT_RXF MULTIPLY AND ADD (long HFP)
|
|
op_MADB uint32 = 0xED1E // FORMAT_RXF MULTIPLY AND ADD (long BFP)
|
|
op_MADBR uint32 = 0xB31E // FORMAT_RRD MULTIPLY AND ADD (long BFP)
|
|
op_MADR uint32 = 0xB33E // FORMAT_RRD MULTIPLY AND ADD (long HFP)
|
|
op_MAE uint32 = 0xED2E // FORMAT_RXF MULTIPLY AND ADD (short HFP)
|
|
op_MAEB uint32 = 0xED0E // FORMAT_RXF MULTIPLY AND ADD (short BFP)
|
|
op_MAEBR uint32 = 0xB30E // FORMAT_RRD MULTIPLY AND ADD (short BFP)
|
|
op_MAER uint32 = 0xB32E // FORMAT_RRD MULTIPLY AND ADD (short HFP)
|
|
op_MAY uint32 = 0xED3A // FORMAT_RXF MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
|
|
op_MAYH uint32 = 0xED3C // FORMAT_RXF MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
|
|
op_MAYHR uint32 = 0xB33C // FORMAT_RRD MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
|
|
op_MAYL uint32 = 0xED38 // FORMAT_RXF MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
|
|
op_MAYLR uint32 = 0xB338 // FORMAT_RRD MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
|
|
op_MAYR uint32 = 0xB33A // FORMAT_RRD MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
|
|
op_MC uint32 = 0xAF00 // FORMAT_SI MONITOR CALL
|
|
op_MD uint32 = 0x6C00 // FORMAT_RX1 MULTIPLY (long HFP)
|
|
op_MDB uint32 = 0xED1C // FORMAT_RXE MULTIPLY (long BFP)
|
|
op_MDBR uint32 = 0xB31C // FORMAT_RRE MULTIPLY (long BFP)
|
|
op_MDE uint32 = 0x7C00 // FORMAT_RX1 MULTIPLY (short to long HFP)
|
|
op_MDEB uint32 = 0xED0C // FORMAT_RXE MULTIPLY (short to long BFP)
|
|
op_MDEBR uint32 = 0xB30C // FORMAT_RRE MULTIPLY (short to long BFP)
|
|
op_MDER uint32 = 0x3C00 // FORMAT_RR MULTIPLY (short to long HFP)
|
|
op_MDR uint32 = 0x2C00 // FORMAT_RR MULTIPLY (long HFP)
|
|
op_MDTR uint32 = 0xB3D0 // FORMAT_RRF1 MULTIPLY (long DFP)
|
|
op_MDTRA uint32 = 0xB3D0 // FORMAT_RRF1 MULTIPLY (long DFP)
|
|
op_ME uint32 = 0x7C00 // FORMAT_RX1 MULTIPLY (short to long HFP)
|
|
op_MEE uint32 = 0xED37 // FORMAT_RXE MULTIPLY (short HFP)
|
|
op_MEEB uint32 = 0xED17 // FORMAT_RXE MULTIPLY (short BFP)
|
|
op_MEEBR uint32 = 0xB317 // FORMAT_RRE MULTIPLY (short BFP)
|
|
op_MEER uint32 = 0xB337 // FORMAT_RRE MULTIPLY (short HFP)
|
|
op_MER uint32 = 0x3C00 // FORMAT_RR MULTIPLY (short to long HFP)
|
|
op_MFY uint32 = 0xE35C // FORMAT_RXY1 MULTIPLY (64<-32)
|
|
op_MGHI uint32 = 0xA70D // FORMAT_RI1 MULTIPLY HALFWORD IMMEDIATE (64)
|
|
op_MH uint32 = 0x4C00 // FORMAT_RX1 MULTIPLY HALFWORD (32)
|
|
op_MHI uint32 = 0xA70C // FORMAT_RI1 MULTIPLY HALFWORD IMMEDIATE (32)
|
|
op_MHY uint32 = 0xE37C // FORMAT_RXY1 MULTIPLY HALFWORD (32)
|
|
op_ML uint32 = 0xE396 // FORMAT_RXY1 MULTIPLY LOGICAL (64<-32)
|
|
op_MLG uint32 = 0xE386 // FORMAT_RXY1 MULTIPLY LOGICAL (128<-64)
|
|
op_MLGR uint32 = 0xB986 // FORMAT_RRE MULTIPLY LOGICAL (128<-64)
|
|
op_MLR uint32 = 0xB996 // FORMAT_RRE MULTIPLY LOGICAL (64<-32)
|
|
op_MP uint32 = 0xFC00 // FORMAT_SS2 MULTIPLY DECIMAL
|
|
op_MR uint32 = 0x1C00 // FORMAT_RR MULTIPLY (64<-32)
|
|
op_MS uint32 = 0x7100 // FORMAT_RX1 MULTIPLY SINGLE (32)
|
|
op_MSCH uint32 = 0xB232 // FORMAT_S MODIFY SUBCHANNEL
|
|
op_MSD uint32 = 0xED3F // FORMAT_RXF MULTIPLY AND SUBTRACT (long HFP)
|
|
op_MSDB uint32 = 0xED1F // FORMAT_RXF MULTIPLY AND SUBTRACT (long BFP)
|
|
op_MSDBR uint32 = 0xB31F // FORMAT_RRD MULTIPLY AND SUBTRACT (long BFP)
|
|
op_MSDR uint32 = 0xB33F // FORMAT_RRD MULTIPLY AND SUBTRACT (long HFP)
|
|
op_MSE uint32 = 0xED2F // FORMAT_RXF MULTIPLY AND SUBTRACT (short HFP)
|
|
op_MSEB uint32 = 0xED0F // FORMAT_RXF MULTIPLY AND SUBTRACT (short BFP)
|
|
op_MSEBR uint32 = 0xB30F // FORMAT_RRD MULTIPLY AND SUBTRACT (short BFP)
|
|
op_MSER uint32 = 0xB32F // FORMAT_RRD MULTIPLY AND SUBTRACT (short HFP)
|
|
op_MSFI uint32 = 0xC201 // FORMAT_RIL1 MULTIPLY SINGLE IMMEDIATE (32)
|
|
op_MSG uint32 = 0xE30C // FORMAT_RXY1 MULTIPLY SINGLE (64)
|
|
op_MSGF uint32 = 0xE31C // FORMAT_RXY1 MULTIPLY SINGLE (64<-32)
|
|
op_MSGFI uint32 = 0xC200 // FORMAT_RIL1 MULTIPLY SINGLE IMMEDIATE (64<-32)
|
|
op_MSGFR uint32 = 0xB91C // FORMAT_RRE MULTIPLY SINGLE (64<-32)
|
|
op_MSGR uint32 = 0xB90C // FORMAT_RRE MULTIPLY SINGLE (64)
|
|
op_MSR uint32 = 0xB252 // FORMAT_RRE MULTIPLY SINGLE (32)
|
|
op_MSTA uint32 = 0xB247 // FORMAT_RRE MODIFY STACKED STATE
|
|
op_MSY uint32 = 0xE351 // FORMAT_RXY1 MULTIPLY SINGLE (32)
|
|
op_MVC uint32 = 0xD200 // FORMAT_SS1 MOVE (character)
|
|
op_MVCDK uint32 = 0xE50F // FORMAT_SSE MOVE WITH DESTINATION KEY
|
|
op_MVCIN uint32 = 0xE800 // FORMAT_SS1 MOVE INVERSE
|
|
op_MVCK uint32 = 0xD900 // FORMAT_SS4 MOVE WITH KEY
|
|
op_MVCL uint32 = 0x0E00 // FORMAT_RR MOVE LONG
|
|
op_MVCLE uint32 = 0xA800 // FORMAT_RS1 MOVE LONG EXTENDED
|
|
op_MVCLU uint32 = 0xEB8E // FORMAT_RSY1 MOVE LONG UNICODE
|
|
op_MVCOS uint32 = 0xC800 // FORMAT_SSF MOVE WITH OPTIONAL SPECIFICATIONS
|
|
op_MVCP uint32 = 0xDA00 // FORMAT_SS4 MOVE TO PRIMARY
|
|
op_MVCS uint32 = 0xDB00 // FORMAT_SS4 MOVE TO SECONDARY
|
|
op_MVCSK uint32 = 0xE50E // FORMAT_SSE MOVE WITH SOURCE KEY
|
|
op_MVGHI uint32 = 0xE548 // FORMAT_SIL MOVE (64<-16)
|
|
op_MVHHI uint32 = 0xE544 // FORMAT_SIL MOVE (16<-16)
|
|
op_MVHI uint32 = 0xE54C // FORMAT_SIL MOVE (32<-16)
|
|
op_MVI uint32 = 0x9200 // FORMAT_SI MOVE (immediate)
|
|
op_MVIY uint32 = 0xEB52 // FORMAT_SIY MOVE (immediate)
|
|
op_MVN uint32 = 0xD100 // FORMAT_SS1 MOVE NUMERICS
|
|
op_MVO uint32 = 0xF100 // FORMAT_SS2 MOVE WITH OFFSET
|
|
op_MVPG uint32 = 0xB254 // FORMAT_RRE MOVE PAGE
|
|
op_MVST uint32 = 0xB255 // FORMAT_RRE MOVE STRING
|
|
op_MVZ uint32 = 0xD300 // FORMAT_SS1 MOVE ZONES
|
|
op_MXBR uint32 = 0xB34C // FORMAT_RRE MULTIPLY (extended BFP)
|
|
op_MXD uint32 = 0x6700 // FORMAT_RX1 MULTIPLY (long to extended HFP)
|
|
op_MXDB uint32 = 0xED07 // FORMAT_RXE MULTIPLY (long to extended BFP)
|
|
op_MXDBR uint32 = 0xB307 // FORMAT_RRE MULTIPLY (long to extended BFP)
|
|
op_MXDR uint32 = 0x2700 // FORMAT_RR MULTIPLY (long to extended HFP)
|
|
op_MXR uint32 = 0x2600 // FORMAT_RR MULTIPLY (extended HFP)
|
|
op_MXTR uint32 = 0xB3D8 // FORMAT_RRF1 MULTIPLY (extended DFP)
|
|
op_MXTRA uint32 = 0xB3D8 // FORMAT_RRF1 MULTIPLY (extended DFP)
|
|
op_MY uint32 = 0xED3B // FORMAT_RXF MULTIPLY UNNORMALIZED (long to ext. HFP)
|
|
op_MYH uint32 = 0xED3D // FORMAT_RXF MULTIPLY UNNORM. (long to ext. high HFP)
|
|
op_MYHR uint32 = 0xB33D // FORMAT_RRD MULTIPLY UNNORM. (long to ext. high HFP)
|
|
op_MYL uint32 = 0xED39 // FORMAT_RXF MULTIPLY UNNORM. (long to ext. low HFP)
|
|
op_MYLR uint32 = 0xB339 // FORMAT_RRD MULTIPLY UNNORM. (long to ext. low HFP)
|
|
op_MYR uint32 = 0xB33B // FORMAT_RRD MULTIPLY UNNORMALIZED (long to ext. HFP)
|
|
op_N uint32 = 0x5400 // FORMAT_RX1 AND (32)
|
|
op_NC uint32 = 0xD400 // FORMAT_SS1 AND (character)
|
|
op_NG uint32 = 0xE380 // FORMAT_RXY1 AND (64)
|
|
op_NGR uint32 = 0xB980 // FORMAT_RRE AND (64)
|
|
op_NGRK uint32 = 0xB9E4 // FORMAT_RRF1 AND (64)
|
|
op_NI uint32 = 0x9400 // FORMAT_SI AND (immediate)
|
|
op_NIAI uint32 = 0xB2FA // FORMAT_IE NEXT INSTRUCTION ACCESS INTENT
|
|
op_NIHF uint32 = 0xC00A // FORMAT_RIL1 AND IMMEDIATE (high)
|
|
op_NIHH uint32 = 0xA504 // FORMAT_RI1 AND IMMEDIATE (high high)
|
|
op_NIHL uint32 = 0xA505 // FORMAT_RI1 AND IMMEDIATE (high low)
|
|
op_NILF uint32 = 0xC00B // FORMAT_RIL1 AND IMMEDIATE (low)
|
|
op_NILH uint32 = 0xA506 // FORMAT_RI1 AND IMMEDIATE (low high)
|
|
op_NILL uint32 = 0xA507 // FORMAT_RI1 AND IMMEDIATE (low low)
|
|
op_NIY uint32 = 0xEB54 // FORMAT_SIY AND (immediate)
|
|
op_NR uint32 = 0x1400 // FORMAT_RR AND (32)
|
|
op_NRK uint32 = 0xB9F4 // FORMAT_RRF1 AND (32)
|
|
op_NTSTG uint32 = 0xE325 // FORMAT_RXY1 NONTRANSACTIONAL STORE
|
|
op_NY uint32 = 0xE354 // FORMAT_RXY1 AND (32)
|
|
op_O uint32 = 0x5600 // FORMAT_RX1 OR (32)
|
|
op_OC uint32 = 0xD600 // FORMAT_SS1 OR (character)
|
|
op_OG uint32 = 0xE381 // FORMAT_RXY1 OR (64)
|
|
op_OGR uint32 = 0xB981 // FORMAT_RRE OR (64)
|
|
op_OGRK uint32 = 0xB9E6 // FORMAT_RRF1 OR (64)
|
|
op_OI uint32 = 0x9600 // FORMAT_SI OR (immediate)
|
|
op_OIHF uint32 = 0xC00C // FORMAT_RIL1 OR IMMEDIATE (high)
|
|
op_OIHH uint32 = 0xA508 // FORMAT_RI1 OR IMMEDIATE (high high)
|
|
op_OIHL uint32 = 0xA509 // FORMAT_RI1 OR IMMEDIATE (high low)
|
|
op_OILF uint32 = 0xC00D // FORMAT_RIL1 OR IMMEDIATE (low)
|
|
op_OILH uint32 = 0xA50A // FORMAT_RI1 OR IMMEDIATE (low high)
|
|
op_OILL uint32 = 0xA50B // FORMAT_RI1 OR IMMEDIATE (low low)
|
|
op_OIY uint32 = 0xEB56 // FORMAT_SIY OR (immediate)
|
|
op_OR uint32 = 0x1600 // FORMAT_RR OR (32)
|
|
op_ORK uint32 = 0xB9F6 // FORMAT_RRF1 OR (32)
|
|
op_OY uint32 = 0xE356 // FORMAT_RXY1 OR (32)
|
|
op_PACK uint32 = 0xF200 // FORMAT_SS2 PACK
|
|
op_PALB uint32 = 0xB248 // FORMAT_RRE PURGE ALB
|
|
op_PC uint32 = 0xB218 // FORMAT_S PROGRAM CALL
|
|
op_PCC uint32 = 0xB92C // FORMAT_RRE PERFORM CRYPTOGRAPHIC COMPUTATION
|
|
op_PCKMO uint32 = 0xB928 // FORMAT_RRE PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
|
|
op_PFD uint32 = 0xE336 // FORMAT_RXY2 PREFETCH DATA
|
|
op_PFDRL uint32 = 0xC602 // FORMAT_RIL3 PREFETCH DATA RELATIVE LONG
|
|
op_PFMF uint32 = 0xB9AF // FORMAT_RRE PERFORM FRAME MANAGEMENT FUNCTION
|
|
op_PFPO uint32 = 0x010A // FORMAT_E PERFORM FLOATING-POINT OPERATION
|
|
op_PGIN uint32 = 0xB22E // FORMAT_RRE PAGE IN
|
|
op_PGOUT uint32 = 0xB22F // FORMAT_RRE PAGE OUT
|
|
op_PKA uint32 = 0xE900 // FORMAT_SS6 PACK ASCII
|
|
op_PKU uint32 = 0xE100 // FORMAT_SS6 PACK UNICODE
|
|
op_PLO uint32 = 0xEE00 // FORMAT_SS5 PERFORM LOCKED OPERATION
|
|
op_POPCNT uint32 = 0xB9E1 // FORMAT_RRE POPULATION COUNT
|
|
op_PPA uint32 = 0xB2E8 // FORMAT_RRF3 PERFORM PROCESSOR ASSIST
|
|
op_PR uint32 = 0x0101 // FORMAT_E PROGRAM RETURN
|
|
op_PT uint32 = 0xB228 // FORMAT_RRE PROGRAM TRANSFER
|
|
op_PTF uint32 = 0xB9A2 // FORMAT_RRE PERFORM TOPOLOGY FUNCTION
|
|
op_PTFF uint32 = 0x0104 // FORMAT_E PERFORM TIMING FACILITY FUNCTION
|
|
op_PTI uint32 = 0xB99E // FORMAT_RRE PROGRAM TRANSFER WITH INSTANCE
|
|
op_PTLB uint32 = 0xB20D // FORMAT_S PURGE TLB
|
|
op_QADTR uint32 = 0xB3F5 // FORMAT_RRF2 QUANTIZE (long DFP)
|
|
op_QAXTR uint32 = 0xB3FD // FORMAT_RRF2 QUANTIZE (extended DFP)
|
|
op_RCHP uint32 = 0xB23B // FORMAT_S RESET CHANNEL PATH
|
|
op_RISBG uint32 = 0xEC55 // FORMAT_RIE6 ROTATE THEN INSERT SELECTED BITS
|
|
op_RISBGN uint32 = 0xEC59 // FORMAT_RIE6 ROTATE THEN INSERT SELECTED BITS
|
|
op_RISBHG uint32 = 0xEC5D // FORMAT_RIE6 ROTATE THEN INSERT SELECTED BITS HIGH
|
|
op_RISBLG uint32 = 0xEC51 // FORMAT_RIE6 ROTATE THEN INSERT SELECTED BITS LOW
|
|
op_RLL uint32 = 0xEB1D // FORMAT_RSY1 ROTATE LEFT SINGLE LOGICAL (32)
|
|
op_RLLG uint32 = 0xEB1C // FORMAT_RSY1 ROTATE LEFT SINGLE LOGICAL (64)
|
|
op_RNSBG uint32 = 0xEC54 // FORMAT_RIE6 ROTATE THEN AND SELECTED BITS
|
|
op_ROSBG uint32 = 0xEC56 // FORMAT_RIE6 ROTATE THEN OR SELECTED BITS
|
|
op_RP uint32 = 0xB277 // FORMAT_S RESUME PROGRAM
|
|
op_RRBE uint32 = 0xB22A // FORMAT_RRE RESET REFERENCE BIT EXTENDED
|
|
op_RRBM uint32 = 0xB9AE // FORMAT_RRE RESET REFERENCE BITS MULTIPLE
|
|
op_RRDTR uint32 = 0xB3F7 // FORMAT_RRF2 REROUND (long DFP)
|
|
op_RRXTR uint32 = 0xB3FF // FORMAT_RRF2 REROUND (extended DFP)
|
|
op_RSCH uint32 = 0xB238 // FORMAT_S RESUME SUBCHANNEL
|
|
op_RXSBG uint32 = 0xEC57 // FORMAT_RIE6 ROTATE THEN EXCLUSIVE OR SELECTED BITS
|
|
op_S uint32 = 0x5B00 // FORMAT_RX1 SUBTRACT (32)
|
|
op_SAC uint32 = 0xB219 // FORMAT_S SET ADDRESS SPACE CONTROL
|
|
op_SACF uint32 = 0xB279 // FORMAT_S SET ADDRESS SPACE CONTROL FAST
|
|
op_SAL uint32 = 0xB237 // FORMAT_S SET ADDRESS LIMIT
|
|
op_SAM24 uint32 = 0x010C // FORMAT_E SET ADDRESSING MODE (24)
|
|
op_SAM31 uint32 = 0x010D // FORMAT_E SET ADDRESSING MODE (31)
|
|
op_SAM64 uint32 = 0x010E // FORMAT_E SET ADDRESSING MODE (64)
|
|
op_SAR uint32 = 0xB24E // FORMAT_RRE SET ACCESS
|
|
op_SCHM uint32 = 0xB23C // FORMAT_S SET CHANNEL MONITOR
|
|
op_SCK uint32 = 0xB204 // FORMAT_S SET CLOCK
|
|
op_SCKC uint32 = 0xB206 // FORMAT_S SET CLOCK COMPARATOR
|
|
op_SCKPF uint32 = 0x0107 // FORMAT_E SET CLOCK PROGRAMMABLE FIELD
|
|
op_SD uint32 = 0x6B00 // FORMAT_RX1 SUBTRACT NORMALIZED (long HFP)
|
|
op_SDB uint32 = 0xED1B // FORMAT_RXE SUBTRACT (long BFP)
|
|
op_SDBR uint32 = 0xB31B // FORMAT_RRE SUBTRACT (long BFP)
|
|
op_SDR uint32 = 0x2B00 // FORMAT_RR SUBTRACT NORMALIZED (long HFP)
|
|
op_SDTR uint32 = 0xB3D3 // FORMAT_RRF1 SUBTRACT (long DFP)
|
|
op_SDTRA uint32 = 0xB3D3 // FORMAT_RRF1 SUBTRACT (long DFP)
|
|
op_SE uint32 = 0x7B00 // FORMAT_RX1 SUBTRACT NORMALIZED (short HFP)
|
|
op_SEB uint32 = 0xED0B // FORMAT_RXE SUBTRACT (short BFP)
|
|
op_SEBR uint32 = 0xB30B // FORMAT_RRE SUBTRACT (short BFP)
|
|
op_SER uint32 = 0x3B00 // FORMAT_RR SUBTRACT NORMALIZED (short HFP)
|
|
op_SFASR uint32 = 0xB385 // FORMAT_RRE SET FPC AND SIGNAL
|
|
op_SFPC uint32 = 0xB384 // FORMAT_RRE SET FPC
|
|
op_SG uint32 = 0xE309 // FORMAT_RXY1 SUBTRACT (64)
|
|
op_SGF uint32 = 0xE319 // FORMAT_RXY1 SUBTRACT (64<-32)
|
|
op_SGFR uint32 = 0xB919 // FORMAT_RRE SUBTRACT (64<-32)
|
|
op_SGR uint32 = 0xB909 // FORMAT_RRE SUBTRACT (64)
|
|
op_SGRK uint32 = 0xB9E9 // FORMAT_RRF1 SUBTRACT (64)
|
|
op_SH uint32 = 0x4B00 // FORMAT_RX1 SUBTRACT HALFWORD
|
|
op_SHHHR uint32 = 0xB9C9 // FORMAT_RRF1 SUBTRACT HIGH (32)
|
|
op_SHHLR uint32 = 0xB9D9 // FORMAT_RRF1 SUBTRACT HIGH (32)
|
|
op_SHY uint32 = 0xE37B // FORMAT_RXY1 SUBTRACT HALFWORD
|
|
op_SIGP uint32 = 0xAE00 // FORMAT_RS1 SIGNAL PROCESSOR
|
|
op_SL uint32 = 0x5F00 // FORMAT_RX1 SUBTRACT LOGICAL (32)
|
|
op_SLA uint32 = 0x8B00 // FORMAT_RS1 SHIFT LEFT SINGLE (32)
|
|
op_SLAG uint32 = 0xEB0B // FORMAT_RSY1 SHIFT LEFT SINGLE (64)
|
|
op_SLAK uint32 = 0xEBDD // FORMAT_RSY1 SHIFT LEFT SINGLE (32)
|
|
op_SLB uint32 = 0xE399 // FORMAT_RXY1 SUBTRACT LOGICAL WITH BORROW (32)
|
|
op_SLBG uint32 = 0xE389 // FORMAT_RXY1 SUBTRACT LOGICAL WITH BORROW (64)
|
|
op_SLBGR uint32 = 0xB989 // FORMAT_RRE SUBTRACT LOGICAL WITH BORROW (64)
|
|
op_SLBR uint32 = 0xB999 // FORMAT_RRE SUBTRACT LOGICAL WITH BORROW (32)
|
|
op_SLDA uint32 = 0x8F00 // FORMAT_RS1 SHIFT LEFT DOUBLE
|
|
op_SLDL uint32 = 0x8D00 // FORMAT_RS1 SHIFT LEFT DOUBLE LOGICAL
|
|
op_SLDT uint32 = 0xED40 // FORMAT_RXF SHIFT SIGNIFICAND LEFT (long DFP)
|
|
op_SLFI uint32 = 0xC205 // FORMAT_RIL1 SUBTRACT LOGICAL IMMEDIATE (32)
|
|
op_SLG uint32 = 0xE30B // FORMAT_RXY1 SUBTRACT LOGICAL (64)
|
|
op_SLGF uint32 = 0xE31B // FORMAT_RXY1 SUBTRACT LOGICAL (64<-32)
|
|
op_SLGFI uint32 = 0xC204 // FORMAT_RIL1 SUBTRACT LOGICAL IMMEDIATE (64<-32)
|
|
op_SLGFR uint32 = 0xB91B // FORMAT_RRE SUBTRACT LOGICAL (64<-32)
|
|
op_SLGR uint32 = 0xB90B // FORMAT_RRE SUBTRACT LOGICAL (64)
|
|
op_SLGRK uint32 = 0xB9EB // FORMAT_RRF1 SUBTRACT LOGICAL (64)
|
|
op_SLHHHR uint32 = 0xB9CB // FORMAT_RRF1 SUBTRACT LOGICAL HIGH (32)
|
|
op_SLHHLR uint32 = 0xB9DB // FORMAT_RRF1 SUBTRACT LOGICAL HIGH (32)
|
|
op_SLL uint32 = 0x8900 // FORMAT_RS1 SHIFT LEFT SINGLE LOGICAL (32)
|
|
op_SLLG uint32 = 0xEB0D // FORMAT_RSY1 SHIFT LEFT SINGLE LOGICAL (64)
|
|
op_SLLK uint32 = 0xEBDF // FORMAT_RSY1 SHIFT LEFT SINGLE LOGICAL (32)
|
|
op_SLR uint32 = 0x1F00 // FORMAT_RR SUBTRACT LOGICAL (32)
|
|
op_SLRK uint32 = 0xB9FB // FORMAT_RRF1 SUBTRACT LOGICAL (32)
|
|
op_SLXT uint32 = 0xED48 // FORMAT_RXF SHIFT SIGNIFICAND LEFT (extended DFP)
|
|
op_SLY uint32 = 0xE35F // FORMAT_RXY1 SUBTRACT LOGICAL (32)
|
|
op_SP uint32 = 0xFB00 // FORMAT_SS2 SUBTRACT DECIMAL
|
|
op_SPKA uint32 = 0xB20A // FORMAT_S SET PSW KEY FROM ADDRESS
|
|
op_SPM uint32 = 0x0400 // FORMAT_RR SET PROGRAM MASK
|
|
op_SPT uint32 = 0xB208 // FORMAT_S SET CPU TIMER
|
|
op_SPX uint32 = 0xB210 // FORMAT_S SET PREFIX
|
|
op_SQD uint32 = 0xED35 // FORMAT_RXE SQUARE ROOT (long HFP)
|
|
op_SQDB uint32 = 0xED15 // FORMAT_RXE SQUARE ROOT (long BFP)
|
|
op_SQDBR uint32 = 0xB315 // FORMAT_RRE SQUARE ROOT (long BFP)
|
|
op_SQDR uint32 = 0xB244 // FORMAT_RRE SQUARE ROOT (long HFP)
|
|
op_SQE uint32 = 0xED34 // FORMAT_RXE SQUARE ROOT (short HFP)
|
|
op_SQEB uint32 = 0xED14 // FORMAT_RXE SQUARE ROOT (short BFP)
|
|
op_SQEBR uint32 = 0xB314 // FORMAT_RRE SQUARE ROOT (short BFP)
|
|
op_SQER uint32 = 0xB245 // FORMAT_RRE SQUARE ROOT (short HFP)
|
|
op_SQXBR uint32 = 0xB316 // FORMAT_RRE SQUARE ROOT (extended BFP)
|
|
op_SQXR uint32 = 0xB336 // FORMAT_RRE SQUARE ROOT (extended HFP)
|
|
op_SR uint32 = 0x1B00 // FORMAT_RR SUBTRACT (32)
|
|
op_SRA uint32 = 0x8A00 // FORMAT_RS1 SHIFT RIGHT SINGLE (32)
|
|
op_SRAG uint32 = 0xEB0A // FORMAT_RSY1 SHIFT RIGHT SINGLE (64)
|
|
op_SRAK uint32 = 0xEBDC // FORMAT_RSY1 SHIFT RIGHT SINGLE (32)
|
|
op_SRDA uint32 = 0x8E00 // FORMAT_RS1 SHIFT RIGHT DOUBLE
|
|
op_SRDL uint32 = 0x8C00 // FORMAT_RS1 SHIFT RIGHT DOUBLE LOGICAL
|
|
op_SRDT uint32 = 0xED41 // FORMAT_RXF SHIFT SIGNIFICAND RIGHT (long DFP)
|
|
op_SRK uint32 = 0xB9F9 // FORMAT_RRF1 SUBTRACT (32)
|
|
op_SRL uint32 = 0x8800 // FORMAT_RS1 SHIFT RIGHT SINGLE LOGICAL (32)
|
|
op_SRLG uint32 = 0xEB0C // FORMAT_RSY1 SHIFT RIGHT SINGLE LOGICAL (64)
|
|
op_SRLK uint32 = 0xEBDE // FORMAT_RSY1 SHIFT RIGHT SINGLE LOGICAL (32)
|
|
op_SRNM uint32 = 0xB299 // FORMAT_S SET BFP ROUNDING MODE (2 bit)
|
|
op_SRNMB uint32 = 0xB2B8 // FORMAT_S SET BFP ROUNDING MODE (3 bit)
|
|
op_SRNMT uint32 = 0xB2B9 // FORMAT_S SET DFP ROUNDING MODE
|
|
op_SRP uint32 = 0xF000 // FORMAT_SS3 SHIFT AND ROUND DECIMAL
|
|
op_SRST uint32 = 0xB25E // FORMAT_RRE SEARCH STRING
|
|
op_SRSTU uint32 = 0xB9BE // FORMAT_RRE SEARCH STRING UNICODE
|
|
op_SRXT uint32 = 0xED49 // FORMAT_RXF SHIFT SIGNIFICAND RIGHT (extended DFP)
|
|
op_SSAIR uint32 = 0xB99F // FORMAT_RRE SET SECONDARY ASN WITH INSTANCE
|
|
op_SSAR uint32 = 0xB225 // FORMAT_RRE SET SECONDARY ASN
|
|
op_SSCH uint32 = 0xB233 // FORMAT_S START SUBCHANNEL
|
|
op_SSKE uint32 = 0xB22B // FORMAT_RRF3 SET STORAGE KEY EXTENDED
|
|
op_SSM uint32 = 0x8000 // FORMAT_S SET SYSTEM MASK
|
|
op_ST uint32 = 0x5000 // FORMAT_RX1 STORE (32)
|
|
op_STAM uint32 = 0x9B00 // FORMAT_RS1 STORE ACCESS MULTIPLE
|
|
op_STAMY uint32 = 0xEB9B // FORMAT_RSY1 STORE ACCESS MULTIPLE
|
|
op_STAP uint32 = 0xB212 // FORMAT_S STORE CPU ADDRESS
|
|
op_STC uint32 = 0x4200 // FORMAT_RX1 STORE CHARACTER
|
|
op_STCH uint32 = 0xE3C3 // FORMAT_RXY1 STORE CHARACTER HIGH (8)
|
|
op_STCK uint32 = 0xB205 // FORMAT_S STORE CLOCK
|
|
op_STCKC uint32 = 0xB207 // FORMAT_S STORE CLOCK COMPARATOR
|
|
op_STCKE uint32 = 0xB278 // FORMAT_S STORE CLOCK EXTENDED
|
|
op_STCKF uint32 = 0xB27C // FORMAT_S STORE CLOCK FAST
|
|
op_STCM uint32 = 0xBE00 // FORMAT_RS2 STORE CHARACTERS UNDER MASK (low)
|
|
op_STCMH uint32 = 0xEB2C // FORMAT_RSY2 STORE CHARACTERS UNDER MASK (high)
|
|
op_STCMY uint32 = 0xEB2D // FORMAT_RSY2 STORE CHARACTERS UNDER MASK (low)
|
|
op_STCPS uint32 = 0xB23A // FORMAT_S STORE CHANNEL PATH STATUS
|
|
op_STCRW uint32 = 0xB239 // FORMAT_S STORE CHANNEL REPORT WORD
|
|
op_STCTG uint32 = 0xEB25 // FORMAT_RSY1 STORE CONTROL (64)
|
|
op_STCTL uint32 = 0xB600 // FORMAT_RS1 STORE CONTROL (32)
|
|
op_STCY uint32 = 0xE372 // FORMAT_RXY1 STORE CHARACTER
|
|
op_STD uint32 = 0x6000 // FORMAT_RX1 STORE (long)
|
|
op_STDY uint32 = 0xED67 // FORMAT_RXY1 STORE (long)
|
|
op_STE uint32 = 0x7000 // FORMAT_RX1 STORE (short)
|
|
op_STEY uint32 = 0xED66 // FORMAT_RXY1 STORE (short)
|
|
op_STFH uint32 = 0xE3CB // FORMAT_RXY1 STORE HIGH (32)
|
|
op_STFL uint32 = 0xB2B1 // FORMAT_S STORE FACILITY LIST
|
|
op_STFLE uint32 = 0xB2B0 // FORMAT_S STORE FACILITY LIST EXTENDED
|
|
op_STFPC uint32 = 0xB29C // FORMAT_S STORE FPC
|
|
op_STG uint32 = 0xE324 // FORMAT_RXY1 STORE (64)
|
|
op_STGRL uint32 = 0xC40B // FORMAT_RIL2 STORE RELATIVE LONG (64)
|
|
op_STH uint32 = 0x4000 // FORMAT_RX1 STORE HALFWORD
|
|
op_STHH uint32 = 0xE3C7 // FORMAT_RXY1 STORE HALFWORD HIGH (16)
|
|
op_STHRL uint32 = 0xC407 // FORMAT_RIL2 STORE HALFWORD RELATIVE LONG
|
|
op_STHY uint32 = 0xE370 // FORMAT_RXY1 STORE HALFWORD
|
|
op_STIDP uint32 = 0xB202 // FORMAT_S STORE CPU ID
|
|
op_STM uint32 = 0x9000 // FORMAT_RS1 STORE MULTIPLE (32)
|
|
op_STMG uint32 = 0xEB24 // FORMAT_RSY1 STORE MULTIPLE (64)
|
|
op_STMH uint32 = 0xEB26 // FORMAT_RSY1 STORE MULTIPLE HIGH
|
|
op_STMY uint32 = 0xEB90 // FORMAT_RSY1 STORE MULTIPLE (32)
|
|
op_STNSM uint32 = 0xAC00 // FORMAT_SI STORE THEN AND SYSTEM MASK
|
|
op_STOC uint32 = 0xEBF3 // FORMAT_RSY2 STORE ON CONDITION (32)
|
|
op_STOCG uint32 = 0xEBE3 // FORMAT_RSY2 STORE ON CONDITION (64)
|
|
op_STOSM uint32 = 0xAD00 // FORMAT_SI STORE THEN OR SYSTEM MASK
|
|
op_STPQ uint32 = 0xE38E // FORMAT_RXY1 STORE PAIR TO QUADWORD
|
|
op_STPT uint32 = 0xB209 // FORMAT_S STORE CPU TIMER
|
|
op_STPX uint32 = 0xB211 // FORMAT_S STORE PREFIX
|
|
op_STRAG uint32 = 0xE502 // FORMAT_SSE STORE REAL ADDRESS
|
|
op_STRL uint32 = 0xC40F // FORMAT_RIL2 STORE RELATIVE LONG (32)
|
|
op_STRV uint32 = 0xE33E // FORMAT_RXY1 STORE REVERSED (32)
|
|
op_STRVG uint32 = 0xE32F // FORMAT_RXY1 STORE REVERSED (64)
|
|
op_STRVH uint32 = 0xE33F // FORMAT_RXY1 STORE REVERSED (16)
|
|
op_STSCH uint32 = 0xB234 // FORMAT_S STORE SUBCHANNEL
|
|
op_STSI uint32 = 0xB27D // FORMAT_S STORE SYSTEM INFORMATION
|
|
op_STURA uint32 = 0xB246 // FORMAT_RRE STORE USING REAL ADDRESS (32)
|
|
op_STURG uint32 = 0xB925 // FORMAT_RRE STORE USING REAL ADDRESS (64)
|
|
op_STY uint32 = 0xE350 // FORMAT_RXY1 STORE (32)
|
|
op_SU uint32 = 0x7F00 // FORMAT_RX1 SUBTRACT UNNORMALIZED (short HFP)
|
|
op_SUR uint32 = 0x3F00 // FORMAT_RR SUBTRACT UNNORMALIZED (short HFP)
|
|
op_SVC uint32 = 0x0A00 // FORMAT_I SUPERVISOR CALL
|
|
op_SW uint32 = 0x6F00 // FORMAT_RX1 SUBTRACT UNNORMALIZED (long HFP)
|
|
op_SWR uint32 = 0x2F00 // FORMAT_RR SUBTRACT UNNORMALIZED (long HFP)
|
|
op_SXBR uint32 = 0xB34B // FORMAT_RRE SUBTRACT (extended BFP)
|
|
op_SXR uint32 = 0x3700 // FORMAT_RR SUBTRACT NORMALIZED (extended HFP)
|
|
op_SXTR uint32 = 0xB3DB // FORMAT_RRF1 SUBTRACT (extended DFP)
|
|
op_SXTRA uint32 = 0xB3DB // FORMAT_RRF1 SUBTRACT (extended DFP)
|
|
op_SY uint32 = 0xE35B // FORMAT_RXY1 SUBTRACT (32)
|
|
op_TABORT uint32 = 0xB2FC // FORMAT_S TRANSACTION ABORT
|
|
op_TAM uint32 = 0x010B // FORMAT_E TEST ADDRESSING MODE
|
|
op_TAR uint32 = 0xB24C // FORMAT_RRE TEST ACCESS
|
|
op_TB uint32 = 0xB22C // FORMAT_RRE TEST BLOCK
|
|
op_TBDR uint32 = 0xB351 // FORMAT_RRF5 CONVERT HFP TO BFP (long)
|
|
op_TBEDR uint32 = 0xB350 // FORMAT_RRF5 CONVERT HFP TO BFP (long to short)
|
|
op_TBEGIN uint32 = 0xE560 // FORMAT_SIL TRANSACTION BEGIN
|
|
op_TBEGINC uint32 = 0xE561 // FORMAT_SIL TRANSACTION BEGIN
|
|
op_TCDB uint32 = 0xED11 // FORMAT_RXE TEST DATA CLASS (long BFP)
|
|
op_TCEB uint32 = 0xED10 // FORMAT_RXE TEST DATA CLASS (short BFP)
|
|
op_TCXB uint32 = 0xED12 // FORMAT_RXE TEST DATA CLASS (extended BFP)
|
|
op_TDCDT uint32 = 0xED54 // FORMAT_RXE TEST DATA CLASS (long DFP)
|
|
op_TDCET uint32 = 0xED50 // FORMAT_RXE TEST DATA CLASS (short DFP)
|
|
op_TDCXT uint32 = 0xED58 // FORMAT_RXE TEST DATA CLASS (extended DFP)
|
|
op_TDGDT uint32 = 0xED55 // FORMAT_RXE TEST DATA GROUP (long DFP)
|
|
op_TDGET uint32 = 0xED51 // FORMAT_RXE TEST DATA GROUP (short DFP)
|
|
op_TDGXT uint32 = 0xED59 // FORMAT_RXE TEST DATA GROUP (extended DFP)
|
|
op_TEND uint32 = 0xB2F8 // FORMAT_S TRANSACTION END
|
|
op_THDER uint32 = 0xB358 // FORMAT_RRE CONVERT BFP TO HFP (short to long)
|
|
op_THDR uint32 = 0xB359 // FORMAT_RRE CONVERT BFP TO HFP (long)
|
|
op_TM uint32 = 0x9100 // FORMAT_SI TEST UNDER MASK
|
|
op_TMH uint32 = 0xA700 // FORMAT_RI1 TEST UNDER MASK HIGH
|
|
op_TMHH uint32 = 0xA702 // FORMAT_RI1 TEST UNDER MASK (high high)
|
|
op_TMHL uint32 = 0xA703 // FORMAT_RI1 TEST UNDER MASK (high low)
|
|
op_TML uint32 = 0xA701 // FORMAT_RI1 TEST UNDER MASK LOW
|
|
op_TMLH uint32 = 0xA700 // FORMAT_RI1 TEST UNDER MASK (low high)
|
|
op_TMLL uint32 = 0xA701 // FORMAT_RI1 TEST UNDER MASK (low low)
|
|
op_TMY uint32 = 0xEB51 // FORMAT_SIY TEST UNDER MASK
|
|
op_TP uint32 = 0xEBC0 // FORMAT_RSL TEST DECIMAL
|
|
op_TPI uint32 = 0xB236 // FORMAT_S TEST PENDING INTERRUPTION
|
|
op_TPROT uint32 = 0xE501 // FORMAT_SSE TEST PROTECTION
|
|
op_TR uint32 = 0xDC00 // FORMAT_SS1 TRANSLATE
|
|
op_TRACE uint32 = 0x9900 // FORMAT_RS1 TRACE (32)
|
|
op_TRACG uint32 = 0xEB0F // FORMAT_RSY1 TRACE (64)
|
|
op_TRAP2 uint32 = 0x01FF // FORMAT_E TRAP
|
|
op_TRAP4 uint32 = 0xB2FF // FORMAT_S TRAP
|
|
op_TRE uint32 = 0xB2A5 // FORMAT_RRE TRANSLATE EXTENDED
|
|
op_TROO uint32 = 0xB993 // FORMAT_RRF3 TRANSLATE ONE TO ONE
|
|
op_TROT uint32 = 0xB992 // FORMAT_RRF3 TRANSLATE ONE TO TWO
|
|
op_TRT uint32 = 0xDD00 // FORMAT_SS1 TRANSLATE AND TEST
|
|
op_TRTE uint32 = 0xB9BF // FORMAT_RRF3 TRANSLATE AND TEST EXTENDED
|
|
op_TRTO uint32 = 0xB991 // FORMAT_RRF3 TRANSLATE TWO TO ONE
|
|
op_TRTR uint32 = 0xD000 // FORMAT_SS1 TRANSLATE AND TEST REVERSE
|
|
op_TRTRE uint32 = 0xB9BD // FORMAT_RRF3 TRANSLATE AND TEST REVERSE EXTENDED
|
|
op_TRTT uint32 = 0xB990 // FORMAT_RRF3 TRANSLATE TWO TO TWO
|
|
op_TS uint32 = 0x9300 // FORMAT_S TEST AND SET
|
|
op_TSCH uint32 = 0xB235 // FORMAT_S TEST SUBCHANNEL
|
|
op_UNPK uint32 = 0xF300 // FORMAT_SS2 UNPACK
|
|
op_UNPKA uint32 = 0xEA00 // FORMAT_SS1 UNPACK ASCII
|
|
op_UNPKU uint32 = 0xE200 // FORMAT_SS1 UNPACK UNICODE
|
|
op_UPT uint32 = 0x0102 // FORMAT_E UPDATE TREE
|
|
op_X uint32 = 0x5700 // FORMAT_RX1 EXCLUSIVE OR (32)
|
|
op_XC uint32 = 0xD700 // FORMAT_SS1 EXCLUSIVE OR (character)
|
|
op_XG uint32 = 0xE382 // FORMAT_RXY1 EXCLUSIVE OR (64)
|
|
op_XGR uint32 = 0xB982 // FORMAT_RRE EXCLUSIVE OR (64)
|
|
op_XGRK uint32 = 0xB9E7 // FORMAT_RRF1 EXCLUSIVE OR (64)
|
|
op_XI uint32 = 0x9700 // FORMAT_SI EXCLUSIVE OR (immediate)
|
|
op_XIHF uint32 = 0xC006 // FORMAT_RIL1 EXCLUSIVE OR IMMEDIATE (high)
|
|
op_XILF uint32 = 0xC007 // FORMAT_RIL1 EXCLUSIVE OR IMMEDIATE (low)
|
|
op_XIY uint32 = 0xEB57 // FORMAT_SIY EXCLUSIVE OR (immediate)
|
|
op_XR uint32 = 0x1700 // FORMAT_RR EXCLUSIVE OR (32)
|
|
op_XRK uint32 = 0xB9F7 // FORMAT_RRF1 EXCLUSIVE OR (32)
|
|
op_XSCH uint32 = 0xB276 // FORMAT_S CANCEL SUBCHANNEL
|
|
op_XY uint32 = 0xE357 // FORMAT_RXY1 EXCLUSIVE OR (32)
|
|
op_ZAP uint32 = 0xF800 // FORMAT_SS2 ZERO AND ADD
|
|
|
|
// added in z13
|
|
op_CXPT uint32 = 0xEDAF // RSL-b CONVERT FROM PACKED (to extended DFP)
|
|
op_CDPT uint32 = 0xEDAE // RSL-b CONVERT FROM PACKED (to long DFP)
|
|
op_CPXT uint32 = 0xEDAD // RSL-b CONVERT TO PACKED (from extended DFP)
|
|
op_CPDT uint32 = 0xEDAC // RSL-b CONVERT TO PACKED (from long DFP)
|
|
op_LZRF uint32 = 0xE33B // RXY-a LOAD AND ZERO RIGHTMOST BYTE (32)
|
|
op_LZRG uint32 = 0xE32A // RXY-a LOAD AND ZERO RIGHTMOST BYTE (64)
|
|
op_LCCB uint32 = 0xE727 // RXE LOAD COUNT TO BLOCK BOUNDARY
|
|
op_LOCHHI uint32 = 0xEC4E // RIE-g LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
|
|
op_LOCHI uint32 = 0xEC42 // RIE-g LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
|
|
op_LOCGHI uint32 = 0xEC46 // RIE-g LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
|
|
op_LOCFH uint32 = 0xEBE0 // RSY-b LOAD HIGH ON CONDITION (32)
|
|
op_LOCFHR uint32 = 0xB9E0 // RRF-c LOAD HIGH ON CONDITION (32)
|
|
op_LLZRGF uint32 = 0xE33A // RXY-a LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
|
|
op_STOCFH uint32 = 0xEBE1 // RSY-b STORE HIGH ON CONDITION
|
|
op_VA uint32 = 0xE7F3 // VRR-c VECTOR ADD
|
|
op_VACC uint32 = 0xE7F1 // VRR-c VECTOR ADD COMPUTE CARRY
|
|
op_VAC uint32 = 0xE7BB // VRR-d VECTOR ADD WITH CARRY
|
|
op_VACCC uint32 = 0xE7B9 // VRR-d VECTOR ADD WITH CARRY COMPUTE CARRY
|
|
op_VN uint32 = 0xE768 // VRR-c VECTOR AND
|
|
op_VNC uint32 = 0xE769 // VRR-c VECTOR AND WITH COMPLEMENT
|
|
op_VAVG uint32 = 0xE7F2 // VRR-c VECTOR AVERAGE
|
|
op_VAVGL uint32 = 0xE7F0 // VRR-c VECTOR AVERAGE LOGICAL
|
|
op_VCKSM uint32 = 0xE766 // VRR-c VECTOR CHECKSUM
|
|
op_VCEQ uint32 = 0xE7F8 // VRR-b VECTOR COMPARE EQUAL
|
|
op_VCH uint32 = 0xE7FB // VRR-b VECTOR COMPARE HIGH
|
|
op_VCHL uint32 = 0xE7F9 // VRR-b VECTOR COMPARE HIGH LOGICAL
|
|
op_VCLZ uint32 = 0xE753 // VRR-a VECTOR COUNT LEADING ZEROS
|
|
op_VCTZ uint32 = 0xE752 // VRR-a VECTOR COUNT TRAILING ZEROS
|
|
op_VEC uint32 = 0xE7DB // VRR-a VECTOR ELEMENT COMPARE
|
|
op_VECL uint32 = 0xE7D9 // VRR-a VECTOR ELEMENT COMPARE LOGICAL
|
|
op_VERIM uint32 = 0xE772 // VRI-d VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
|
|
op_VERLL uint32 = 0xE733 // VRS-a VECTOR ELEMENT ROTATE LEFT LOGICAL
|
|
op_VERLLV uint32 = 0xE773 // VRR-c VECTOR ELEMENT ROTATE LEFT LOGICAL
|
|
op_VESLV uint32 = 0xE770 // VRR-c VECTOR ELEMENT SHIFT LEFT
|
|
op_VESL uint32 = 0xE730 // VRS-a VECTOR ELEMENT SHIFT LEFT
|
|
op_VESRA uint32 = 0xE73A // VRS-a VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
|
|
op_VESRAV uint32 = 0xE77A // VRR-c VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
|
|
op_VESRL uint32 = 0xE738 // VRS-a VECTOR ELEMENT SHIFT RIGHT LOGICAL
|
|
op_VESRLV uint32 = 0xE778 // VRR-c VECTOR ELEMENT SHIFT RIGHT LOGICAL
|
|
op_VX uint32 = 0xE76D // VRR-c VECTOR EXCLUSIVE OR
|
|
op_VFAE uint32 = 0xE782 // VRR-b VECTOR FIND ANY ELEMENT EQUAL
|
|
op_VFEE uint32 = 0xE780 // VRR-b VECTOR FIND ELEMENT EQUAL
|
|
op_VFENE uint32 = 0xE781 // VRR-b VECTOR FIND ELEMENT NOT EQUAL
|
|
op_VFA uint32 = 0xE7E3 // VRR-c VECTOR FP ADD
|
|
op_WFK uint32 = 0xE7CA // VRR-a VECTOR FP COMPARE AND SIGNAL SCALAR
|
|
op_VFCE uint32 = 0xE7E8 // VRR-c VECTOR FP COMPARE EQUAL
|
|
op_VFCH uint32 = 0xE7EB // VRR-c VECTOR FP COMPARE HIGH
|
|
op_VFCHE uint32 = 0xE7EA // VRR-c VECTOR FP COMPARE HIGH OR EQUAL
|
|
op_WFC uint32 = 0xE7CB // VRR-a VECTOR FP COMPARE SCALAR
|
|
op_VCDG uint32 = 0xE7C3 // VRR-a VECTOR FP CONVERT FROM FIXED 64-BIT
|
|
op_VCDLG uint32 = 0xE7C1 // VRR-a VECTOR FP CONVERT FROM LOGICAL 64-BIT
|
|
op_VCGD uint32 = 0xE7C2 // VRR-a VECTOR FP CONVERT TO FIXED 64-BIT
|
|
op_VCLGD uint32 = 0xE7C0 // VRR-a VECTOR FP CONVERT TO LOGICAL 64-BIT
|
|
op_VFD uint32 = 0xE7E5 // VRR-c VECTOR FP DIVIDE
|
|
op_VLDE uint32 = 0xE7C4 // VRR-a VECTOR FP LOAD LENGTHENED
|
|
op_VLED uint32 = 0xE7C5 // VRR-a VECTOR FP LOAD ROUNDED
|
|
op_VFM uint32 = 0xE7E7 // VRR-c VECTOR FP MULTIPLY
|
|
op_VFMA uint32 = 0xE78F // VRR-e VECTOR FP MULTIPLY AND ADD
|
|
op_VFMS uint32 = 0xE78E // VRR-e VECTOR FP MULTIPLY AND SUBTRACT
|
|
op_VFPSO uint32 = 0xE7CC // VRR-a VECTOR FP PERFORM SIGN OPERATION
|
|
op_VFSQ uint32 = 0xE7CE // VRR-a VECTOR FP SQUARE ROOT
|
|
op_VFS uint32 = 0xE7E2 // VRR-c VECTOR FP SUBTRACT
|
|
op_VFTCI uint32 = 0xE74A // VRI-e VECTOR FP TEST DATA CLASS IMMEDIATE
|
|
op_VGFM uint32 = 0xE7B4 // VRR-c VECTOR GALOIS FIELD MULTIPLY SUM
|
|
op_VGFMA uint32 = 0xE7BC // VRR-d VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
|
|
op_VGEF uint32 = 0xE713 // VRV VECTOR GATHER ELEMENT (32)
|
|
op_VGEG uint32 = 0xE712 // VRV VECTOR GATHER ELEMENT (64)
|
|
op_VGBM uint32 = 0xE744 // VRI-a VECTOR GENERATE BYTE MASK
|
|
op_VGM uint32 = 0xE746 // VRI-b VECTOR GENERATE MASK
|
|
op_VISTR uint32 = 0xE75C // VRR-a VECTOR ISOLATE STRING
|
|
op_VL uint32 = 0xE706 // VRX VECTOR LOAD
|
|
op_VLR uint32 = 0xE756 // VRR-a VECTOR LOAD
|
|
op_VLREP uint32 = 0xE705 // VRX VECTOR LOAD AND REPLICATE
|
|
op_VLC uint32 = 0xE7DE // VRR-a VECTOR LOAD COMPLEMENT
|
|
op_VLEH uint32 = 0xE701 // VRX VECTOR LOAD ELEMENT (16)
|
|
op_VLEF uint32 = 0xE703 // VRX VECTOR LOAD ELEMENT (32)
|
|
op_VLEG uint32 = 0xE702 // VRX VECTOR LOAD ELEMENT (64)
|
|
op_VLEB uint32 = 0xE700 // VRX VECTOR LOAD ELEMENT (8)
|
|
op_VLEIH uint32 = 0xE741 // VRI-a VECTOR LOAD ELEMENT IMMEDIATE (16)
|
|
op_VLEIF uint32 = 0xE743 // VRI-a VECTOR LOAD ELEMENT IMMEDIATE (32)
|
|
op_VLEIG uint32 = 0xE742 // VRI-a VECTOR LOAD ELEMENT IMMEDIATE (64)
|
|
op_VLEIB uint32 = 0xE740 // VRI-a VECTOR LOAD ELEMENT IMMEDIATE (8)
|
|
op_VFI uint32 = 0xE7C7 // VRR-a VECTOR LOAD FP INTEGER
|
|
op_VLGV uint32 = 0xE721 // VRS-c VECTOR LOAD GR FROM VR ELEMENT
|
|
op_VLLEZ uint32 = 0xE704 // VRX VECTOR LOAD LOGICAL ELEMENT AND ZERO
|
|
op_VLM uint32 = 0xE736 // VRS-a VECTOR LOAD MULTIPLE
|
|
op_VLP uint32 = 0xE7DF // VRR-a VECTOR LOAD POSITIVE
|
|
op_VLBB uint32 = 0xE707 // VRX VECTOR LOAD TO BLOCK BOUNDARY
|
|
op_VLVG uint32 = 0xE722 // VRS-b VECTOR LOAD VR ELEMENT FROM GR
|
|
op_VLVGP uint32 = 0xE762 // VRR-f VECTOR LOAD VR FROM GRS DISJOINT
|
|
op_VLL uint32 = 0xE737 // VRS-b VECTOR LOAD WITH LENGTH
|
|
op_VMX uint32 = 0xE7FF // VRR-c VECTOR MAXIMUM
|
|
op_VMXL uint32 = 0xE7FD // VRR-c VECTOR MAXIMUM LOGICAL
|
|
op_VMRH uint32 = 0xE761 // VRR-c VECTOR MERGE HIGH
|
|
op_VMRL uint32 = 0xE760 // VRR-c VECTOR MERGE LOW
|
|
op_VMN uint32 = 0xE7FE // VRR-c VECTOR MINIMUM
|
|
op_VMNL uint32 = 0xE7FC // VRR-c VECTOR MINIMUM LOGICAL
|
|
op_VMAE uint32 = 0xE7AE // VRR-d VECTOR MULTIPLY AND ADD EVEN
|
|
op_VMAH uint32 = 0xE7AB // VRR-d VECTOR MULTIPLY AND ADD HIGH
|
|
op_VMALE uint32 = 0xE7AC // VRR-d VECTOR MULTIPLY AND ADD LOGICAL EVEN
|
|
op_VMALH uint32 = 0xE7A9 // VRR-d VECTOR MULTIPLY AND ADD LOGICAL HIGH
|
|
op_VMALO uint32 = 0xE7AD // VRR-d VECTOR MULTIPLY AND ADD LOGICAL ODD
|
|
op_VMAL uint32 = 0xE7AA // VRR-d VECTOR MULTIPLY AND ADD LOW
|
|
op_VMAO uint32 = 0xE7AF // VRR-d VECTOR MULTIPLY AND ADD ODD
|
|
op_VME uint32 = 0xE7A6 // VRR-c VECTOR MULTIPLY EVEN
|
|
op_VMH uint32 = 0xE7A3 // VRR-c VECTOR MULTIPLY HIGH
|
|
op_VMLE uint32 = 0xE7A4 // VRR-c VECTOR MULTIPLY EVEN LOGICAL
|
|
op_VMLH uint32 = 0xE7A1 // VRR-c VECTOR MULTIPLY HIGH LOGICAL
|
|
op_VMLO uint32 = 0xE7A5 // VRR-c VECTOR MULTIPLY ODD LOGICAL
|
|
op_VML uint32 = 0xE7A2 // VRR-c VECTOR MULTIPLY LOW
|
|
op_VMO uint32 = 0xE7A7 // VRR-c VECTOR MULTIPLY ODD
|
|
op_VNO uint32 = 0xE76B // VRR-c VECTOR NOR
|
|
op_VO uint32 = 0xE76A // VRR-c VECTOR OR
|
|
op_VPK uint32 = 0xE794 // VRR-c VECTOR PACK
|
|
op_VPKLS uint32 = 0xE795 // VRR-b VECTOR PACK LOGICAL SATURATE
|
|
op_VPKS uint32 = 0xE797 // VRR-b VECTOR PACK SATURATE
|
|
op_VPERM uint32 = 0xE78C // VRR-e VECTOR PERMUTE
|
|
op_VPDI uint32 = 0xE784 // VRR-c VECTOR PERMUTE DOUBLEWORD IMMEDIATE
|
|
op_VPOPCT uint32 = 0xE750 // VRR-a VECTOR POPULATION COUNT
|
|
op_VREP uint32 = 0xE74D // VRI-c VECTOR REPLICATE
|
|
op_VREPI uint32 = 0xE745 // VRI-a VECTOR REPLICATE IMMEDIATE
|
|
op_VSCEF uint32 = 0xE71B // VRV VECTOR SCATTER ELEMENT (32)
|
|
op_VSCEG uint32 = 0xE71A // VRV VECTOR SCATTER ELEMENT (64)
|
|
op_VSEL uint32 = 0xE78D // VRR-e VECTOR SELECT
|
|
op_VSL uint32 = 0xE774 // VRR-c VECTOR SHIFT LEFT
|
|
op_VSLB uint32 = 0xE775 // VRR-c VECTOR SHIFT LEFT BY BYTE
|
|
op_VSLDB uint32 = 0xE777 // VRI-d VECTOR SHIFT LEFT DOUBLE BY BYTE
|
|
op_VSRA uint32 = 0xE77E // VRR-c VECTOR SHIFT RIGHT ARITHMETIC
|
|
op_VSRAB uint32 = 0xE77F // VRR-c VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
|
|
op_VSRL uint32 = 0xE77C // VRR-c VECTOR SHIFT RIGHT LOGICAL
|
|
op_VSRLB uint32 = 0xE77D // VRR-c VECTOR SHIFT RIGHT LOGICAL BY BYTE
|
|
op_VSEG uint32 = 0xE75F // VRR-a VECTOR SIGN EXTEND TO DOUBLEWORD
|
|
op_VST uint32 = 0xE70E // VRX VECTOR STORE
|
|
op_VSTEH uint32 = 0xE709 // VRX VECTOR STORE ELEMENT (16)
|
|
op_VSTEF uint32 = 0xE70B // VRX VECTOR STORE ELEMENT (32)
|
|
op_VSTEG uint32 = 0xE70A // VRX VECTOR STORE ELEMENT (64)
|
|
op_VSTEB uint32 = 0xE708 // VRX VECTOR STORE ELEMENT (8)
|
|
op_VSTM uint32 = 0xE73E // VRS-a VECTOR STORE MULTIPLE
|
|
op_VSTL uint32 = 0xE73F // VRS-b VECTOR STORE WITH LENGTH
|
|
op_VSTRC uint32 = 0xE78A // VRR-d VECTOR STRING RANGE COMPARE
|
|
op_VS uint32 = 0xE7F7 // VRR-c VECTOR SUBTRACT
|
|
op_VSCBI uint32 = 0xE7F5 // VRR-c VECTOR SUBTRACT COMPUTE BORROW INDICATION
|
|
op_VSBCBI uint32 = 0xE7BD // VRR-d VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
|
|
op_VSBI uint32 = 0xE7BF // VRR-d VECTOR SUBTRACT WITH BORROW INDICATION
|
|
op_VSUMG uint32 = 0xE765 // VRR-c VECTOR SUM ACROSS DOUBLEWORD
|
|
op_VSUMQ uint32 = 0xE767 // VRR-c VECTOR SUM ACROSS QUADWORD
|
|
op_VSUM uint32 = 0xE764 // VRR-c VECTOR SUM ACROSS WORD
|
|
op_VTM uint32 = 0xE7D8 // VRR-a VECTOR TEST UNDER MASK
|
|
op_VUPH uint32 = 0xE7D7 // VRR-a VECTOR UNPACK HIGH
|
|
op_VUPLH uint32 = 0xE7D5 // VRR-a VECTOR UNPACK LOGICAL HIGH
|
|
op_VUPLL uint32 = 0xE7D4 // VRR-a VECTOR UNPACK LOGICAL LOW
|
|
op_VUPL uint32 = 0xE7D6 // VRR-a VECTOR UNPACK LOW
|
|
op_VMSL uint32 = 0xE7B8 // VRR-d VECTOR MULTIPLY SUM LOGICAL
|
|
)
|
|
|
|
func oclass(a *obj.Addr) int {
|
|
return int(a.Class) - 1
|
|
}
|
|
|
|
// Add a relocation for the immediate in a RIL style instruction.
|
|
// The addend will be adjusted as required.
|
|
func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
|
|
if sym == nil {
|
|
c.ctxt.Diag("require symbol to apply relocation")
|
|
}
|
|
offset := int64(2) // relocation offset from start of instruction
|
|
rel := obj.Addrel(c.cursym)
|
|
rel.Off = int32(c.pc + offset)
|
|
rel.Siz = 4
|
|
rel.Sym = sym
|
|
rel.Add = add + offset + int64(rel.Siz)
|
|
rel.Type = objabi.R_PCRELDBL
|
|
return rel
|
|
}
|
|
|
|
func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
|
|
if sym == nil {
|
|
c.ctxt.Diag("require symbol to apply relocation")
|
|
}
|
|
offset += int64(2) // relocation offset from start of instruction
|
|
rel := obj.Addrel(c.cursym)
|
|
rel.Off = int32(c.pc + offset)
|
|
rel.Siz = 4
|
|
rel.Sym = sym
|
|
rel.Add = add + offset + int64(rel.Siz)
|
|
rel.Type = objabi.R_PCRELDBL
|
|
return rel
|
|
}
|
|
|
|
// Add a CALL relocation for the immediate in a RIL style instruction.
|
|
// The addend will be adjusted as required.
|
|
func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
|
|
if sym == nil {
|
|
c.ctxt.Diag("require symbol to apply relocation")
|
|
}
|
|
offset := int64(2) // relocation offset from start of instruction
|
|
rel := obj.Addrel(c.cursym)
|
|
rel.Off = int32(c.pc + offset)
|
|
rel.Siz = 4
|
|
rel.Sym = sym
|
|
rel.Add = add + offset + int64(rel.Siz)
|
|
rel.Type = objabi.R_CALL
|
|
return rel
|
|
}
|
|
|
|
func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
|
|
switch p.As {
|
|
case ABRC, ALOCR, ALOCGR,
|
|
ACRJ, ACGRJ, ACIJ, ACGIJ,
|
|
ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
|
|
return CCMask(p.From.Offset)
|
|
case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
|
|
return Equal
|
|
case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
|
|
return GreaterOrEqual
|
|
case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
|
|
return Greater
|
|
case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
|
|
return LessOrEqual
|
|
case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
|
|
return Less
|
|
case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
|
|
return NotEqual
|
|
case ABLEU: // LE or unordered
|
|
return NotGreater
|
|
case ABLTU: // LT or unordered
|
|
return LessOrUnordered
|
|
case ABVC:
|
|
return Never // needs extra instruction
|
|
case ABVS:
|
|
return Unordered
|
|
}
|
|
c.ctxt.Diag("unknown conditional branch %v", p.As)
|
|
return Always
|
|
}
|
|
|
|
func regtmp(p *obj.Prog) uint32 {
|
|
p.Mark |= USETMP
|
|
return REGTMP
|
|
}
|
|
|
|
func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
|
|
o := c.oplook(p)
|
|
|
|
if o == nil {
|
|
return
|
|
}
|
|
|
|
// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
|
|
// So we use regtmp(p) for REGTMP.
|
|
|
|
switch o.i {
|
|
default:
|
|
c.ctxt.Diag("unknown index %d", o.i)
|
|
|
|
case 0: // PSEUDO OPS
|
|
break
|
|
|
|
case 1: // mov reg reg
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("unhandled operation: %v", p.As)
|
|
case AMOVD:
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
// sign extend
|
|
case AMOVW:
|
|
zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case AMOVH:
|
|
zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case AMOVB:
|
|
zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
// zero extend
|
|
case AMOVWZ:
|
|
zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case AMOVHZ:
|
|
zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case AMOVBZ:
|
|
zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
// reverse bytes
|
|
case AMOVDBR:
|
|
zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case AMOVWBR:
|
|
zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
// floating point
|
|
case AFMOVD, AFMOVS:
|
|
zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
|
|
case 2: // arithmetic op reg [reg] reg
|
|
r := p.Reg
|
|
if r == 0 {
|
|
r = p.To.Reg
|
|
}
|
|
|
|
var opcode uint32
|
|
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("invalid opcode")
|
|
case AADD:
|
|
opcode = op_AGRK
|
|
case AADDC:
|
|
opcode = op_ALGRK
|
|
case AADDE:
|
|
opcode = op_ALCGR
|
|
case AADDW:
|
|
opcode = op_ARK
|
|
case AMULLW:
|
|
opcode = op_MSGFR
|
|
case AMULLD:
|
|
opcode = op_MSGR
|
|
case ADIVW, AMODW:
|
|
opcode = op_DSGFR
|
|
case ADIVWU, AMODWU:
|
|
opcode = op_DLR
|
|
case ADIVD, AMODD:
|
|
opcode = op_DSGR
|
|
case ADIVDU, AMODDU:
|
|
opcode = op_DLGR
|
|
}
|
|
|
|
switch p.As {
|
|
default:
|
|
|
|
case AADD, AADDC, AADDW:
|
|
if p.As == AADDW && r == p.To.Reg {
|
|
zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else {
|
|
zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
|
|
case AADDE, AMULLW, AMULLD:
|
|
if r == p.To.Reg {
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else if p.From.Reg == p.To.Reg {
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
|
|
} else {
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
|
|
case ADIVW, ADIVWU, ADIVD, ADIVDU:
|
|
if p.As == ADIVWU || p.As == ADIVDU {
|
|
zRI(op_LGHI, regtmp(p), 0, asm)
|
|
}
|
|
zRRE(op_LGR, REGTMP2, uint32(r), asm)
|
|
zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
|
|
zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
|
|
|
|
case AMODW, AMODWU, AMODD, AMODDU:
|
|
if p.As == AMODWU || p.As == AMODDU {
|
|
zRI(op_LGHI, regtmp(p), 0, asm)
|
|
}
|
|
zRRE(op_LGR, REGTMP2, uint32(r), asm)
|
|
zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
|
|
zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
|
|
}
|
|
|
|
case 3: // mov $constant reg
|
|
v := c.vregoff(&p.From)
|
|
switch p.As {
|
|
case AMOVBZ:
|
|
v = int64(uint8(v))
|
|
case AMOVHZ:
|
|
v = int64(uint16(v))
|
|
case AMOVWZ:
|
|
v = int64(uint32(v))
|
|
case AMOVB:
|
|
v = int64(int8(v))
|
|
case AMOVH:
|
|
v = int64(int16(v))
|
|
case AMOVW:
|
|
v = int64(int32(v))
|
|
}
|
|
if int64(int16(v)) == v {
|
|
zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if v&0xffff0000 == v {
|
|
zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
|
|
} else if v&0xffff00000000 == v {
|
|
zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
|
|
} else if uint64(v)&0xffff000000000000 == uint64(v) {
|
|
zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
|
|
} else if int64(int32(v)) == v {
|
|
zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if int64(uint32(v)) == v {
|
|
zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if uint64(v)&0xffffffff00000000 == uint64(v) {
|
|
zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
|
|
} else {
|
|
zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
|
|
zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
|
|
}
|
|
|
|
case 4: // multiply high (a*b)>>64
|
|
r := p.Reg
|
|
if r == 0 {
|
|
r = p.To.Reg
|
|
}
|
|
zRRE(op_LGR, REGTMP2, uint32(r), asm)
|
|
zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
|
|
switch p.As {
|
|
case AMULHDU:
|
|
// Unsigned: move result into correct register.
|
|
zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
case AMULHD:
|
|
// Signed: need to convert result.
|
|
// See Hacker's Delight 8-3.
|
|
zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
|
|
zRRE(op_NGR, REGTMP2, uint32(r), asm)
|
|
zRRE(op_SGR, regtmp(p), REGTMP2, asm)
|
|
zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
|
|
zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
|
|
zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
|
|
}
|
|
|
|
case 5: // syscall
|
|
zI(op_SVC, 0, asm)
|
|
|
|
case 6: // logical op reg [reg] reg
|
|
var oprr, oprre, oprrf uint32
|
|
switch p.As {
|
|
case AAND:
|
|
oprre = op_NGR
|
|
oprrf = op_NGRK
|
|
case AANDW:
|
|
oprr = op_NR
|
|
oprrf = op_NRK
|
|
case AOR:
|
|
oprre = op_OGR
|
|
oprrf = op_OGRK
|
|
case AORW:
|
|
oprr = op_OR
|
|
oprrf = op_ORK
|
|
case AXOR:
|
|
oprre = op_XGR
|
|
oprrf = op_XGRK
|
|
case AXORW:
|
|
oprr = op_XR
|
|
oprrf = op_XRK
|
|
}
|
|
if p.Reg == 0 {
|
|
if oprr != 0 {
|
|
zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else {
|
|
zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
} else {
|
|
zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
|
|
case 7: // shift/rotate reg [reg] reg
|
|
d2 := c.vregoff(&p.From)
|
|
b2 := p.From.Reg
|
|
r3 := p.Reg
|
|
if r3 == 0 {
|
|
r3 = p.To.Reg
|
|
}
|
|
r1 := p.To.Reg
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
case ASLD:
|
|
opcode = op_SLLG
|
|
case ASRD:
|
|
opcode = op_SRLG
|
|
case ASLW:
|
|
opcode = op_SLLK
|
|
case ASRW:
|
|
opcode = op_SRLK
|
|
case ARLL:
|
|
opcode = op_RLL
|
|
case ARLLG:
|
|
opcode = op_RLLG
|
|
case ASRAW:
|
|
opcode = op_SRAK
|
|
case ASRAD:
|
|
opcode = op_SRAG
|
|
}
|
|
zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
|
|
|
|
case 8: // find leftmost one
|
|
if p.To.Reg&1 != 0 {
|
|
c.ctxt.Diag("target must be an even-numbered register")
|
|
}
|
|
// FLOGR also writes a mask to p.To.Reg+1.
|
|
zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 9: // population count
|
|
zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 10: // subtract reg [reg] reg
|
|
r := int(p.Reg)
|
|
|
|
switch p.As {
|
|
default:
|
|
case ASUB:
|
|
if r == 0 {
|
|
zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else {
|
|
zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
case ASUBC:
|
|
if r == 0 {
|
|
zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else {
|
|
zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
case ASUBE:
|
|
if r == 0 {
|
|
r = int(p.To.Reg)
|
|
}
|
|
if r == int(p.To.Reg) {
|
|
zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else if p.From.Reg == p.To.Reg {
|
|
zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
|
|
zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
} else {
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
|
|
zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
case ASUBW:
|
|
if r == 0 {
|
|
zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
} else {
|
|
zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
}
|
|
|
|
case 11: // br/bl
|
|
v := int32(0)
|
|
|
|
if p.Pcond != nil {
|
|
v = int32((p.Pcond.Pc - p.Pc) >> 1)
|
|
}
|
|
|
|
if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
|
|
zRI(op_BRC, 0xF, uint32(v), asm)
|
|
} else {
|
|
if p.As == ABL {
|
|
zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
|
|
} else {
|
|
zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
|
|
}
|
|
if p.To.Sym != nil {
|
|
c.addcallreloc(p.To.Sym, p.To.Offset)
|
|
}
|
|
}
|
|
|
|
case 12:
|
|
r1 := p.To.Reg
|
|
d2 := c.vregoff(&p.From)
|
|
b2 := p.From.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
x2 := p.From.Index
|
|
if -DISP20/2 > d2 || d2 >= DISP20/2 {
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
|
|
if x2 != 0 {
|
|
zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
|
|
}
|
|
x2 = int16(regtmp(p))
|
|
d2 = 0
|
|
}
|
|
var opx, opxy uint32
|
|
switch p.As {
|
|
case AADD:
|
|
opxy = op_AG
|
|
case AADDC:
|
|
opxy = op_ALG
|
|
case AADDE:
|
|
opxy = op_ALCG
|
|
case AADDW:
|
|
opx = op_A
|
|
opxy = op_AY
|
|
case AMULLW:
|
|
opx = op_MS
|
|
opxy = op_MSY
|
|
case AMULLD:
|
|
opxy = op_MSG
|
|
case ASUB:
|
|
opxy = op_SG
|
|
case ASUBC:
|
|
opxy = op_SLG
|
|
case ASUBE:
|
|
opxy = op_SLBG
|
|
case ASUBW:
|
|
opx = op_S
|
|
opxy = op_SY
|
|
case AAND:
|
|
opxy = op_NG
|
|
case AANDW:
|
|
opx = op_N
|
|
opxy = op_NY
|
|
case AOR:
|
|
opxy = op_OG
|
|
case AORW:
|
|
opx = op_O
|
|
opxy = op_OY
|
|
case AXOR:
|
|
opxy = op_XG
|
|
case AXORW:
|
|
opx = op_X
|
|
opxy = op_XY
|
|
}
|
|
if opx != 0 && 0 <= d2 && d2 < DISP12 {
|
|
zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
} else {
|
|
zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
}
|
|
|
|
case 13: // rotate, followed by operation
|
|
r1 := p.To.Reg
|
|
r2 := p.RestArgs[2].Reg
|
|
i3 := uint8(p.From.Offset) // start
|
|
i4 := uint8(p.RestArgs[0].Offset) // end
|
|
i5 := uint8(p.RestArgs[1].Offset) // rotate amount
|
|
switch p.As {
|
|
case ARNSBGT, ARXSBGT, AROSBGT:
|
|
i3 |= 0x80 // test-results
|
|
case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
|
|
i4 |= 0x80 // zero-remaining-bits
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ARNSBG, ARNSBGT:
|
|
opcode = op_RNSBG
|
|
case ARXSBG, ARXSBGT:
|
|
opcode = op_RXSBG
|
|
case AROSBG, AROSBGT:
|
|
opcode = op_ROSBG
|
|
case ARISBG, ARISBGZ:
|
|
opcode = op_RISBG
|
|
case ARISBGN, ARISBGNZ:
|
|
opcode = op_RISBGN
|
|
case ARISBHG, ARISBHGZ:
|
|
opcode = op_RISBHG
|
|
case ARISBLG, ARISBLGZ:
|
|
opcode = op_RISBLG
|
|
}
|
|
zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)
|
|
|
|
case 15: // br/bl (reg)
|
|
r := p.To.Reg
|
|
if p.As == ABCL || p.As == ABL {
|
|
zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
|
|
} else {
|
|
zRR(op_BCR, uint32(Always), uint32(r), asm)
|
|
}
|
|
|
|
case 16: // conditional branch
|
|
v := int32(0)
|
|
if p.Pcond != nil {
|
|
v = int32((p.Pcond.Pc - p.Pc) >> 1)
|
|
}
|
|
mask := uint32(c.branchMask(p))
|
|
if p.To.Sym == nil && int32(int16(v)) == v {
|
|
zRI(op_BRC, mask, uint32(v), asm)
|
|
} else {
|
|
zRIL(_c, op_BRCL, mask, uint32(v), asm)
|
|
}
|
|
if p.To.Sym != nil {
|
|
c.addrilreloc(p.To.Sym, p.To.Offset)
|
|
}
|
|
|
|
case 17: // move on condition
|
|
m3 := uint32(c.branchMask(p))
|
|
zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 18: // br/bl reg
|
|
if p.As == ABL {
|
|
zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
|
|
} else {
|
|
zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
|
|
}
|
|
|
|
case 19: // mov $sym+n(SB) reg
|
|
d := c.vregoff(&p.From)
|
|
zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
|
|
if d&1 != 0 {
|
|
zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
|
|
d -= 1
|
|
}
|
|
c.addrilreloc(p.From.Sym, d)
|
|
|
|
case 21: // subtract $constant [reg] reg
|
|
v := c.vregoff(&p.From)
|
|
r := p.Reg
|
|
if r == 0 {
|
|
r = p.To.Reg
|
|
}
|
|
switch p.As {
|
|
case ASUB:
|
|
zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
|
|
zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
|
|
case ASUBC:
|
|
if r != p.To.Reg {
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
|
|
case ASUBW:
|
|
if r != p.To.Reg {
|
|
zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
|
|
case 22: // add/multiply $constant [reg] reg
|
|
v := c.vregoff(&p.From)
|
|
r := p.Reg
|
|
if r == 0 {
|
|
r = p.To.Reg
|
|
}
|
|
var opri, opril, oprie uint32
|
|
switch p.As {
|
|
case AADD:
|
|
opri = op_AGHI
|
|
opril = op_AGFI
|
|
oprie = op_AGHIK
|
|
case AADDC:
|
|
opril = op_ALGFI
|
|
oprie = op_ALGHSIK
|
|
case AADDW:
|
|
opri = op_AHI
|
|
opril = op_AFI
|
|
oprie = op_AHIK
|
|
case AMULLW:
|
|
opri = op_MHI
|
|
opril = op_MSFI
|
|
case AMULLD:
|
|
opri = op_MGHI
|
|
opril = op_MSGFI
|
|
}
|
|
if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
|
|
switch p.As {
|
|
case AADD, AADDC, AMULLD:
|
|
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
|
|
case AADDW, AMULLW:
|
|
zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
r = p.To.Reg
|
|
}
|
|
if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
|
|
zRI(opri, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if oprie != 0 && int64(int16(v)) == v {
|
|
zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
|
|
} else {
|
|
zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
|
|
case 23: // 64-bit logical op $constant reg
|
|
// TODO(mundaym): merge with case 24.
|
|
v := c.vregoff(&p.From)
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("%v is not supported", p)
|
|
case AAND:
|
|
if v >= 0 { // needs zero extend
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
|
|
zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
} else if int64(int16(v)) == v {
|
|
zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
|
|
} else { // r.To.Reg & 0xffffffff00000000 & uint32(v)
|
|
zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
case AOR:
|
|
if int64(uint32(v)) != v { // needs sign extend
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
|
|
zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
} else if int64(uint16(v)) == v {
|
|
zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
|
|
} else {
|
|
zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
case AXOR:
|
|
if int64(uint32(v)) != v { // needs sign extend
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
|
|
zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
|
|
} else {
|
|
zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
}
|
|
|
|
case 24: // 32-bit logical op $constant reg
|
|
v := c.vregoff(&p.From)
|
|
switch p.As {
|
|
case AANDW:
|
|
if uint32(v&0xffff0000) == 0xffff0000 {
|
|
zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if uint32(v&0x0000ffff) == 0x0000ffff {
|
|
zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
|
|
} else {
|
|
zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
case AORW:
|
|
if uint32(v&0xffff0000) == 0 {
|
|
zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
|
|
} else if uint32(v&0x0000ffff) == 0 {
|
|
zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
|
|
} else {
|
|
zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
case AXORW:
|
|
zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
|
|
case 25: // load on condition (register)
|
|
m3 := uint32(c.branchMask(p))
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ALOCR:
|
|
opcode = op_LOCR
|
|
case ALOCGR:
|
|
opcode = op_LOCGR
|
|
}
|
|
zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)
|
|
|
|
case 26: // MOVD $offset(base)(index), reg
|
|
v := c.regoff(&p.From)
|
|
r := p.From.Reg
|
|
if r == 0 {
|
|
r = REGSP
|
|
}
|
|
i := p.From.Index
|
|
if v >= 0 && v < DISP12 {
|
|
zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
|
|
} else if v >= -DISP20/2 && v < DISP20/2 {
|
|
zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
|
|
} else {
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
|
|
zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
|
|
}
|
|
|
|
case 31: // dword
|
|
wd := uint64(c.vregoff(&p.From))
|
|
*asm = append(*asm,
|
|
uint8(wd>>56),
|
|
uint8(wd>>48),
|
|
uint8(wd>>40),
|
|
uint8(wd>>32),
|
|
uint8(wd>>24),
|
|
uint8(wd>>16),
|
|
uint8(wd>>8),
|
|
uint8(wd))
|
|
|
|
case 32: // float op freg freg
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("invalid opcode")
|
|
case AFADD:
|
|
opcode = op_ADBR
|
|
case AFADDS:
|
|
opcode = op_AEBR
|
|
case AFDIV:
|
|
opcode = op_DDBR
|
|
case AFDIVS:
|
|
opcode = op_DEBR
|
|
case AFMUL:
|
|
opcode = op_MDBR
|
|
case AFMULS:
|
|
opcode = op_MEEBR
|
|
case AFSUB:
|
|
opcode = op_SDBR
|
|
case AFSUBS:
|
|
opcode = op_SEBR
|
|
}
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 33: // float op [freg] freg
|
|
r := p.From.Reg
|
|
if oclass(&p.From) == C_NONE {
|
|
r = p.To.Reg
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
case AFABS:
|
|
opcode = op_LPDBR
|
|
case AFNABS:
|
|
opcode = op_LNDBR
|
|
case ALPDFR:
|
|
opcode = op_LPDFR
|
|
case ALNDFR:
|
|
opcode = op_LNDFR
|
|
case AFNEG:
|
|
opcode = op_LCDFR
|
|
case AFNEGS:
|
|
opcode = op_LCEBR
|
|
case ALEDBR:
|
|
opcode = op_LEDBR
|
|
case ALDEBR:
|
|
opcode = op_LDEBR
|
|
case AFSQRT:
|
|
opcode = op_SQDBR
|
|
case AFSQRTS:
|
|
opcode = op_SQEBR
|
|
}
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
|
|
|
|
case 34: // float multiply-add freg freg freg
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("invalid opcode")
|
|
case AFMADD:
|
|
opcode = op_MADBR
|
|
case AFMADDS:
|
|
opcode = op_MAEBR
|
|
case AFMSUB:
|
|
opcode = op_MSDBR
|
|
case AFMSUBS:
|
|
opcode = op_MSEBR
|
|
}
|
|
zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
|
|
|
|
case 35: // mov reg mem (no relocation)
|
|
d2 := c.regoff(&p.To)
|
|
b2 := p.To.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
x2 := p.To.Index
|
|
if d2 < -DISP20/2 || d2 >= DISP20/2 {
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
|
|
if x2 != 0 {
|
|
zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
|
|
}
|
|
x2 = int16(regtmp(p))
|
|
d2 = 0
|
|
}
|
|
// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
|
|
if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
|
|
zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
} else {
|
|
zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
}
|
|
|
|
case 36: // mov mem reg (no relocation)
|
|
d2 := c.regoff(&p.From)
|
|
b2 := p.From.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
x2 := p.From.Index
|
|
if d2 < -DISP20/2 || d2 >= DISP20/2 {
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
|
|
if x2 != 0 {
|
|
zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
|
|
}
|
|
x2 = int16(regtmp(p))
|
|
d2 = 0
|
|
}
|
|
// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
|
|
if op, ok := c.zopload12(p.As); ok && isU12(d2) {
|
|
zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
} else {
|
|
zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
|
|
}
|
|
|
|
case 40: // word/byte
|
|
wd := uint32(c.regoff(&p.From))
|
|
if p.As == AWORD { //WORD
|
|
*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
|
|
} else { //BYTE
|
|
*asm = append(*asm, uint8(wd))
|
|
}
|
|
|
|
case 41: // branch on count
|
|
r1 := p.From.Reg
|
|
ri2 := (p.Pcond.Pc - p.Pc) >> 1
|
|
if int64(int16(ri2)) != ri2 {
|
|
c.ctxt.Diag("branch target too far away")
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ABRCT:
|
|
opcode = op_BRCT
|
|
case ABRCTG:
|
|
opcode = op_BRCTG
|
|
}
|
|
zRI(opcode, uint32(r1), uint32(ri2), asm)
|
|
|
|
case 47: // negate [reg] reg
|
|
r := p.From.Reg
|
|
if r == 0 {
|
|
r = p.To.Reg
|
|
}
|
|
switch p.As {
|
|
case ANEG:
|
|
zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
|
|
case ANEGW:
|
|
zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
|
|
}
|
|
|
|
case 48: // floating-point round to integer
|
|
m3 := c.vregoff(&p.From)
|
|
if 0 > m3 || m3 > 7 {
|
|
c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
case AFIEBR:
|
|
opcode = op_FIEBR
|
|
case AFIDBR:
|
|
opcode = op_FIDBR
|
|
}
|
|
zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
|
|
|
|
case 49: // copysign
|
|
zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
|
|
|
|
case 50: // load and test
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ALTEBR:
|
|
opcode = op_LTEBR
|
|
case ALTDBR:
|
|
opcode = op_LTDBR
|
|
}
|
|
zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 51: // test data class (immediate only)
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ATCEB:
|
|
opcode = op_TCEB
|
|
case ATCDB:
|
|
opcode = op_TCDB
|
|
}
|
|
d2 := c.regoff(&p.To)
|
|
zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)
|
|
|
|
case 62: // equivalent of Mul64 in math/bits
|
|
zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 66:
|
|
zRR(op_BCR, uint32(Never), 0, asm)
|
|
|
|
case 67: // fmov $0 freg
|
|
var opcode uint32
|
|
switch p.As {
|
|
case AFMOVS:
|
|
opcode = op_LZER
|
|
case AFMOVD:
|
|
opcode = op_LZDR
|
|
}
|
|
zRRE(opcode, uint32(p.To.Reg), 0, asm)
|
|
|
|
case 68: // movw areg reg
|
|
zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
|
|
|
|
case 69: // movw reg areg
|
|
zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
|
|
|
|
case 70: // cmp reg reg
|
|
if p.As == ACMPW || p.As == ACMPWU {
|
|
zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
|
|
} else {
|
|
zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
|
|
}
|
|
|
|
case 71: // cmp reg $constant
|
|
v := c.vregoff(&p.To)
|
|
switch p.As {
|
|
case ACMP, ACMPW:
|
|
if int64(int32(v)) != v {
|
|
c.ctxt.Diag("%v overflows an int32", v)
|
|
}
|
|
case ACMPU, ACMPWU:
|
|
if int64(uint32(v)) != v {
|
|
c.ctxt.Diag("%v overflows a uint32", v)
|
|
}
|
|
}
|
|
if p.As == ACMP && int64(int16(v)) == v {
|
|
zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
|
|
} else if p.As == ACMPW && int64(int16(v)) == v {
|
|
zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
|
|
} else {
|
|
zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
|
|
}
|
|
|
|
case 72: // mov $constant mem
|
|
v := c.regoff(&p.From)
|
|
d := c.regoff(&p.To)
|
|
r := p.To.Reg
|
|
if p.To.Index != 0 {
|
|
c.ctxt.Diag("cannot use index register")
|
|
}
|
|
if r == 0 {
|
|
r = REGSP
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
case AMOVD:
|
|
opcode = op_MVGHI
|
|
case AMOVW, AMOVWZ:
|
|
opcode = op_MVHI
|
|
case AMOVH, AMOVHZ:
|
|
opcode = op_MVHHI
|
|
case AMOVB, AMOVBZ:
|
|
opcode = op_MVI
|
|
}
|
|
if d < 0 || d >= DISP12 {
|
|
if r == int16(regtmp(p)) {
|
|
c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
|
|
}
|
|
if d >= -DISP20/2 && d < DISP20/2 {
|
|
if opcode == op_MVI {
|
|
opcode = op_MVIY
|
|
} else {
|
|
zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
|
|
r = int16(regtmp(p))
|
|
d = 0
|
|
}
|
|
} else {
|
|
zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
|
|
zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
|
|
r = int16(regtmp(p))
|
|
d = 0
|
|
}
|
|
}
|
|
switch opcode {
|
|
case op_MVI:
|
|
zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
|
|
case op_MVIY:
|
|
zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
|
|
default:
|
|
zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
|
|
}
|
|
|
|
case 74: // mov reg addr (including relocation)
|
|
i2 := c.regoff(&p.To)
|
|
switch p.As {
|
|
case AMOVD:
|
|
zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
|
|
case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
|
|
zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
|
|
case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
|
|
zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
|
|
case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
adj := uint32(0) // adjustment needed for odd addresses
|
|
if i2&1 != 0 {
|
|
i2 -= 1
|
|
adj = 1
|
|
}
|
|
zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
|
|
case AFMOVD:
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
|
|
case AFMOVS:
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
|
|
}
|
|
c.addrilreloc(p.To.Sym, int64(i2))
|
|
|
|
case 75: // mov addr reg (including relocation)
|
|
i2 := c.regoff(&p.From)
|
|
switch p.As {
|
|
case AMOVD:
|
|
if i2&1 != 0 {
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
|
|
i2 -= 1
|
|
} else {
|
|
zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
|
|
}
|
|
case AMOVW:
|
|
zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
|
|
case AMOVWZ:
|
|
zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
|
|
case AMOVH:
|
|
zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
|
|
case AMOVHZ:
|
|
zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
|
|
case AMOVB, AMOVBZ:
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
adj := uint32(0) // adjustment needed for odd addresses
|
|
if i2&1 != 0 {
|
|
i2 -= 1
|
|
adj = 1
|
|
}
|
|
switch p.As {
|
|
case AMOVB:
|
|
zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
|
|
case AMOVBZ:
|
|
zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
|
|
}
|
|
case AFMOVD:
|
|
zRIL(_a, op_LARL, regtmp(p), 0, asm)
|
|
zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
|
|
case AFMOVS:
|
|
zRIL(_a, op_LARL, regtmp(p), 0, asm)
|
|
zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
|
|
}
|
|
c.addrilreloc(p.From.Sym, int64(i2))
|
|
|
|
case 76: // set program mask
|
|
zRR(op_SPM, uint32(p.From.Reg), 0, asm)
|
|
|
|
case 77: // syscall $constant
|
|
if p.From.Offset > 255 || p.From.Offset < 1 {
|
|
c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
|
|
zE(op_TRAP2, asm) // trap always
|
|
} else {
|
|
zI(op_SVC, uint32(p.From.Offset), asm)
|
|
}
|
|
|
|
case 78: // undef
|
|
// "An instruction consisting entirely of binary 0s is guaranteed
|
|
// always to be an illegal instruction."
|
|
*asm = append(*asm, 0, 0, 0, 0)
|
|
|
|
case 79: // compare and swap reg reg reg
|
|
v := c.regoff(&p.To)
|
|
if v < 0 {
|
|
v = 0
|
|
}
|
|
if p.As == ACS {
|
|
zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
|
|
} else if p.As == ACSG {
|
|
zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
|
|
}
|
|
|
|
case 80: // sync
|
|
zRR(op_BCR, uint32(NotEqual), 0, asm)
|
|
|
|
case 81: // float to fixed and fixed to float moves (no conversion)
|
|
switch p.As {
|
|
case ALDGR:
|
|
zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
case ALGDR:
|
|
zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
}
|
|
|
|
case 82: // fixed to float conversion
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
log.Fatalf("unexpected opcode %v", p.As)
|
|
case ACEFBRA:
|
|
opcode = op_CEFBRA
|
|
case ACDFBRA:
|
|
opcode = op_CDFBRA
|
|
case ACEGBRA:
|
|
opcode = op_CEGBRA
|
|
case ACDGBRA:
|
|
opcode = op_CDGBRA
|
|
case ACELFBR:
|
|
opcode = op_CELFBR
|
|
case ACDLFBR:
|
|
opcode = op_CDLFBR
|
|
case ACELGBR:
|
|
opcode = op_CELGBR
|
|
case ACDLGBR:
|
|
opcode = op_CDLGBR
|
|
}
|
|
// set immediate operand M3 to 0 to use the default BFP rounding mode
|
|
// (usually round to nearest, ties to even)
|
|
// TODO(mundaym): should this be fixed at round to nearest, ties to even?
|
|
// M4 is reserved and must be 0
|
|
zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 83: // float to fixed conversion
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
log.Fatalf("unexpected opcode %v", p.As)
|
|
case ACFEBRA:
|
|
opcode = op_CFEBRA
|
|
case ACFDBRA:
|
|
opcode = op_CFDBRA
|
|
case ACGEBRA:
|
|
opcode = op_CGEBRA
|
|
case ACGDBRA:
|
|
opcode = op_CGDBRA
|
|
case ACLFEBR:
|
|
opcode = op_CLFEBR
|
|
case ACLFDBR:
|
|
opcode = op_CLFDBR
|
|
case ACLGEBR:
|
|
opcode = op_CLGEBR
|
|
case ACLGDBR:
|
|
opcode = op_CLGDBR
|
|
}
|
|
// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
|
|
// M4 is reserved and must be 0
|
|
zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
|
|
|
|
case 84: // storage-and-storage operations $length mem mem
|
|
l := c.regoff(&p.From)
|
|
if l < 1 || l > 256 {
|
|
c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
|
|
}
|
|
if p.GetFrom3().Index != 0 || p.To.Index != 0 {
|
|
c.ctxt.Diag("cannot use index reg")
|
|
}
|
|
b1 := p.To.Reg
|
|
b2 := p.GetFrom3().Reg
|
|
if b1 == 0 {
|
|
b1 = REGSP
|
|
}
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
d1 := c.regoff(&p.To)
|
|
d2 := c.regoff(p.GetFrom3())
|
|
if d1 < 0 || d1 >= DISP12 {
|
|
if b2 == int16(regtmp(p)) {
|
|
c.ctxt.Diag("regtmp(p) conflict")
|
|
}
|
|
if b1 != int16(regtmp(p)) {
|
|
zRRE(op_LGR, regtmp(p), uint32(b1), asm)
|
|
}
|
|
zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
|
|
if d1 == d2 && b1 == b2 {
|
|
d2 = 0
|
|
b2 = int16(regtmp(p))
|
|
}
|
|
d1 = 0
|
|
b1 = int16(regtmp(p))
|
|
}
|
|
if d2 < 0 || d2 >= DISP12 {
|
|
if b1 == REGTMP2 {
|
|
c.ctxt.Diag("REGTMP2 conflict")
|
|
}
|
|
if b2 != REGTMP2 {
|
|
zRRE(op_LGR, REGTMP2, uint32(b2), asm)
|
|
}
|
|
zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
|
|
d2 = 0
|
|
b2 = REGTMP2
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
default:
|
|
c.ctxt.Diag("unexpected opcode %v", p.As)
|
|
case AMVC:
|
|
opcode = op_MVC
|
|
case AMVCIN:
|
|
opcode = op_MVCIN
|
|
case ACLC:
|
|
opcode = op_CLC
|
|
// swap operand order for CLC so that it matches CMP
|
|
b1, b2 = b2, b1
|
|
d1, d2 = d2, d1
|
|
case AXC:
|
|
opcode = op_XC
|
|
case AOC:
|
|
opcode = op_OC
|
|
case ANC:
|
|
opcode = op_NC
|
|
}
|
|
zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
|
|
|
|
case 85: // load address relative long
|
|
v := c.regoff(&p.From)
|
|
if p.From.Sym == nil {
|
|
if (v & 1) != 0 {
|
|
c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
|
|
}
|
|
} else {
|
|
c.addrilreloc(p.From.Sym, int64(v))
|
|
v = 0
|
|
}
|
|
zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
|
|
|
|
case 86: // load address
|
|
d := c.vregoff(&p.From)
|
|
x := p.From.Index
|
|
b := p.From.Reg
|
|
if b == 0 {
|
|
b = REGSP
|
|
}
|
|
switch p.As {
|
|
case ALA:
|
|
zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
|
|
case ALAY:
|
|
zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
|
|
}
|
|
|
|
case 87: // execute relative long
|
|
v := c.vregoff(&p.From)
|
|
if p.From.Sym == nil {
|
|
if v&1 != 0 {
|
|
c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
|
|
}
|
|
} else {
|
|
c.addrilreloc(p.From.Sym, v)
|
|
v = 0
|
|
}
|
|
zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
|
|
|
|
case 88: // store clock
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ASTCK:
|
|
opcode = op_STCK
|
|
case ASTCKC:
|
|
opcode = op_STCKC
|
|
case ASTCKE:
|
|
opcode = op_STCKE
|
|
case ASTCKF:
|
|
opcode = op_STCKF
|
|
}
|
|
v := c.vregoff(&p.To)
|
|
r := p.To.Reg
|
|
if r == 0 {
|
|
r = REGSP
|
|
}
|
|
zS(opcode, uint32(r), uint32(v), asm)
|
|
|
|
case 89: // compare and branch reg reg
|
|
var v int32
|
|
if p.Pcond != nil {
|
|
v = int32((p.Pcond.Pc - p.Pc) >> 1)
|
|
}
|
|
|
|
// Some instructions take a mask as the first argument.
|
|
r1, r2 := p.From.Reg, p.Reg
|
|
if p.From.Type == obj.TYPE_CONST {
|
|
r1, r2 = p.Reg, p.RestArgs[0].Reg
|
|
}
|
|
m3 := uint32(c.branchMask(p))
|
|
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ACRJ:
|
|
// COMPARE AND BRANCH RELATIVE (32)
|
|
opcode = op_CRJ
|
|
case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
|
|
// COMPARE AND BRANCH RELATIVE (64)
|
|
opcode = op_CGRJ
|
|
case ACLRJ:
|
|
// COMPARE LOGICAL AND BRANCH RELATIVE (32)
|
|
opcode = op_CLRJ
|
|
case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
|
|
// COMPARE LOGICAL AND BRANCH RELATIVE (64)
|
|
opcode = op_CLGRJ
|
|
}
|
|
|
|
if int32(int16(v)) != v {
|
|
// The branch is too far for one instruction so crack
|
|
// `CMPBEQ x, y, target` into:
|
|
//
|
|
// CMPBNE x, y, 2(PC)
|
|
// BR target
|
|
//
|
|
// Note that the instruction sequence MUST NOT clobber
|
|
// the condition code.
|
|
m3 ^= 0xe // invert 3-bit mask
|
|
zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
|
|
zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
|
|
} else {
|
|
zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
|
|
}
|
|
|
|
case 90: // compare and branch reg $constant
|
|
var v int32
|
|
if p.Pcond != nil {
|
|
v = int32((p.Pcond.Pc - p.Pc) >> 1)
|
|
}
|
|
|
|
// Some instructions take a mask as the first argument.
|
|
r1, i2 := p.From.Reg, p.RestArgs[0].Offset
|
|
if p.From.Type == obj.TYPE_CONST {
|
|
r1 = p.Reg
|
|
}
|
|
m3 := uint32(c.branchMask(p))
|
|
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ACIJ:
|
|
opcode = op_CIJ
|
|
case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
|
|
opcode = op_CGIJ
|
|
case ACLIJ:
|
|
opcode = op_CLIJ
|
|
case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
|
|
opcode = op_CLGIJ
|
|
}
|
|
if int32(int16(v)) != v {
|
|
// The branch is too far for one instruction so crack
|
|
// `CMPBEQ x, $0, target` into:
|
|
//
|
|
// CMPBNE x, $0, 2(PC)
|
|
// BR target
|
|
//
|
|
// Note that the instruction sequence MUST NOT clobber
|
|
// the condition code.
|
|
m3 ^= 0xe // invert 3-bit mask
|
|
zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
|
|
zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
|
|
} else {
|
|
zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
|
|
}
|
|
|
|
case 91: // test under mask (immediate)
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ATMHH:
|
|
opcode = op_TMHH
|
|
case ATMHL:
|
|
opcode = op_TMHL
|
|
case ATMLH:
|
|
opcode = op_TMLH
|
|
case ATMLL:
|
|
opcode = op_TMLL
|
|
}
|
|
zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
|
|
|
|
case 92: // insert program mask
|
|
zRRE(op_IPM, uint32(p.From.Reg), 0, asm)
|
|
|
|
case 93: // GOT lookup
|
|
v := c.vregoff(&p.To)
|
|
if v != 0 {
|
|
c.ctxt.Diag("invalid offset against GOT slot %v", p)
|
|
}
|
|
zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
|
|
rel := obj.Addrel(c.cursym)
|
|
rel.Off = int32(c.pc + 2)
|
|
rel.Siz = 4
|
|
rel.Sym = p.From.Sym
|
|
rel.Type = objabi.R_GOTPCREL
|
|
rel.Add = 2 + int64(rel.Siz)
|
|
|
|
case 94: // TLS local exec model
|
|
zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
|
|
zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
|
|
zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
|
|
*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
|
|
rel := obj.Addrel(c.cursym)
|
|
rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
|
|
rel.Siz = 8
|
|
rel.Sym = p.From.Sym
|
|
rel.Type = objabi.R_TLS_LE
|
|
rel.Add = 0
|
|
|
|
case 95: // TLS initial exec model
|
|
// Assembly | Relocation symbol | Done Here?
|
|
// --------------------------------------------------------------
|
|
// ear %r11, %a0 | |
|
|
// sllg %r11, %r11, 32 | |
|
|
// ear %r11, %a1 | |
|
|
// larl %r10, <var>@indntpoff | R_390_TLS_IEENT | Y
|
|
// lg %r10, 0(%r10) | R_390_TLS_LOAD (tag) | Y
|
|
// la %r10, 0(%r10, %r11) | |
|
|
// --------------------------------------------------------------
|
|
|
|
// R_390_TLS_IEENT
|
|
zRIL(_b, op_LARL, regtmp(p), 0, asm)
|
|
ieent := obj.Addrel(c.cursym)
|
|
ieent.Off = int32(c.pc + 2)
|
|
ieent.Siz = 4
|
|
ieent.Sym = p.From.Sym
|
|
ieent.Type = objabi.R_TLS_IE
|
|
ieent.Add = 2 + int64(ieent.Siz)
|
|
|
|
// R_390_TLS_LOAD
|
|
zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
|
|
// TODO(mundaym): add R_390_TLS_LOAD relocation here
|
|
// not strictly required but might allow the linker to optimize
|
|
|
|
case 96: // clear macro
|
|
length := c.vregoff(&p.From)
|
|
offset := c.vregoff(&p.To)
|
|
reg := p.To.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
if length <= 0 {
|
|
c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
|
|
}
|
|
for length > 0 {
|
|
if offset < 0 || offset >= DISP12 {
|
|
if offset >= -DISP20/2 && offset < DISP20/2 {
|
|
zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
|
|
} else {
|
|
if reg != int16(regtmp(p)) {
|
|
zRRE(op_LGR, regtmp(p), uint32(reg), asm)
|
|
}
|
|
zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
|
|
}
|
|
reg = int16(regtmp(p))
|
|
offset = 0
|
|
}
|
|
size := length
|
|
if size > 256 {
|
|
size = 256
|
|
}
|
|
|
|
switch size {
|
|
case 1:
|
|
zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
|
|
case 2:
|
|
zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
|
|
case 4:
|
|
zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
|
|
case 8:
|
|
zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
|
|
default:
|
|
zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
|
|
}
|
|
|
|
length -= size
|
|
offset += size
|
|
}
|
|
|
|
case 97: // store multiple
|
|
rstart := p.From.Reg
|
|
rend := p.Reg
|
|
offset := c.regoff(&p.To)
|
|
reg := p.To.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
if offset < -DISP20/2 || offset >= DISP20/2 {
|
|
if reg != int16(regtmp(p)) {
|
|
zRRE(op_LGR, regtmp(p), uint32(reg), asm)
|
|
}
|
|
zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
|
|
reg = int16(regtmp(p))
|
|
offset = 0
|
|
}
|
|
switch p.As {
|
|
case ASTMY:
|
|
if offset >= 0 && offset < DISP12 {
|
|
zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
} else {
|
|
zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
}
|
|
case ASTMG:
|
|
zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
}
|
|
|
|
case 98: // load multiple
|
|
rstart := p.Reg
|
|
rend := p.To.Reg
|
|
offset := c.regoff(&p.From)
|
|
reg := p.From.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
if offset < -DISP20/2 || offset >= DISP20/2 {
|
|
if reg != int16(regtmp(p)) {
|
|
zRRE(op_LGR, regtmp(p), uint32(reg), asm)
|
|
}
|
|
zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
|
|
reg = int16(regtmp(p))
|
|
offset = 0
|
|
}
|
|
switch p.As {
|
|
case ALMY:
|
|
if offset >= 0 && offset < DISP12 {
|
|
zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
} else {
|
|
zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
}
|
|
case ALMG:
|
|
zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
|
|
}
|
|
|
|
case 99: // interlocked load and op
|
|
if p.To.Index != 0 {
|
|
c.ctxt.Diag("cannot use indexed address")
|
|
}
|
|
offset := c.regoff(&p.To)
|
|
if offset < -DISP20/2 || offset >= DISP20/2 {
|
|
c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
|
|
}
|
|
var opcode uint32
|
|
switch p.As {
|
|
case ALAA:
|
|
opcode = op_LAA
|
|
case ALAAG:
|
|
opcode = op_LAAG
|
|
case ALAAL:
|
|
opcode = op_LAAL
|
|
case ALAALG:
|
|
opcode = op_LAALG
|
|
case ALAN:
|
|
opcode = op_LAN
|
|
case ALANG:
|
|
opcode = op_LANG
|
|
case ALAX:
|
|
opcode = op_LAX
|
|
case ALAXG:
|
|
opcode = op_LAXG
|
|
case ALAO:
|
|
opcode = op_LAO
|
|
case ALAOG:
|
|
opcode = op_LAOG
|
|
}
|
|
zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
|
|
|
|
case 100: // VRX STORE
|
|
op, m3, _ := vop(p.As)
|
|
v1 := p.From.Reg
|
|
if p.Reg != 0 {
|
|
m3 = uint32(c.vregoff(&p.From))
|
|
v1 = p.Reg
|
|
}
|
|
b2 := p.To.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
d2 := uint32(c.vregoff(&p.To))
|
|
zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
|
|
|
|
case 101: // VRX LOAD
|
|
op, m3, _ := vop(p.As)
|
|
src := &p.From
|
|
if p.GetFrom3() != nil {
|
|
m3 = uint32(c.vregoff(&p.From))
|
|
src = p.GetFrom3()
|
|
}
|
|
b2 := src.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
d2 := uint32(c.vregoff(src))
|
|
zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
|
|
|
|
case 102: // VRV SCATTER
|
|
op, _, _ := vop(p.As)
|
|
m3 := uint32(c.vregoff(&p.From))
|
|
b2 := p.To.Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
d2 := uint32(c.vregoff(&p.To))
|
|
zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
|
|
|
|
case 103: // VRV GATHER
|
|
op, _, _ := vop(p.As)
|
|
m3 := uint32(c.vregoff(&p.From))
|
|
b2 := p.GetFrom3().Reg
|
|
if b2 == 0 {
|
|
b2 = REGSP
|
|
}
|
|
d2 := uint32(c.vregoff(p.GetFrom3()))
|
|
zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
|
|
|
|
case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
|
|
op, m4, _ := vop(p.As)
|
|
fr := p.Reg
|
|
if fr == 0 {
|
|
fr = p.To.Reg
|
|
}
|
|
bits := uint32(c.vregoff(&p.From))
|
|
zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
|
|
|
|
case 105: // VRS STORE MULTIPLE
|
|
op, _, _ := vop(p.As)
|
|
offset := uint32(c.vregoff(&p.To))
|
|
reg := p.To.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
|
|
|
|
case 106: // VRS LOAD MULTIPLE
|
|
op, _, _ := vop(p.As)
|
|
offset := uint32(c.vregoff(&p.From))
|
|
reg := p.From.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
|
|
|
|
case 107: // VRS STORE WITH LENGTH
|
|
op, _, _ := vop(p.As)
|
|
offset := uint32(c.vregoff(&p.To))
|
|
reg := p.To.Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
|
|
|
|
case 108: // VRS LOAD WITH LENGTH
|
|
op, _, _ := vop(p.As)
|
|
offset := uint32(c.vregoff(p.GetFrom3()))
|
|
reg := p.GetFrom3().Reg
|
|
if reg == 0 {
|
|
reg = REGSP
|
|
}
|
|
zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
|
|
|
|
case 109: // VRI-a
|
|
op, m3, _ := vop(p.As)
|
|
i2 := uint32(c.vregoff(&p.From))
|
|
if p.GetFrom3() != nil {
|
|
m3 = uint32(c.vregoff(&p.From))
|
|
i2 = uint32(c.vregoff(p.GetFrom3()))
|
|
}
|
|
switch p.As {
|
|
case AVZERO:
|
|
i2 = 0
|
|
case AVONE:
|
|
i2 = 0xffff
|
|
}
|
|
zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
|
|
|
|
case 110:
|
|
op, m4, _ := vop(p.As)
|
|
i2 := uint32(c.vregoff(&p.From))
|
|
i3 := uint32(c.vregoff(p.GetFrom3()))
|
|
zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
|
|
|
|
case 111:
|
|
op, m4, _ := vop(p.As)
|
|
i2 := uint32(c.vregoff(&p.From))
|
|
zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
|
|
|
|
case 112:
|
|
op, m5, _ := vop(p.As)
|
|
i4 := uint32(c.vregoff(&p.From))
|
|
zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
|
|
|
|
case 113:
|
|
op, m4, _ := vop(p.As)
|
|
m5 := singleElementMask(p.As)
|
|
i3 := uint32(c.vregoff(&p.From))
|
|
zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
|
|
|
|
case 114: // VRR-a
|
|
op, m3, m5 := vop(p.As)
|
|
m4 := singleElementMask(p.As)
|
|
zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
|
|
|
|
case 115: // VRR-a COMPARE
|
|
op, m3, m5 := vop(p.As)
|
|
m4 := singleElementMask(p.As)
|
|
zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
|
|
|
|
case 117: // VRR-b
|
|
op, m4, m5 := vop(p.As)
|
|
zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
|
|
|
|
case 118: // VRR-c
|
|
op, m4, m6 := vop(p.As)
|
|
m5 := singleElementMask(p.As)
|
|
v3 := p.Reg
|
|
if v3 == 0 {
|
|
v3 = p.To.Reg
|
|
}
|
|
zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
|
|
|
|
case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
|
|
op, m4, m6 := vop(p.As)
|
|
m5 := singleElementMask(p.As)
|
|
v2 := p.Reg
|
|
if v2 == 0 {
|
|
v2 = p.To.Reg
|
|
}
|
|
zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
|
|
|
|
case 120: // VRR-d
|
|
op, m6, _ := vop(p.As)
|
|
m5 := singleElementMask(p.As)
|
|
v1 := uint32(p.To.Reg)
|
|
v2 := uint32(p.From.Reg)
|
|
v3 := uint32(p.Reg)
|
|
v4 := uint32(p.GetFrom3().Reg)
|
|
zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
|
|
|
|
case 121: // VRR-e
|
|
op, m6, _ := vop(p.As)
|
|
m5 := singleElementMask(p.As)
|
|
v1 := uint32(p.To.Reg)
|
|
v2 := uint32(p.From.Reg)
|
|
v3 := uint32(p.Reg)
|
|
v4 := uint32(p.GetFrom3().Reg)
|
|
zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
|
|
|
|
case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
|
|
op, _, _ := vop(p.As)
|
|
zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
|
|
|
|
case 123: // VPDI $m4, V2, V3, V1
|
|
op, _, _ := vop(p.As)
|
|
m4 := c.regoff(&p.From)
|
|
zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
|
|
}
|
|
}
|
|
|
|
func (c *ctxtz) vregoff(a *obj.Addr) int64 {
|
|
c.instoffset = 0
|
|
if a != nil {
|
|
c.aclass(a)
|
|
}
|
|
return c.instoffset
|
|
}
|
|
|
|
func (c *ctxtz) regoff(a *obj.Addr) int32 {
|
|
return int32(c.vregoff(a))
|
|
}
|
|
|
|
// find if the displacement is within 12 bit
|
|
func isU12(displacement int32) bool {
|
|
return displacement >= 0 && displacement < DISP12
|
|
}
|
|
|
|
// zopload12 returns the RX op with 12 bit displacement for the given load
|
|
func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
|
|
switch a {
|
|
case AFMOVD:
|
|
return op_LD, true
|
|
case AFMOVS:
|
|
return op_LE, true
|
|
}
|
|
return 0, false
|
|
}
|
|
|
|
// zopload returns the RXY op for the given load
|
|
func (c *ctxtz) zopload(a obj.As) uint32 {
|
|
switch a {
|
|
// fixed point load
|
|
case AMOVD:
|
|
return op_LG
|
|
case AMOVW:
|
|
return op_LGF
|
|
case AMOVWZ:
|
|
return op_LLGF
|
|
case AMOVH:
|
|
return op_LGH
|
|
case AMOVHZ:
|
|
return op_LLGH
|
|
case AMOVB:
|
|
return op_LGB
|
|
case AMOVBZ:
|
|
return op_LLGC
|
|
|
|
// floating point load
|
|
case AFMOVD:
|
|
return op_LDY
|
|
case AFMOVS:
|
|
return op_LEY
|
|
|
|
// byte reversed load
|
|
case AMOVDBR:
|
|
return op_LRVG
|
|
case AMOVWBR:
|
|
return op_LRV
|
|
case AMOVHBR:
|
|
return op_LRVH
|
|
}
|
|
|
|
c.ctxt.Diag("unknown store opcode %v", a)
|
|
return 0
|
|
}
|
|
|
|
// zopstore12 returns the RX op with 12 bit displacement for the given store
|
|
func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
|
|
switch a {
|
|
case AFMOVD:
|
|
return op_STD, true
|
|
case AFMOVS:
|
|
return op_STE, true
|
|
case AMOVW, AMOVWZ:
|
|
return op_ST, true
|
|
case AMOVH, AMOVHZ:
|
|
return op_STH, true
|
|
case AMOVB, AMOVBZ:
|
|
return op_STC, true
|
|
}
|
|
return 0, false
|
|
}
|
|
|
|
// zopstore returns the RXY op for the given store
|
|
func (c *ctxtz) zopstore(a obj.As) uint32 {
|
|
switch a {
|
|
// fixed point store
|
|
case AMOVD:
|
|
return op_STG
|
|
case AMOVW, AMOVWZ:
|
|
return op_STY
|
|
case AMOVH, AMOVHZ:
|
|
return op_STHY
|
|
case AMOVB, AMOVBZ:
|
|
return op_STCY
|
|
|
|
// floating point store
|
|
case AFMOVD:
|
|
return op_STDY
|
|
case AFMOVS:
|
|
return op_STEY
|
|
|
|
// byte reversed store
|
|
case AMOVDBR:
|
|
return op_STRVG
|
|
case AMOVWBR:
|
|
return op_STRV
|
|
case AMOVHBR:
|
|
return op_STRVH
|
|
}
|
|
|
|
c.ctxt.Diag("unknown store opcode %v", a)
|
|
return 0
|
|
}
|
|
|
|
// zoprre returns the RRE op for the given a
|
|
func (c *ctxtz) zoprre(a obj.As) uint32 {
|
|
switch a {
|
|
case ACMP:
|
|
return op_CGR
|
|
case ACMPU:
|
|
return op_CLGR
|
|
case AFCMPO: //ordered
|
|
return op_KDBR
|
|
case AFCMPU: //unordered
|
|
return op_CDBR
|
|
case ACEBR:
|
|
return op_CEBR
|
|
}
|
|
c.ctxt.Diag("unknown rre opcode %v", a)
|
|
return 0
|
|
}
|
|
|
|
// zoprr returns the RR op for the given a
|
|
func (c *ctxtz) zoprr(a obj.As) uint32 {
|
|
switch a {
|
|
case ACMPW:
|
|
return op_CR
|
|
case ACMPWU:
|
|
return op_CLR
|
|
}
|
|
c.ctxt.Diag("unknown rr opcode %v", a)
|
|
return 0
|
|
}
|
|
|
|
// zopril returns the RIL op for the given a
|
|
func (c *ctxtz) zopril(a obj.As) uint32 {
|
|
switch a {
|
|
case ACMP:
|
|
return op_CGFI
|
|
case ACMPU:
|
|
return op_CLGFI
|
|
case ACMPW:
|
|
return op_CFI
|
|
case ACMPWU:
|
|
return op_CLFI
|
|
}
|
|
c.ctxt.Diag("unknown ril opcode %v", a)
|
|
return 0
|
|
}
|
|
|
|
// z instructions sizes
|
|
const (
|
|
sizeE = 2
|
|
sizeI = 2
|
|
sizeIE = 4
|
|
sizeMII = 6
|
|
sizeRI = 4
|
|
sizeRI1 = 4
|
|
sizeRI2 = 4
|
|
sizeRI3 = 4
|
|
sizeRIE = 6
|
|
sizeRIE1 = 6
|
|
sizeRIE2 = 6
|
|
sizeRIE3 = 6
|
|
sizeRIE4 = 6
|
|
sizeRIE5 = 6
|
|
sizeRIE6 = 6
|
|
sizeRIL = 6
|
|
sizeRIL1 = 6
|
|
sizeRIL2 = 6
|
|
sizeRIL3 = 6
|
|
sizeRIS = 6
|
|
sizeRR = 2
|
|
sizeRRD = 4
|
|
sizeRRE = 4
|
|
sizeRRF = 4
|
|
sizeRRF1 = 4
|
|
sizeRRF2 = 4
|
|
sizeRRF3 = 4
|
|
sizeRRF4 = 4
|
|
sizeRRF5 = 4
|
|
sizeRRR = 2
|
|
sizeRRS = 6
|
|
sizeRS = 4
|
|
sizeRS1 = 4
|
|
sizeRS2 = 4
|
|
sizeRSI = 4
|
|
sizeRSL = 6
|
|
sizeRSY = 6
|
|
sizeRSY1 = 6
|
|
sizeRSY2 = 6
|
|
sizeRX = 4
|
|
sizeRX1 = 4
|
|
sizeRX2 = 4
|
|
sizeRXE = 6
|
|
sizeRXF = 6
|
|
sizeRXY = 6
|
|
sizeRXY1 = 6
|
|
sizeRXY2 = 6
|
|
sizeS = 4
|
|
sizeSI = 4
|
|
sizeSIL = 6
|
|
sizeSIY = 6
|
|
sizeSMI = 6
|
|
sizeSS = 6
|
|
sizeSS1 = 6
|
|
sizeSS2 = 6
|
|
sizeSS3 = 6
|
|
sizeSS4 = 6
|
|
sizeSS5 = 6
|
|
sizeSS6 = 6
|
|
sizeSSE = 6
|
|
sizeSSF = 6
|
|
)
|
|
|
|
// instruction format variations
|
|
type form int
|
|
|
|
const (
|
|
_a form = iota
|
|
_b
|
|
_c
|
|
_d
|
|
_e
|
|
_f
|
|
)
|
|
|
|
func zE(op uint32, asm *[]byte) {
|
|
*asm = append(*asm, uint8(op>>8), uint8(op))
|
|
}
|
|
|
|
func zI(op, i1 uint32, asm *[]byte) {
|
|
*asm = append(*asm, uint8(op>>8), uint8(i1))
|
|
}
|
|
|
|
func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
|
|
uint8(ri2),
|
|
uint8(ri3>>16),
|
|
uint8(ri3>>8),
|
|
uint8(ri3))
|
|
}
|
|
|
|
func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
|
|
uint8(i2_ri2>>8),
|
|
uint8(i2_ri2))
|
|
}
|
|
|
|
// Expected argument values for the instruction formats.
|
|
//
|
|
// Format a1 a2 a3 a4 a5 a6 a7
|
|
// ------------------------------------
|
|
// a r1, 0, i2, 0, 0, m3, 0
|
|
// b r1, r2, ri4, 0, 0, m3, 0
|
|
// c r1, m3, ri4, 0, 0, 0, i2
|
|
// d r1, r3, i2, 0, 0, 0, 0
|
|
// e r1, r3, ri2, 0, 0, 0, 0
|
|
// f r1, r2, 0, i3, i4, 0, i5
|
|
// g r1, m3, i2, 0, 0, 0, 0
|
|
func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
|
|
*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
|
|
|
|
switch f {
|
|
default:
|
|
*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
|
|
case _f:
|
|
*asm = append(*asm, uint8(i3), uint8(i4))
|
|
}
|
|
|
|
switch f {
|
|
case _a, _b:
|
|
*asm = append(*asm, uint8(m3)<<4)
|
|
default:
|
|
*asm = append(*asm, uint8(i2_i5))
|
|
}
|
|
|
|
*asm = append(*asm, uint8(op))
|
|
}
|
|
|
|
func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
|
|
if f == _a || f == _b {
|
|
r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
|
|
}
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
|
|
uint8(i2_ri2>>24),
|
|
uint8(i2_ri2>>16),
|
|
uint8(i2_ri2>>8),
|
|
uint8(i2_ri2))
|
|
}
|
|
|
|
func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(m3&0x0F),
|
|
(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
|
|
uint8(d4),
|
|
uint8(i2),
|
|
uint8(op))
|
|
}
|
|
|
|
func zRR(op, r1, r2 uint32, asm *[]byte) {
|
|
*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
|
|
}
|
|
|
|
func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
uint8(r1)<<4,
|
|
(uint8(r3)<<4)|uint8(r2&0x0F))
|
|
}
|
|
|
|
func zRRE(op, r1, r2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
0,
|
|
(uint8(r1)<<4)|uint8(r2&0x0F))
|
|
}
|
|
|
|
func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
(uint8(r3_m3)<<4)|uint8(m4&0x0F),
|
|
(uint8(r1)<<4)|uint8(r2&0x0F))
|
|
}
|
|
|
|
func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(r2&0x0F),
|
|
(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
|
|
uint8(d4),
|
|
uint8(m3)<<4,
|
|
uint8(op))
|
|
}
|
|
|
|
func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(r3_m3&0x0F),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2))
|
|
}
|
|
|
|
func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(r3&0x0F),
|
|
uint8(ri2>>8),
|
|
uint8(ri2))
|
|
}
|
|
|
|
func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(l1),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2),
|
|
uint8(op))
|
|
}
|
|
|
|
func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
|
|
dl2 := uint16(d2) & 0x0FFF
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(r3_m3&0x0F),
|
|
(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
|
|
uint8(dl2),
|
|
uint8(d2>>12),
|
|
uint8(op))
|
|
}
|
|
|
|
func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1_m1)<<4)|uint8(x2&0x0F),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2))
|
|
}
|
|
|
|
func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1)<<4)|uint8(x2&0x0F),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2),
|
|
uint8(m3)<<4,
|
|
uint8(op))
|
|
}
|
|
|
|
func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r3)<<4)|uint8(x2&0x0F),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2),
|
|
uint8(m1)<<4,
|
|
uint8(op))
|
|
}
|
|
|
|
func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
|
|
dl2 := uint16(d2) & 0x0FFF
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r1_m1)<<4)|uint8(x2&0x0F),
|
|
(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
|
|
uint8(dl2),
|
|
uint8(d2>>12),
|
|
uint8(op))
|
|
}
|
|
|
|
func zS(op, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2))
|
|
}
|
|
|
|
func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(i2),
|
|
(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
|
|
uint8(d1))
|
|
}
|
|
|
|
func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
|
|
uint8(d1),
|
|
uint8(i2>>8),
|
|
uint8(i2))
|
|
}
|
|
|
|
func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
|
|
dl1 := uint16(d1) & 0x0FFF
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(i2),
|
|
(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
|
|
uint8(dl1),
|
|
uint8(d1>>12),
|
|
uint8(op))
|
|
}
|
|
|
|
func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(m1)<<4,
|
|
(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
|
|
uint8(d3),
|
|
uint8(ri2>>8),
|
|
uint8(ri2))
|
|
}
|
|
|
|
// Expected argument values for the instruction formats.
|
|
//
|
|
// Format a1 a2 a3 a4 a5 a6
|
|
// -------------------------------
|
|
// a l1, 0, b1, d1, b2, d2
|
|
// b l1, l2, b1, d1, b2, d2
|
|
// c l1, i3, b1, d1, b2, d2
|
|
// d r1, r3, b1, d1, b2, d2
|
|
// e r1, r3, b2, d2, b4, d4
|
|
// f 0, l2, b1, d1, b2, d2
|
|
func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
|
|
*asm = append(*asm, uint8(op>>8))
|
|
|
|
switch f {
|
|
case _a:
|
|
*asm = append(*asm, uint8(l1_r1))
|
|
case _b, _c, _d, _e:
|
|
*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
|
|
case _f:
|
|
*asm = append(*asm, uint8(l2_i3_r3))
|
|
}
|
|
|
|
*asm = append(*asm,
|
|
(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
|
|
uint8(d1_d2),
|
|
(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
|
|
uint8(d2_d4))
|
|
}
|
|
|
|
func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(op),
|
|
(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
|
|
uint8(d1),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2))
|
|
}
|
|
|
|
func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(r3)<<4)|(uint8(op)&0x0F),
|
|
(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
|
|
uint8(d1),
|
|
(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
|
|
uint8(d2))
|
|
}
|
|
|
|
func rxb(va, vb, vc, vd uint32) uint8 {
|
|
mask := uint8(0)
|
|
if va >= REG_V16 && va <= REG_V31 {
|
|
mask |= 0x8
|
|
}
|
|
if vb >= REG_V16 && vb <= REG_V31 {
|
|
mask |= 0x4
|
|
}
|
|
if vc >= REG_V16 && vc <= REG_V31 {
|
|
mask |= 0x2
|
|
}
|
|
if vd >= REG_V16 && vd <= REG_V31 {
|
|
mask |= 0x1
|
|
}
|
|
return mask
|
|
}
|
|
|
|
func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(x2)&0xf),
|
|
(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
|
|
uint8(d2),
|
|
(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
|
|
uint8(d2),
|
|
(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
|
|
(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
|
|
uint8(d2),
|
|
(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
0,
|
|
(uint8(m5)<<4)|(uint8(m4)&0xf),
|
|
(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
uint8(v3)<<4,
|
|
uint8(m5)<<4,
|
|
(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
uint8(v3)<<4,
|
|
(uint8(m6)<<4)|(uint8(m5)&0xf),
|
|
(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
(uint8(v3)<<4)|(uint8(m5)&0xf),
|
|
uint8(m6)<<4,
|
|
(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
(uint8(v3)<<4)|(uint8(m6)&0xf),
|
|
uint8(m5),
|
|
(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(r2)&0xf),
|
|
uint8(r3)<<4,
|
|
0,
|
|
rxb(v1, 0, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(v1)<<4,
|
|
uint8(i2>>8),
|
|
uint8(i2),
|
|
(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
uint8(v1)<<4,
|
|
uint8(i2),
|
|
uint8(i3),
|
|
(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v3)&0xf),
|
|
uint8(i2>>8),
|
|
uint8(i2),
|
|
(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
uint8(v3)<<4,
|
|
uint8(i4),
|
|
(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
|
|
uint8(op))
|
|
}
|
|
|
|
func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
|
|
*asm = append(*asm,
|
|
uint8(op>>8),
|
|
(uint8(v1)<<4)|(uint8(v2)&0xf),
|
|
uint8(i3>>4),
|
|
(uint8(i3)<<4)|(uint8(m5)&0xf),
|
|
(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
|
|
uint8(op))
|
|
}
|