mirror of
https://github.com/golang/go.git
synced 2025-05-23 00:11:26 +00:00
On some architectures, for async preemption the injected call needs to clobber a register (usually REGTMP) in order to return to the preempted function. As a consequence, the PC ranges where REGTMP is live are not preemptible. The uses of REGTMP are usually generated by the assembler, where it needs to load or materialize a large constant or offset that doesn't fit into the instruction. In those cases, REGTMP is not live at the start of the instruction sequence. Instead of giving up preemption in those cases, we could preempt it and restart the sequence when resuming the execution. Basically, this is like reissuing an interrupted instruction, except that here the "instruction" is a Prog that consists of multiple machine instructions. For this to work, we need to generate PC data to mark the start of the Prog. Currently this is only done for ARM64. TODO: the split-stack function prologue is currently not async preemptible. We could use this mechanism, preempt it and restart at the function entry. Change-Id: I37cb282f8e606e7ab6f67b3edfdc6063097b4bd1 Reviewed-on: https://go-review.googlesource.com/c/go/+/208126 Run-TryBot: Cherry Zhang <cherryyz@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com>
1208 lines
37 KiB
Go
1208 lines
37 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"unsafe"
|
|
)
|
|
|
|
// sigTabT is the type of an entry in the global sigtable array.
|
|
// sigtable is inherently system dependent, and appears in OS-specific files,
|
|
// but sigTabT is the same for all Unixy systems.
|
|
// The sigtable array is indexed by a system signal number to get the flags
|
|
// and printable name of each signal.
|
|
type sigTabT struct {
|
|
flags int32
|
|
name string
|
|
}
|
|
|
|
//go:linkname os_sigpipe os.sigpipe
|
|
func os_sigpipe() {
|
|
systemstack(sigpipe)
|
|
}
|
|
|
|
func signame(sig uint32) string {
|
|
if sig >= uint32(len(sigtable)) {
|
|
return ""
|
|
}
|
|
return sigtable[sig].name
|
|
}
|
|
|
|
const (
|
|
_SIG_DFL uintptr = 0
|
|
_SIG_IGN uintptr = 1
|
|
)
|
|
|
|
// sigPreempt is the signal used for non-cooperative preemption.
|
|
//
|
|
// There's no good way to choose this signal, but there are some
|
|
// heuristics:
|
|
//
|
|
// 1. It should be a signal that's passed-through by debuggers by
|
|
// default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO,
|
|
// SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals.
|
|
//
|
|
// 2. It shouldn't be used internally by libc in mixed Go/C binaries
|
|
// because libc may assume it's the only thing that can handle these
|
|
// signals. For example SIGCANCEL or SIGSETXID.
|
|
//
|
|
// 3. It should be a signal that can happen spuriously without
|
|
// consequences. For example, SIGALRM is a bad choice because the
|
|
// signal handler can't tell if it was caused by the real process
|
|
// alarm or not (arguably this means the signal is broken, but I
|
|
// digress). SIGUSR1 and SIGUSR2 are also bad because those are often
|
|
// used in meaningful ways by applications.
|
|
//
|
|
// 4. We need to deal with platforms without real-time signals (like
|
|
// macOS), so those are out.
|
|
//
|
|
// We use SIGURG because it meets all of these criteria, is extremely
|
|
// unlikely to be used by an application for its "real" meaning (both
|
|
// because out-of-band data is basically unused and because SIGURG
|
|
// doesn't report which socket has the condition, making it pretty
|
|
// useless), and even if it is, the application has to be ready for
|
|
// spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more
|
|
// likely to be used for real.
|
|
const sigPreempt = _SIGURG
|
|
|
|
// Stores the signal handlers registered before Go installed its own.
|
|
// These signal handlers will be invoked in cases where Go doesn't want to
|
|
// handle a particular signal (e.g., signal occurred on a non-Go thread).
|
|
// See sigfwdgo for more information on when the signals are forwarded.
|
|
//
|
|
// This is read by the signal handler; accesses should use
|
|
// atomic.Loaduintptr and atomic.Storeuintptr.
|
|
var fwdSig [_NSIG]uintptr
|
|
|
|
// handlingSig is indexed by signal number and is non-zero if we are
|
|
// currently handling the signal. Or, to put it another way, whether
|
|
// the signal handler is currently set to the Go signal handler or not.
|
|
// This is uint32 rather than bool so that we can use atomic instructions.
|
|
var handlingSig [_NSIG]uint32
|
|
|
|
// channels for synchronizing signal mask updates with the signal mask
|
|
// thread
|
|
var (
|
|
disableSigChan chan uint32
|
|
enableSigChan chan uint32
|
|
maskUpdatedChan chan struct{}
|
|
)
|
|
|
|
func init() {
|
|
// _NSIG is the number of signals on this operating system.
|
|
// sigtable should describe what to do for all the possible signals.
|
|
if len(sigtable) != _NSIG {
|
|
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
|
|
throw("bad sigtable len")
|
|
}
|
|
}
|
|
|
|
var signalsOK bool
|
|
|
|
// Initialize signals.
|
|
// Called by libpreinit so runtime may not be initialized.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func initsig(preinit bool) {
|
|
if !preinit {
|
|
// It's now OK for signal handlers to run.
|
|
signalsOK = true
|
|
}
|
|
|
|
// For c-archive/c-shared this is called by libpreinit with
|
|
// preinit == true.
|
|
if (isarchive || islibrary) && !preinit {
|
|
return
|
|
}
|
|
|
|
for i := uint32(0); i < _NSIG; i++ {
|
|
t := &sigtable[i]
|
|
if t.flags == 0 || t.flags&_SigDefault != 0 {
|
|
continue
|
|
}
|
|
|
|
// We don't need to use atomic operations here because
|
|
// there shouldn't be any other goroutines running yet.
|
|
fwdSig[i] = getsig(i)
|
|
|
|
if !sigInstallGoHandler(i) {
|
|
// Even if we are not installing a signal handler,
|
|
// set SA_ONSTACK if necessary.
|
|
if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
|
|
setsigstack(i)
|
|
} else if fwdSig[i] == _SIG_IGN {
|
|
sigInitIgnored(i)
|
|
}
|
|
continue
|
|
}
|
|
|
|
handlingSig[i] = 1
|
|
setsig(i, funcPC(sighandler))
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigInstallGoHandler(sig uint32) bool {
|
|
// For some signals, we respect an inherited SIG_IGN handler
|
|
// rather than insist on installing our own default handler.
|
|
// Even these signals can be fetched using the os/signal package.
|
|
switch sig {
|
|
case _SIGHUP, _SIGINT:
|
|
if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN {
|
|
return false
|
|
}
|
|
}
|
|
|
|
t := &sigtable[sig]
|
|
if t.flags&_SigSetStack != 0 {
|
|
return false
|
|
}
|
|
|
|
// When built using c-archive or c-shared, only install signal
|
|
// handlers for synchronous signals and SIGPIPE.
|
|
if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// sigenable enables the Go signal handler to catch the signal sig.
|
|
// It is only called while holding the os/signal.handlers lock,
|
|
// via os/signal.enableSignal and signal_enable.
|
|
func sigenable(sig uint32) {
|
|
if sig >= uint32(len(sigtable)) {
|
|
return
|
|
}
|
|
|
|
// SIGPROF is handled specially for profiling.
|
|
if sig == _SIGPROF {
|
|
return
|
|
}
|
|
|
|
t := &sigtable[sig]
|
|
if t.flags&_SigNotify != 0 {
|
|
ensureSigM()
|
|
enableSigChan <- sig
|
|
<-maskUpdatedChan
|
|
if atomic.Cas(&handlingSig[sig], 0, 1) {
|
|
atomic.Storeuintptr(&fwdSig[sig], getsig(sig))
|
|
setsig(sig, funcPC(sighandler))
|
|
}
|
|
}
|
|
}
|
|
|
|
// sigdisable disables the Go signal handler for the signal sig.
|
|
// It is only called while holding the os/signal.handlers lock,
|
|
// via os/signal.disableSignal and signal_disable.
|
|
func sigdisable(sig uint32) {
|
|
if sig >= uint32(len(sigtable)) {
|
|
return
|
|
}
|
|
|
|
// SIGPROF is handled specially for profiling.
|
|
if sig == _SIGPROF {
|
|
return
|
|
}
|
|
|
|
t := &sigtable[sig]
|
|
if t.flags&_SigNotify != 0 {
|
|
ensureSigM()
|
|
disableSigChan <- sig
|
|
<-maskUpdatedChan
|
|
|
|
// If initsig does not install a signal handler for a
|
|
// signal, then to go back to the state before Notify
|
|
// we should remove the one we installed.
|
|
if !sigInstallGoHandler(sig) {
|
|
atomic.Store(&handlingSig[sig], 0)
|
|
setsig(sig, atomic.Loaduintptr(&fwdSig[sig]))
|
|
}
|
|
}
|
|
}
|
|
|
|
// sigignore ignores the signal sig.
|
|
// It is only called while holding the os/signal.handlers lock,
|
|
// via os/signal.ignoreSignal and signal_ignore.
|
|
func sigignore(sig uint32) {
|
|
if sig >= uint32(len(sigtable)) {
|
|
return
|
|
}
|
|
|
|
// SIGPROF is handled specially for profiling.
|
|
if sig == _SIGPROF {
|
|
return
|
|
}
|
|
|
|
t := &sigtable[sig]
|
|
if t.flags&_SigNotify != 0 {
|
|
atomic.Store(&handlingSig[sig], 0)
|
|
setsig(sig, _SIG_IGN)
|
|
}
|
|
}
|
|
|
|
// clearSignalHandlers clears all signal handlers that are not ignored
|
|
// back to the default. This is called by the child after a fork, so that
|
|
// we can enable the signal mask for the exec without worrying about
|
|
// running a signal handler in the child.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func clearSignalHandlers() {
|
|
for i := uint32(0); i < _NSIG; i++ {
|
|
if atomic.Load(&handlingSig[i]) != 0 {
|
|
setsig(i, _SIG_DFL)
|
|
}
|
|
}
|
|
}
|
|
|
|
// setProcessCPUProfiler is called when the profiling timer changes.
|
|
// It is called with prof.lock held. hz is the new timer, and is 0 if
|
|
// profiling is being disabled. Enable or disable the signal as
|
|
// required for -buildmode=c-archive.
|
|
func setProcessCPUProfiler(hz int32) {
|
|
if hz != 0 {
|
|
// Enable the Go signal handler if not enabled.
|
|
if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) {
|
|
atomic.Storeuintptr(&fwdSig[_SIGPROF], getsig(_SIGPROF))
|
|
setsig(_SIGPROF, funcPC(sighandler))
|
|
}
|
|
} else {
|
|
// If the Go signal handler should be disabled by default,
|
|
// switch back to the signal handler that was installed
|
|
// when we enabled profiling. We don't try to handle the case
|
|
// of a program that changes the SIGPROF handler while Go
|
|
// profiling is enabled.
|
|
//
|
|
// If no signal handler was installed before, then start
|
|
// ignoring SIGPROF signals. We do this, rather than change
|
|
// to SIG_DFL, because there may be a pending SIGPROF
|
|
// signal that has not yet been delivered to some other thread.
|
|
// If we change to SIG_DFL here, the program will crash
|
|
// when that SIGPROF is delivered. We assume that programs
|
|
// that use profiling don't want to crash on a stray SIGPROF.
|
|
// See issue 19320.
|
|
if !sigInstallGoHandler(_SIGPROF) {
|
|
if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) {
|
|
h := atomic.Loaduintptr(&fwdSig[_SIGPROF])
|
|
if h == _SIG_DFL {
|
|
h = _SIG_IGN
|
|
}
|
|
setsig(_SIGPROF, h)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// setThreadCPUProfiler makes any thread-specific changes required to
|
|
// implement profiling at a rate of hz.
|
|
func setThreadCPUProfiler(hz int32) {
|
|
var it itimerval
|
|
if hz == 0 {
|
|
setitimer(_ITIMER_PROF, &it, nil)
|
|
} else {
|
|
it.it_interval.tv_sec = 0
|
|
it.it_interval.set_usec(1000000 / hz)
|
|
it.it_value = it.it_interval
|
|
setitimer(_ITIMER_PROF, &it, nil)
|
|
}
|
|
_g_ := getg()
|
|
_g_.m.profilehz = hz
|
|
}
|
|
|
|
func sigpipe() {
|
|
if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) {
|
|
return
|
|
}
|
|
dieFromSignal(_SIGPIPE)
|
|
}
|
|
|
|
// doSigPreempt handles a preemption signal on gp.
|
|
func doSigPreempt(gp *g, ctxt *sigctxt) {
|
|
// Check if this G wants to be preempted and is safe to
|
|
// preempt.
|
|
if wantAsyncPreempt(gp) {
|
|
if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok {
|
|
// Adjust the PC and inject a call to asyncPreempt.
|
|
ctxt.pushCall(funcPC(asyncPreempt), newpc)
|
|
}
|
|
}
|
|
|
|
// Acknowledge the preemption.
|
|
atomic.Xadd(&gp.m.preemptGen, 1)
|
|
atomic.Store(&gp.m.signalPending, 0)
|
|
}
|
|
|
|
const preemptMSupported = true
|
|
|
|
// preemptM sends a preemption request to mp. This request may be
|
|
// handled asynchronously and may be coalesced with other requests to
|
|
// the M. When the request is received, if the running G or P are
|
|
// marked for preemption and the goroutine is at an asynchronous
|
|
// safe-point, it will preempt the goroutine. It always atomically
|
|
// increments mp.preemptGen after handling a preemption request.
|
|
func preemptM(mp *m) {
|
|
if GOOS == "darwin" && GOARCH == "arm64" && !iscgo {
|
|
// On darwin, we use libc calls, and cgo is required on ARM64
|
|
// so we have TLS set up to save/restore G during C calls. If cgo is
|
|
// absent, we cannot save/restore G in TLS, and if a signal is
|
|
// received during C execution we cannot get the G. Therefore don't
|
|
// send signals.
|
|
// This can only happen in the go_bootstrap program (otherwise cgo is
|
|
// required).
|
|
return
|
|
}
|
|
if atomic.Cas(&mp.signalPending, 0, 1) {
|
|
// If multiple threads are preempting the same M, it may send many
|
|
// signals to the same M such that it hardly make progress, causing
|
|
// live-lock problem. Apparently this could happen on darwin. See
|
|
// issue #37741.
|
|
// Only send a signal if there isn't already one pending.
|
|
signalM(mp, sigPreempt)
|
|
}
|
|
}
|
|
|
|
// sigFetchG fetches the value of G safely when running in a signal handler.
|
|
// On some architectures, the g value may be clobbered when running in a VDSO.
|
|
// See issue #32912.
|
|
//
|
|
//go:nosplit
|
|
func sigFetchG(c *sigctxt) *g {
|
|
switch GOARCH {
|
|
case "arm", "arm64":
|
|
if !iscgo && inVDSOPage(c.sigpc()) {
|
|
// When using cgo, we save the g on TLS and load it from there
|
|
// in sigtramp. Just use that.
|
|
// Otherwise, before making a VDSO call we save the g to the
|
|
// bottom of the signal stack. Fetch from there.
|
|
// TODO: in efence mode, stack is sysAlloc'd, so this wouldn't
|
|
// work.
|
|
sp := getcallersp()
|
|
s := spanOf(sp)
|
|
if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit {
|
|
gp := *(**g)(unsafe.Pointer(s.base()))
|
|
return gp
|
|
}
|
|
return nil
|
|
}
|
|
}
|
|
return getg()
|
|
}
|
|
|
|
// sigtrampgo is called from the signal handler function, sigtramp,
|
|
// written in assembly code.
|
|
// This is called by the signal handler, and the world may be stopped.
|
|
//
|
|
// It must be nosplit because getg() is still the G that was running
|
|
// (if any) when the signal was delivered, but it's (usually) called
|
|
// on the gsignal stack. Until this switches the G to gsignal, the
|
|
// stack bounds check won't work.
|
|
//
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) {
|
|
if sigfwdgo(sig, info, ctx) {
|
|
return
|
|
}
|
|
c := &sigctxt{info, ctx}
|
|
g := sigFetchG(c)
|
|
setg(g)
|
|
if g == nil {
|
|
if sig == _SIGPROF {
|
|
sigprofNonGoPC(c.sigpc())
|
|
return
|
|
}
|
|
if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 {
|
|
// This is probably a signal from preemptM sent
|
|
// while executing Go code but received while
|
|
// executing non-Go code.
|
|
// We got past sigfwdgo, so we know that there is
|
|
// no non-Go signal handler for sigPreempt.
|
|
// The default behavior for sigPreempt is to ignore
|
|
// the signal, so badsignal will be a no-op anyway.
|
|
return
|
|
}
|
|
c.fixsigcode(sig)
|
|
badsignal(uintptr(sig), c)
|
|
return
|
|
}
|
|
|
|
// If some non-Go code called sigaltstack, adjust.
|
|
var gsignalStack gsignalStack
|
|
setStack := adjustSignalStack(sig, g.m, &gsignalStack)
|
|
if setStack {
|
|
g.m.gsignal.stktopsp = getcallersp()
|
|
}
|
|
|
|
setg(g.m.gsignal)
|
|
|
|
if g.stackguard0 == stackFork {
|
|
signalDuringFork(sig)
|
|
}
|
|
|
|
c.fixsigcode(sig)
|
|
sighandler(sig, info, ctx, g)
|
|
setg(g)
|
|
if setStack {
|
|
restoreGsignalStack(&gsignalStack)
|
|
}
|
|
}
|
|
|
|
// adjustSignalStack adjusts the current stack guard based on the
|
|
// stack pointer that is actually in use while handling a signal.
|
|
// We do this in case some non-Go code called sigaltstack.
|
|
// This reports whether the stack was adjusted, and if so stores the old
|
|
// signal stack in *gsigstack.
|
|
//go:nosplit
|
|
func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool {
|
|
sp := uintptr(unsafe.Pointer(&sig))
|
|
if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi {
|
|
return false
|
|
}
|
|
|
|
if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi {
|
|
// The signal was delivered on the g0 stack.
|
|
// This can happen when linked with C code
|
|
// using the thread sanitizer, which collects
|
|
// signals then delivers them itself by calling
|
|
// the signal handler directly when C code,
|
|
// including C code called via cgo, calls a
|
|
// TSAN-intercepted function such as malloc.
|
|
st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo}
|
|
setSignalstackSP(&st, mp.g0.stack.lo)
|
|
setGsignalStack(&st, gsigStack)
|
|
return true
|
|
}
|
|
|
|
var st stackt
|
|
sigaltstack(nil, &st)
|
|
if st.ss_flags&_SS_DISABLE != 0 {
|
|
setg(nil)
|
|
needm(0)
|
|
noSignalStack(sig)
|
|
dropm()
|
|
}
|
|
stsp := uintptr(unsafe.Pointer(st.ss_sp))
|
|
if sp < stsp || sp >= stsp+st.ss_size {
|
|
setg(nil)
|
|
needm(0)
|
|
sigNotOnStack(sig)
|
|
dropm()
|
|
}
|
|
setGsignalStack(&st, gsigStack)
|
|
return true
|
|
}
|
|
|
|
// crashing is the number of m's we have waited for when implementing
|
|
// GOTRACEBACK=crash when a signal is received.
|
|
var crashing int32
|
|
|
|
// testSigtrap and testSigusr1 are used by the runtime tests. If
|
|
// non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the
|
|
// normal behavior on this signal is suppressed.
|
|
var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool
|
|
var testSigusr1 func(gp *g) bool
|
|
|
|
// sighandler is invoked when a signal occurs. The global g will be
|
|
// set to a gsignal goroutine and we will be running on the alternate
|
|
// signal stack. The parameter g will be the value of the global g
|
|
// when the signal occurred. The sig, info, and ctxt parameters are
|
|
// from the system signal handler: they are the parameters passed when
|
|
// the SA is passed to the sigaction system call.
|
|
//
|
|
// The garbage collector may have stopped the world, so write barriers
|
|
// are not allowed.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
|
|
_g_ := getg()
|
|
c := &sigctxt{info, ctxt}
|
|
|
|
if sig == _SIGPROF {
|
|
sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, _g_.m)
|
|
return
|
|
}
|
|
|
|
if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) {
|
|
return
|
|
}
|
|
|
|
if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) {
|
|
return
|
|
}
|
|
|
|
if sig == sigPreempt {
|
|
// Might be a preemption signal.
|
|
doSigPreempt(gp, c)
|
|
// Even if this was definitely a preemption signal, it
|
|
// may have been coalesced with another signal, so we
|
|
// still let it through to the application.
|
|
}
|
|
|
|
flags := int32(_SigThrow)
|
|
if sig < uint32(len(sigtable)) {
|
|
flags = sigtable[sig].flags
|
|
}
|
|
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 && gp.throwsplit {
|
|
// We can't safely sigpanic because it may grow the
|
|
// stack. Abort in the signal handler instead.
|
|
flags = _SigThrow
|
|
}
|
|
if isAbortPC(c.sigpc()) {
|
|
// On many architectures, the abort function just
|
|
// causes a memory fault. Don't turn that into a panic.
|
|
flags = _SigThrow
|
|
}
|
|
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
|
|
// The signal is going to cause a panic.
|
|
// Arrange the stack so that it looks like the point
|
|
// where the signal occurred made a call to the
|
|
// function sigpanic. Then set the PC to sigpanic.
|
|
|
|
// Have to pass arguments out of band since
|
|
// augmenting the stack frame would break
|
|
// the unwinding code.
|
|
gp.sig = sig
|
|
gp.sigcode0 = uintptr(c.sigcode())
|
|
gp.sigcode1 = uintptr(c.fault())
|
|
gp.sigpc = c.sigpc()
|
|
|
|
c.preparePanic(sig, gp)
|
|
return
|
|
}
|
|
|
|
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
|
|
if sigsend(sig) {
|
|
return
|
|
}
|
|
}
|
|
|
|
if c.sigcode() == _SI_USER && signal_ignored(sig) {
|
|
return
|
|
}
|
|
|
|
if flags&_SigKill != 0 {
|
|
dieFromSignal(sig)
|
|
}
|
|
|
|
// _SigThrow means that we should exit now.
|
|
// If we get here with _SigPanic, it means that the signal
|
|
// was sent to us by a program (c.sigcode() == _SI_USER);
|
|
// in that case, if we didn't handle it in sigsend, we exit now.
|
|
if flags&(_SigThrow|_SigPanic) == 0 {
|
|
return
|
|
}
|
|
|
|
_g_.m.throwing = 1
|
|
_g_.m.caughtsig.set(gp)
|
|
|
|
if crashing == 0 {
|
|
startpanic_m()
|
|
}
|
|
|
|
if sig < uint32(len(sigtable)) {
|
|
print(sigtable[sig].name, "\n")
|
|
} else {
|
|
print("Signal ", sig, "\n")
|
|
}
|
|
|
|
print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n")
|
|
if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
|
|
print("signal arrived during cgo execution\n")
|
|
gp = _g_.m.lockedg.ptr()
|
|
}
|
|
if sig == _SIGILL {
|
|
// It would be nice to know how long the instruction is.
|
|
// Unfortunately, that's complicated to do in general (mostly for x86
|
|
// and s930x, but other archs have non-standard instruction lengths also).
|
|
// Opt to print 16 bytes, which covers most instructions.
|
|
const maxN = 16
|
|
n := uintptr(maxN)
|
|
// We have to be careful, though. If we're near the end of
|
|
// a page and the following page isn't mapped, we could
|
|
// segfault. So make sure we don't straddle a page (even though
|
|
// that could lead to printing an incomplete instruction).
|
|
// We're assuming here we can read at least the page containing the PC.
|
|
// I suppose it is possible that the page is mapped executable but not readable?
|
|
pc := c.sigpc()
|
|
if n > physPageSize-pc%physPageSize {
|
|
n = physPageSize - pc%physPageSize
|
|
}
|
|
print("instruction bytes:")
|
|
b := (*[maxN]byte)(unsafe.Pointer(pc))
|
|
for i := uintptr(0); i < n; i++ {
|
|
print(" ", hex(b[i]))
|
|
}
|
|
println()
|
|
}
|
|
print("\n")
|
|
|
|
level, _, docrash := gotraceback()
|
|
if level > 0 {
|
|
goroutineheader(gp)
|
|
tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp)
|
|
if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
|
|
// tracebackothers on original m skipped this one; trace it now.
|
|
goroutineheader(_g_.m.curg)
|
|
traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg)
|
|
} else if crashing == 0 {
|
|
tracebackothers(gp)
|
|
print("\n")
|
|
}
|
|
dumpregs(c)
|
|
}
|
|
|
|
if docrash {
|
|
crashing++
|
|
if crashing < mcount()-int32(extraMCount) {
|
|
// There are other m's that need to dump their stacks.
|
|
// Relay SIGQUIT to the next m by sending it to the current process.
|
|
// All m's that have already received SIGQUIT have signal masks blocking
|
|
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
|
|
// When the last m receives the SIGQUIT, it will fall through to the call to
|
|
// crash below. Just in case the relaying gets botched, each m involved in
|
|
// the relay sleeps for 5 seconds and then does the crash/exit itself.
|
|
// In expected operation, the last m has received the SIGQUIT and run
|
|
// crash/exit and the process is gone, all long before any of the
|
|
// 5-second sleeps have finished.
|
|
print("\n-----\n\n")
|
|
raiseproc(_SIGQUIT)
|
|
usleep(5 * 1000 * 1000)
|
|
}
|
|
crash()
|
|
}
|
|
|
|
printDebugLog()
|
|
|
|
exit(2)
|
|
}
|
|
|
|
// sigpanic turns a synchronous signal into a run-time panic.
|
|
// If the signal handler sees a synchronous panic, it arranges the
|
|
// stack to look like the function where the signal occurred called
|
|
// sigpanic, sets the signal's PC value to sigpanic, and returns from
|
|
// the signal handler. The effect is that the program will act as
|
|
// though the function that got the signal simply called sigpanic
|
|
// instead.
|
|
//
|
|
// This must NOT be nosplit because the linker doesn't know where
|
|
// sigpanic calls can be injected.
|
|
//
|
|
// The signal handler must not inject a call to sigpanic if
|
|
// getg().throwsplit, since sigpanic may need to grow the stack.
|
|
//
|
|
// This is exported via linkname to assembly in runtime/cgo.
|
|
//go:linkname sigpanic
|
|
func sigpanic() {
|
|
g := getg()
|
|
if !canpanic(g) {
|
|
throw("unexpected signal during runtime execution")
|
|
}
|
|
|
|
switch g.sig {
|
|
case _SIGBUS:
|
|
if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 {
|
|
panicmem()
|
|
}
|
|
// Support runtime/debug.SetPanicOnFault.
|
|
if g.paniconfault {
|
|
panicmem()
|
|
}
|
|
print("unexpected fault address ", hex(g.sigcode1), "\n")
|
|
throw("fault")
|
|
case _SIGSEGV:
|
|
if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 {
|
|
panicmem()
|
|
}
|
|
// Support runtime/debug.SetPanicOnFault.
|
|
if g.paniconfault {
|
|
panicmem()
|
|
}
|
|
print("unexpected fault address ", hex(g.sigcode1), "\n")
|
|
throw("fault")
|
|
case _SIGFPE:
|
|
switch g.sigcode0 {
|
|
case _FPE_INTDIV:
|
|
panicdivide()
|
|
case _FPE_INTOVF:
|
|
panicoverflow()
|
|
}
|
|
panicfloat()
|
|
}
|
|
|
|
if g.sig >= uint32(len(sigtable)) {
|
|
// can't happen: we looked up g.sig in sigtable to decide to call sigpanic
|
|
throw("unexpected signal value")
|
|
}
|
|
panic(errorString(sigtable[g.sig].name))
|
|
}
|
|
|
|
// dieFromSignal kills the program with a signal.
|
|
// This provides the expected exit status for the shell.
|
|
// This is only called with fatal signals expected to kill the process.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func dieFromSignal(sig uint32) {
|
|
unblocksig(sig)
|
|
// Mark the signal as unhandled to ensure it is forwarded.
|
|
atomic.Store(&handlingSig[sig], 0)
|
|
raise(sig)
|
|
|
|
// That should have killed us. On some systems, though, raise
|
|
// sends the signal to the whole process rather than to just
|
|
// the current thread, which means that the signal may not yet
|
|
// have been delivered. Give other threads a chance to run and
|
|
// pick up the signal.
|
|
osyield()
|
|
osyield()
|
|
osyield()
|
|
|
|
// If that didn't work, try _SIG_DFL.
|
|
setsig(sig, _SIG_DFL)
|
|
raise(sig)
|
|
|
|
osyield()
|
|
osyield()
|
|
osyield()
|
|
|
|
// If we are still somehow running, just exit with the wrong status.
|
|
exit(2)
|
|
}
|
|
|
|
// raisebadsignal is called when a signal is received on a non-Go
|
|
// thread, and the Go program does not want to handle it (that is, the
|
|
// program has not called os/signal.Notify for the signal).
|
|
func raisebadsignal(sig uint32, c *sigctxt) {
|
|
if sig == _SIGPROF {
|
|
// Ignore profiling signals that arrive on non-Go threads.
|
|
return
|
|
}
|
|
|
|
var handler uintptr
|
|
if sig >= _NSIG {
|
|
handler = _SIG_DFL
|
|
} else {
|
|
handler = atomic.Loaduintptr(&fwdSig[sig])
|
|
}
|
|
|
|
// Reset the signal handler and raise the signal.
|
|
// We are currently running inside a signal handler, so the
|
|
// signal is blocked. We need to unblock it before raising the
|
|
// signal, or the signal we raise will be ignored until we return
|
|
// from the signal handler. We know that the signal was unblocked
|
|
// before entering the handler, or else we would not have received
|
|
// it. That means that we don't have to worry about blocking it
|
|
// again.
|
|
unblocksig(sig)
|
|
setsig(sig, handler)
|
|
|
|
// If we're linked into a non-Go program we want to try to
|
|
// avoid modifying the original context in which the signal
|
|
// was raised. If the handler is the default, we know it
|
|
// is non-recoverable, so we don't have to worry about
|
|
// re-installing sighandler. At this point we can just
|
|
// return and the signal will be re-raised and caught by
|
|
// the default handler with the correct context.
|
|
//
|
|
// On FreeBSD, the libthr sigaction code prevents
|
|
// this from working so we fall through to raise.
|
|
if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
|
|
return
|
|
}
|
|
|
|
raise(sig)
|
|
|
|
// Give the signal a chance to be delivered.
|
|
// In almost all real cases the program is about to crash,
|
|
// so sleeping here is not a waste of time.
|
|
usleep(1000)
|
|
|
|
// If the signal didn't cause the program to exit, restore the
|
|
// Go signal handler and carry on.
|
|
//
|
|
// We may receive another instance of the signal before we
|
|
// restore the Go handler, but that is not so bad: we know
|
|
// that the Go program has been ignoring the signal.
|
|
setsig(sig, funcPC(sighandler))
|
|
}
|
|
|
|
//go:nosplit
|
|
func crash() {
|
|
// OS X core dumps are linear dumps of the mapped memory,
|
|
// from the first virtual byte to the last, with zeros in the gaps.
|
|
// Because of the way we arrange the address space on 64-bit systems,
|
|
// this means the OS X core file will be >128 GB and even on a zippy
|
|
// workstation can take OS X well over an hour to write (uninterruptible).
|
|
// Save users from making that mistake.
|
|
if GOOS == "darwin" && GOARCH == "amd64" {
|
|
return
|
|
}
|
|
|
|
dieFromSignal(_SIGABRT)
|
|
}
|
|
|
|
// ensureSigM starts one global, sleeping thread to make sure at least one thread
|
|
// is available to catch signals enabled for os/signal.
|
|
func ensureSigM() {
|
|
if maskUpdatedChan != nil {
|
|
return
|
|
}
|
|
maskUpdatedChan = make(chan struct{})
|
|
disableSigChan = make(chan uint32)
|
|
enableSigChan = make(chan uint32)
|
|
go func() {
|
|
// Signal masks are per-thread, so make sure this goroutine stays on one
|
|
// thread.
|
|
LockOSThread()
|
|
defer UnlockOSThread()
|
|
// The sigBlocked mask contains the signals not active for os/signal,
|
|
// initially all signals except the essential. When signal.Notify()/Stop is called,
|
|
// sigenable/sigdisable in turn notify this thread to update its signal
|
|
// mask accordingly.
|
|
sigBlocked := sigset_all
|
|
for i := range sigtable {
|
|
if !blockableSig(uint32(i)) {
|
|
sigdelset(&sigBlocked, i)
|
|
}
|
|
}
|
|
sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
|
|
for {
|
|
select {
|
|
case sig := <-enableSigChan:
|
|
if sig > 0 {
|
|
sigdelset(&sigBlocked, int(sig))
|
|
}
|
|
case sig := <-disableSigChan:
|
|
if sig > 0 && blockableSig(sig) {
|
|
sigaddset(&sigBlocked, int(sig))
|
|
}
|
|
}
|
|
sigprocmask(_SIG_SETMASK, &sigBlocked, nil)
|
|
maskUpdatedChan <- struct{}{}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// This is called when we receive a signal when there is no signal stack.
|
|
// This can only happen if non-Go code calls sigaltstack to disable the
|
|
// signal stack.
|
|
func noSignalStack(sig uint32) {
|
|
println("signal", sig, "received on thread with no signal stack")
|
|
throw("non-Go code disabled sigaltstack")
|
|
}
|
|
|
|
// This is called if we receive a signal when there is a signal stack
|
|
// but we are not on it. This can only happen if non-Go code called
|
|
// sigaction without setting the SS_ONSTACK flag.
|
|
func sigNotOnStack(sig uint32) {
|
|
println("signal", sig, "received but handler not on signal stack")
|
|
throw("non-Go code set up signal handler without SA_ONSTACK flag")
|
|
}
|
|
|
|
// signalDuringFork is called if we receive a signal while doing a fork.
|
|
// We do not want signals at that time, as a signal sent to the process
|
|
// group may be delivered to the child process, causing confusion.
|
|
// This should never be called, because we block signals across the fork;
|
|
// this function is just a safety check. See issue 18600 for background.
|
|
func signalDuringFork(sig uint32) {
|
|
println("signal", sig, "received during fork")
|
|
throw("signal received during fork")
|
|
}
|
|
|
|
var badginsignalMsg = "fatal: bad g in signal handler\n"
|
|
|
|
// This runs on a foreign stack, without an m or a g. No stack split.
|
|
//go:nosplit
|
|
//go:norace
|
|
//go:nowritebarrierrec
|
|
func badsignal(sig uintptr, c *sigctxt) {
|
|
if !iscgo && !cgoHasExtraM {
|
|
// There is no extra M. needm will not be able to grab
|
|
// an M. Instead of hanging, just crash.
|
|
// Cannot call split-stack function as there is no G.
|
|
s := stringStructOf(&badginsignalMsg)
|
|
write(2, s.str, int32(s.len))
|
|
exit(2)
|
|
*(*uintptr)(unsafe.Pointer(uintptr(123))) = 2
|
|
}
|
|
needm(0)
|
|
if !sigsend(uint32(sig)) {
|
|
// A foreign thread received the signal sig, and the
|
|
// Go code does not want to handle it.
|
|
raisebadsignal(uint32(sig), c)
|
|
}
|
|
dropm()
|
|
}
|
|
|
|
//go:noescape
|
|
func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
|
|
|
|
// Determines if the signal should be handled by Go and if not, forwards the
|
|
// signal to the handler that was installed before Go's. Returns whether the
|
|
// signal was forwarded.
|
|
// This is called by the signal handler, and the world may be stopped.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
|
|
if sig >= uint32(len(sigtable)) {
|
|
return false
|
|
}
|
|
fwdFn := atomic.Loaduintptr(&fwdSig[sig])
|
|
flags := sigtable[sig].flags
|
|
|
|
// If we aren't handling the signal, forward it.
|
|
if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK {
|
|
// If the signal is ignored, doing nothing is the same as forwarding.
|
|
if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) {
|
|
return true
|
|
}
|
|
// We are not handling the signal and there is no other handler to forward to.
|
|
// Crash with the default behavior.
|
|
if fwdFn == _SIG_DFL {
|
|
setsig(sig, _SIG_DFL)
|
|
dieFromSignal(sig)
|
|
return false
|
|
}
|
|
|
|
sigfwd(fwdFn, sig, info, ctx)
|
|
return true
|
|
}
|
|
|
|
// This function and its caller sigtrampgo assumes SIGPIPE is delivered on the
|
|
// originating thread. This property does not hold on macOS (golang.org/issue/33384),
|
|
// so we have no choice but to ignore SIGPIPE.
|
|
if GOOS == "darwin" && sig == _SIGPIPE {
|
|
return true
|
|
}
|
|
|
|
// If there is no handler to forward to, no need to forward.
|
|
if fwdFn == _SIG_DFL {
|
|
return false
|
|
}
|
|
|
|
c := &sigctxt{info, ctx}
|
|
// Only forward synchronous signals and SIGPIPE.
|
|
// Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code
|
|
// is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket
|
|
// or pipe.
|
|
if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE {
|
|
return false
|
|
}
|
|
// Determine if the signal occurred inside Go code. We test that:
|
|
// (1) we weren't in VDSO page,
|
|
// (2) we were in a goroutine (i.e., m.curg != nil), and
|
|
// (3) we weren't in CGO.
|
|
g := sigFetchG(c)
|
|
if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo {
|
|
return false
|
|
}
|
|
|
|
// Signal not handled by Go, forward it.
|
|
if fwdFn != _SIG_IGN {
|
|
sigfwd(fwdFn, sig, info, ctx)
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// msigsave saves the current thread's signal mask into mp.sigmask.
|
|
// This is used to preserve the non-Go signal mask when a non-Go
|
|
// thread calls a Go function.
|
|
// This is nosplit and nowritebarrierrec because it is called by needm
|
|
// which may be called on a non-Go thread with no g available.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func msigsave(mp *m) {
|
|
sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
|
|
}
|
|
|
|
// msigrestore sets the current thread's signal mask to sigmask.
|
|
// This is used to restore the non-Go signal mask when a non-Go thread
|
|
// calls a Go function.
|
|
// This is nosplit and nowritebarrierrec because it is called by dropm
|
|
// after g has been cleared.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func msigrestore(sigmask sigset) {
|
|
sigprocmask(_SIG_SETMASK, &sigmask, nil)
|
|
}
|
|
|
|
// sigblock blocks all signals in the current thread's signal mask.
|
|
// This is used to block signals while setting up and tearing down g
|
|
// when a non-Go thread calls a Go function.
|
|
// The OS-specific code is expected to define sigset_all.
|
|
// This is nosplit and nowritebarrierrec because it is called by needm
|
|
// which may be called on a non-Go thread with no g available.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func sigblock() {
|
|
sigprocmask(_SIG_SETMASK, &sigset_all, nil)
|
|
}
|
|
|
|
// unblocksig removes sig from the current thread's signal mask.
|
|
// This is nosplit and nowritebarrierrec because it is called from
|
|
// dieFromSignal, which can be called by sigfwdgo while running in the
|
|
// signal handler, on the signal stack, with no g available.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func unblocksig(sig uint32) {
|
|
var set sigset
|
|
sigaddset(&set, int(sig))
|
|
sigprocmask(_SIG_UNBLOCK, &set, nil)
|
|
}
|
|
|
|
// minitSignals is called when initializing a new m to set the
|
|
// thread's alternate signal stack and signal mask.
|
|
func minitSignals() {
|
|
minitSignalStack()
|
|
minitSignalMask()
|
|
}
|
|
|
|
// minitSignalStack is called when initializing a new m to set the
|
|
// alternate signal stack. If the alternate signal stack is not set
|
|
// for the thread (the normal case) then set the alternate signal
|
|
// stack to the gsignal stack. If the alternate signal stack is set
|
|
// for the thread (the case when a non-Go thread sets the alternate
|
|
// signal stack and then calls a Go function) then set the gsignal
|
|
// stack to the alternate signal stack. We also set the alternate
|
|
// signal stack to the gsignal stack if cgo is not used (regardless
|
|
// of whether it is already set). Record which choice was made in
|
|
// newSigstack, so that it can be undone in unminit.
|
|
func minitSignalStack() {
|
|
_g_ := getg()
|
|
var st stackt
|
|
sigaltstack(nil, &st)
|
|
if st.ss_flags&_SS_DISABLE != 0 || !iscgo {
|
|
signalstack(&_g_.m.gsignal.stack)
|
|
_g_.m.newSigstack = true
|
|
} else {
|
|
setGsignalStack(&st, &_g_.m.goSigStack)
|
|
_g_.m.newSigstack = false
|
|
}
|
|
}
|
|
|
|
// minitSignalMask is called when initializing a new m to set the
|
|
// thread's signal mask. When this is called all signals have been
|
|
// blocked for the thread. This starts with m.sigmask, which was set
|
|
// either from initSigmask for a newly created thread or by calling
|
|
// msigsave if this is a non-Go thread calling a Go function. It
|
|
// removes all essential signals from the mask, thus causing those
|
|
// signals to not be blocked. Then it sets the thread's signal mask.
|
|
// After this is called the thread can receive signals.
|
|
func minitSignalMask() {
|
|
nmask := getg().m.sigmask
|
|
for i := range sigtable {
|
|
if !blockableSig(uint32(i)) {
|
|
sigdelset(&nmask, i)
|
|
}
|
|
}
|
|
sigprocmask(_SIG_SETMASK, &nmask, nil)
|
|
}
|
|
|
|
// unminitSignals is called from dropm, via unminit, to undo the
|
|
// effect of calling minit on a non-Go thread.
|
|
//go:nosplit
|
|
func unminitSignals() {
|
|
if getg().m.newSigstack {
|
|
st := stackt{ss_flags: _SS_DISABLE}
|
|
sigaltstack(&st, nil)
|
|
} else {
|
|
// We got the signal stack from someone else. Restore
|
|
// the Go-allocated stack in case this M gets reused
|
|
// for another thread (e.g., it's an extram). Also, on
|
|
// Android, libc allocates a signal stack for all
|
|
// threads, so it's important to restore the Go stack
|
|
// even on Go-created threads so we can free it.
|
|
restoreGsignalStack(&getg().m.goSigStack)
|
|
}
|
|
}
|
|
|
|
// blockableSig reports whether sig may be blocked by the signal mask.
|
|
// We never want to block the signals marked _SigUnblock;
|
|
// these are the synchronous signals that turn into a Go panic.
|
|
// In a Go program--not a c-archive/c-shared--we never want to block
|
|
// the signals marked _SigKill or _SigThrow, as otherwise it's possible
|
|
// for all running threads to block them and delay their delivery until
|
|
// we start a new thread. When linked into a C program we let the C code
|
|
// decide on the disposition of those signals.
|
|
func blockableSig(sig uint32) bool {
|
|
flags := sigtable[sig].flags
|
|
if flags&_SigUnblock != 0 {
|
|
return false
|
|
}
|
|
if isarchive || islibrary {
|
|
return true
|
|
}
|
|
return flags&(_SigKill|_SigThrow) == 0
|
|
}
|
|
|
|
// gsignalStack saves the fields of the gsignal stack changed by
|
|
// setGsignalStack.
|
|
type gsignalStack struct {
|
|
stack stack
|
|
stackguard0 uintptr
|
|
stackguard1 uintptr
|
|
stktopsp uintptr
|
|
}
|
|
|
|
// setGsignalStack sets the gsignal stack of the current m to an
|
|
// alternate signal stack returned from the sigaltstack system call.
|
|
// It saves the old values in *old for use by restoreGsignalStack.
|
|
// This is used when handling a signal if non-Go code has set the
|
|
// alternate signal stack.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func setGsignalStack(st *stackt, old *gsignalStack) {
|
|
g := getg()
|
|
if old != nil {
|
|
old.stack = g.m.gsignal.stack
|
|
old.stackguard0 = g.m.gsignal.stackguard0
|
|
old.stackguard1 = g.m.gsignal.stackguard1
|
|
old.stktopsp = g.m.gsignal.stktopsp
|
|
}
|
|
stsp := uintptr(unsafe.Pointer(st.ss_sp))
|
|
g.m.gsignal.stack.lo = stsp
|
|
g.m.gsignal.stack.hi = stsp + st.ss_size
|
|
g.m.gsignal.stackguard0 = stsp + _StackGuard
|
|
g.m.gsignal.stackguard1 = stsp + _StackGuard
|
|
}
|
|
|
|
// restoreGsignalStack restores the gsignal stack to the value it had
|
|
// before entering the signal handler.
|
|
//go:nosplit
|
|
//go:nowritebarrierrec
|
|
func restoreGsignalStack(st *gsignalStack) {
|
|
gp := getg().m.gsignal
|
|
gp.stack = st.stack
|
|
gp.stackguard0 = st.stackguard0
|
|
gp.stackguard1 = st.stackguard1
|
|
gp.stktopsp = st.stktopsp
|
|
}
|
|
|
|
// signalstack sets the current thread's alternate signal stack to s.
|
|
//go:nosplit
|
|
func signalstack(s *stack) {
|
|
st := stackt{ss_size: s.hi - s.lo}
|
|
setSignalstackSP(&st, s.lo)
|
|
sigaltstack(&st, nil)
|
|
}
|
|
|
|
// setsigsegv is used on darwin/arm64 to fake a segmentation fault.
|
|
//
|
|
// This is exported via linkname to assembly in runtime/cgo.
|
|
//
|
|
//go:nosplit
|
|
//go:linkname setsigsegv
|
|
func setsigsegv(pc uintptr) {
|
|
g := getg()
|
|
g.sig = _SIGSEGV
|
|
g.sigpc = pc
|
|
g.sigcode0 = _SEGV_MAPERR
|
|
g.sigcode1 = 0 // TODO: emulate si_addr
|
|
}
|