mirror of
https://github.com/golang/go.git
synced 2025-05-30 11:51:34 +00:00
Previously we stole a bit from the field offset to encode whether a struct field was embedded. Instead, encode that bit in the name field, where we already have some unused bits to play with. The bit associates naturally with the name in any case. This leaves a full uintptr to specify field offsets. This will make the fix for #52740 cleaner. Change-Id: I0bfb85564dc26e8c18101bc8b432f332176d7836 Reviewed-on: https://go-review.googlesource.com/c/go/+/412138 Reviewed-by: Cherry Mui <cherryyz@google.com> Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org> Reviewed-by: Keith Randall <khr@google.com>
3621 lines
107 KiB
Go
3621 lines
107 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package reflect
|
|
|
|
import (
|
|
"errors"
|
|
"internal/abi"
|
|
"internal/goarch"
|
|
"internal/itoa"
|
|
"internal/unsafeheader"
|
|
"math"
|
|
"runtime"
|
|
"unsafe"
|
|
)
|
|
|
|
// Value is the reflection interface to a Go value.
|
|
//
|
|
// Not all methods apply to all kinds of values. Restrictions,
|
|
// if any, are noted in the documentation for each method.
|
|
// Use the Kind method to find out the kind of value before
|
|
// calling kind-specific methods. Calling a method
|
|
// inappropriate to the kind of type causes a run time panic.
|
|
//
|
|
// The zero Value represents no value.
|
|
// Its IsValid method returns false, its Kind method returns Invalid,
|
|
// its String method returns "<invalid Value>", and all other methods panic.
|
|
// Most functions and methods never return an invalid value.
|
|
// If one does, its documentation states the conditions explicitly.
|
|
//
|
|
// A Value can be used concurrently by multiple goroutines provided that
|
|
// the underlying Go value can be used concurrently for the equivalent
|
|
// direct operations.
|
|
//
|
|
// To compare two Values, compare the results of the Interface method.
|
|
// Using == on two Values does not compare the underlying values
|
|
// they represent.
|
|
type Value struct {
|
|
// typ holds the type of the value represented by a Value.
|
|
typ *rtype
|
|
|
|
// Pointer-valued data or, if flagIndir is set, pointer to data.
|
|
// Valid when either flagIndir is set or typ.pointers() is true.
|
|
ptr unsafe.Pointer
|
|
|
|
// flag holds metadata about the value.
|
|
// The lowest bits are flag bits:
|
|
// - flagStickyRO: obtained via unexported not embedded field, so read-only
|
|
// - flagEmbedRO: obtained via unexported embedded field, so read-only
|
|
// - flagIndir: val holds a pointer to the data
|
|
// - flagAddr: v.CanAddr is true (implies flagIndir)
|
|
// - flagMethod: v is a method value.
|
|
// The next five bits give the Kind of the value.
|
|
// This repeats typ.Kind() except for method values.
|
|
// The remaining 23+ bits give a method number for method values.
|
|
// If flag.kind() != Func, code can assume that flagMethod is unset.
|
|
// If ifaceIndir(typ), code can assume that flagIndir is set.
|
|
flag
|
|
|
|
// A method value represents a curried method invocation
|
|
// like r.Read for some receiver r. The typ+val+flag bits describe
|
|
// the receiver r, but the flag's Kind bits say Func (methods are
|
|
// functions), and the top bits of the flag give the method number
|
|
// in r's type's method table.
|
|
}
|
|
|
|
type flag uintptr
|
|
|
|
const (
|
|
flagKindWidth = 5 // there are 27 kinds
|
|
flagKindMask flag = 1<<flagKindWidth - 1
|
|
flagStickyRO flag = 1 << 5
|
|
flagEmbedRO flag = 1 << 6
|
|
flagIndir flag = 1 << 7
|
|
flagAddr flag = 1 << 8
|
|
flagMethod flag = 1 << 9
|
|
flagMethodShift = 10
|
|
flagRO flag = flagStickyRO | flagEmbedRO
|
|
)
|
|
|
|
func (f flag) kind() Kind {
|
|
return Kind(f & flagKindMask)
|
|
}
|
|
|
|
func (f flag) ro() flag {
|
|
if f&flagRO != 0 {
|
|
return flagStickyRO
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// pointer returns the underlying pointer represented by v.
|
|
// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
|
|
// if v.Kind() == Pointer, the base type must not be go:notinheap.
|
|
func (v Value) pointer() unsafe.Pointer {
|
|
if v.typ.size != goarch.PtrSize || !v.typ.pointers() {
|
|
panic("can't call pointer on a non-pointer Value")
|
|
}
|
|
if v.flag&flagIndir != 0 {
|
|
return *(*unsafe.Pointer)(v.ptr)
|
|
}
|
|
return v.ptr
|
|
}
|
|
|
|
// packEface converts v to the empty interface.
|
|
func packEface(v Value) any {
|
|
t := v.typ
|
|
var i any
|
|
e := (*emptyInterface)(unsafe.Pointer(&i))
|
|
// First, fill in the data portion of the interface.
|
|
switch {
|
|
case ifaceIndir(t):
|
|
if v.flag&flagIndir == 0 {
|
|
panic("bad indir")
|
|
}
|
|
// Value is indirect, and so is the interface we're making.
|
|
ptr := v.ptr
|
|
if v.flag&flagAddr != 0 {
|
|
// TODO: pass safe boolean from valueInterface so
|
|
// we don't need to copy if safe==true?
|
|
c := unsafe_New(t)
|
|
typedmemmove(t, c, ptr)
|
|
ptr = c
|
|
}
|
|
e.word = ptr
|
|
case v.flag&flagIndir != 0:
|
|
// Value is indirect, but interface is direct. We need
|
|
// to load the data at v.ptr into the interface data word.
|
|
e.word = *(*unsafe.Pointer)(v.ptr)
|
|
default:
|
|
// Value is direct, and so is the interface.
|
|
e.word = v.ptr
|
|
}
|
|
// Now, fill in the type portion. We're very careful here not
|
|
// to have any operation between the e.word and e.typ assignments
|
|
// that would let the garbage collector observe the partially-built
|
|
// interface value.
|
|
e.typ = t
|
|
return i
|
|
}
|
|
|
|
// unpackEface converts the empty interface i to a Value.
|
|
func unpackEface(i any) Value {
|
|
e := (*emptyInterface)(unsafe.Pointer(&i))
|
|
// NOTE: don't read e.word until we know whether it is really a pointer or not.
|
|
t := e.typ
|
|
if t == nil {
|
|
return Value{}
|
|
}
|
|
f := flag(t.Kind())
|
|
if ifaceIndir(t) {
|
|
f |= flagIndir
|
|
}
|
|
return Value{t, e.word, f}
|
|
}
|
|
|
|
// A ValueError occurs when a Value method is invoked on
|
|
// a Value that does not support it. Such cases are documented
|
|
// in the description of each method.
|
|
type ValueError struct {
|
|
Method string
|
|
Kind Kind
|
|
}
|
|
|
|
func (e *ValueError) Error() string {
|
|
if e.Kind == 0 {
|
|
return "reflect: call of " + e.Method + " on zero Value"
|
|
}
|
|
return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
|
|
}
|
|
|
|
// valueMethodName returns the name of the exported calling method on Value.
|
|
func valueMethodName() string {
|
|
var pc [5]uintptr
|
|
n := runtime.Callers(1, pc[:])
|
|
frames := runtime.CallersFrames(pc[:n])
|
|
var frame runtime.Frame
|
|
for more := true; more; {
|
|
const prefix = "reflect.Value."
|
|
frame, more = frames.Next()
|
|
name := frame.Function
|
|
if len(name) > len(prefix) && name[:len(prefix)] == prefix {
|
|
methodName := name[len(prefix):]
|
|
if len(methodName) > 0 && 'A' <= methodName[0] && methodName[0] <= 'Z' {
|
|
return name
|
|
}
|
|
}
|
|
}
|
|
return "unknown method"
|
|
}
|
|
|
|
// emptyInterface is the header for an interface{} value.
|
|
type emptyInterface struct {
|
|
typ *rtype
|
|
word unsafe.Pointer
|
|
}
|
|
|
|
// nonEmptyInterface is the header for an interface value with methods.
|
|
type nonEmptyInterface struct {
|
|
// see ../runtime/iface.go:/Itab
|
|
itab *struct {
|
|
ityp *rtype // static interface type
|
|
typ *rtype // dynamic concrete type
|
|
hash uint32 // copy of typ.hash
|
|
_ [4]byte
|
|
fun [100000]unsafe.Pointer // method table
|
|
}
|
|
word unsafe.Pointer
|
|
}
|
|
|
|
// mustBe panics if f's kind is not expected.
|
|
// Making this a method on flag instead of on Value
|
|
// (and embedding flag in Value) means that we can write
|
|
// the very clear v.mustBe(Bool) and have it compile into
|
|
// v.flag.mustBe(Bool), which will only bother to copy the
|
|
// single important word for the receiver.
|
|
func (f flag) mustBe(expected Kind) {
|
|
// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
|
|
if Kind(f&flagKindMask) != expected {
|
|
panic(&ValueError{valueMethodName(), f.kind()})
|
|
}
|
|
}
|
|
|
|
// mustBeExported panics if f records that the value was obtained using
|
|
// an unexported field.
|
|
func (f flag) mustBeExported() {
|
|
if f == 0 || f&flagRO != 0 {
|
|
f.mustBeExportedSlow()
|
|
}
|
|
}
|
|
|
|
func (f flag) mustBeExportedSlow() {
|
|
if f == 0 {
|
|
panic(&ValueError{valueMethodName(), Invalid})
|
|
}
|
|
if f&flagRO != 0 {
|
|
panic("reflect: " + valueMethodName() + " using value obtained using unexported field")
|
|
}
|
|
}
|
|
|
|
// mustBeAssignable panics if f records that the value is not assignable,
|
|
// which is to say that either it was obtained using an unexported field
|
|
// or it is not addressable.
|
|
func (f flag) mustBeAssignable() {
|
|
if f&flagRO != 0 || f&flagAddr == 0 {
|
|
f.mustBeAssignableSlow()
|
|
}
|
|
}
|
|
|
|
func (f flag) mustBeAssignableSlow() {
|
|
if f == 0 {
|
|
panic(&ValueError{valueMethodName(), Invalid})
|
|
}
|
|
// Assignable if addressable and not read-only.
|
|
if f&flagRO != 0 {
|
|
panic("reflect: " + valueMethodName() + " using value obtained using unexported field")
|
|
}
|
|
if f&flagAddr == 0 {
|
|
panic("reflect: " + valueMethodName() + " using unaddressable value")
|
|
}
|
|
}
|
|
|
|
// Addr returns a pointer value representing the address of v.
|
|
// It panics if CanAddr() returns false.
|
|
// Addr is typically used to obtain a pointer to a struct field
|
|
// or slice element in order to call a method that requires a
|
|
// pointer receiver.
|
|
func (v Value) Addr() Value {
|
|
if v.flag&flagAddr == 0 {
|
|
panic("reflect.Value.Addr of unaddressable value")
|
|
}
|
|
// Preserve flagRO instead of using v.flag.ro() so that
|
|
// v.Addr().Elem() is equivalent to v (#32772)
|
|
fl := v.flag & flagRO
|
|
return Value{v.typ.ptrTo(), v.ptr, fl | flag(Pointer)}
|
|
}
|
|
|
|
// Bool returns v's underlying value.
|
|
// It panics if v's kind is not Bool.
|
|
func (v Value) Bool() bool {
|
|
// panicNotBool is split out to keep Bool inlineable.
|
|
if v.kind() != Bool {
|
|
v.panicNotBool()
|
|
}
|
|
return *(*bool)(v.ptr)
|
|
}
|
|
|
|
func (v Value) panicNotBool() {
|
|
v.mustBe(Bool)
|
|
}
|
|
|
|
var bytesType = TypeOf(([]byte)(nil)).(*rtype)
|
|
|
|
// Bytes returns v's underlying value.
|
|
// It panics if v's underlying value is not a slice of bytes or
|
|
// an addressable array of bytes.
|
|
func (v Value) Bytes() []byte {
|
|
// bytesSlow is split out to keep Bytes inlineable for unnamed []byte.
|
|
if v.typ == bytesType {
|
|
return *(*[]byte)(v.ptr)
|
|
}
|
|
return v.bytesSlow()
|
|
}
|
|
|
|
func (v Value) bytesSlow() []byte {
|
|
switch v.kind() {
|
|
case Slice:
|
|
if v.typ.Elem().Kind() != Uint8 {
|
|
panic("reflect.Value.Bytes of non-byte slice")
|
|
}
|
|
// Slice is always bigger than a word; assume flagIndir.
|
|
return *(*[]byte)(v.ptr)
|
|
case Array:
|
|
if v.typ.Elem().Kind() != Uint8 {
|
|
panic("reflect.Value.Bytes of non-byte array")
|
|
}
|
|
if !v.CanAddr() {
|
|
panic("reflect.Value.Bytes of unaddressable byte array")
|
|
}
|
|
p := (*byte)(v.ptr)
|
|
n := int((*arrayType)(unsafe.Pointer(v.typ)).len)
|
|
return unsafe.Slice(p, n)
|
|
}
|
|
panic(&ValueError{"reflect.Value.Bytes", v.kind()})
|
|
}
|
|
|
|
// runes returns v's underlying value.
|
|
// It panics if v's underlying value is not a slice of runes (int32s).
|
|
func (v Value) runes() []rune {
|
|
v.mustBe(Slice)
|
|
if v.typ.Elem().Kind() != Int32 {
|
|
panic("reflect.Value.Bytes of non-rune slice")
|
|
}
|
|
// Slice is always bigger than a word; assume flagIndir.
|
|
return *(*[]rune)(v.ptr)
|
|
}
|
|
|
|
// CanAddr reports whether the value's address can be obtained with Addr.
|
|
// Such values are called addressable. A value is addressable if it is
|
|
// an element of a slice, an element of an addressable array,
|
|
// a field of an addressable struct, or the result of dereferencing a pointer.
|
|
// If CanAddr returns false, calling Addr will panic.
|
|
func (v Value) CanAddr() bool {
|
|
return v.flag&flagAddr != 0
|
|
}
|
|
|
|
// CanSet reports whether the value of v can be changed.
|
|
// A Value can be changed only if it is addressable and was not
|
|
// obtained by the use of unexported struct fields.
|
|
// If CanSet returns false, calling Set or any type-specific
|
|
// setter (e.g., SetBool, SetInt) will panic.
|
|
func (v Value) CanSet() bool {
|
|
return v.flag&(flagAddr|flagRO) == flagAddr
|
|
}
|
|
|
|
// Call calls the function v with the input arguments in.
|
|
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
|
|
// Call panics if v's Kind is not Func.
|
|
// It returns the output results as Values.
|
|
// As in Go, each input argument must be assignable to the
|
|
// type of the function's corresponding input parameter.
|
|
// If v is a variadic function, Call creates the variadic slice parameter
|
|
// itself, copying in the corresponding values.
|
|
func (v Value) Call(in []Value) []Value {
|
|
v.mustBe(Func)
|
|
v.mustBeExported()
|
|
return v.call("Call", in)
|
|
}
|
|
|
|
// CallSlice calls the variadic function v with the input arguments in,
|
|
// assigning the slice in[len(in)-1] to v's final variadic argument.
|
|
// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
|
|
// CallSlice panics if v's Kind is not Func or if v is not variadic.
|
|
// It returns the output results as Values.
|
|
// As in Go, each input argument must be assignable to the
|
|
// type of the function's corresponding input parameter.
|
|
func (v Value) CallSlice(in []Value) []Value {
|
|
v.mustBe(Func)
|
|
v.mustBeExported()
|
|
return v.call("CallSlice", in)
|
|
}
|
|
|
|
var callGC bool // for testing; see TestCallMethodJump and TestCallArgLive
|
|
|
|
const debugReflectCall = false
|
|
|
|
func (v Value) call(op string, in []Value) []Value {
|
|
// Get function pointer, type.
|
|
t := (*funcType)(unsafe.Pointer(v.typ))
|
|
var (
|
|
fn unsafe.Pointer
|
|
rcvr Value
|
|
rcvrtype *rtype
|
|
)
|
|
if v.flag&flagMethod != 0 {
|
|
rcvr = v
|
|
rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
|
|
} else if v.flag&flagIndir != 0 {
|
|
fn = *(*unsafe.Pointer)(v.ptr)
|
|
} else {
|
|
fn = v.ptr
|
|
}
|
|
|
|
if fn == nil {
|
|
panic("reflect.Value.Call: call of nil function")
|
|
}
|
|
|
|
isSlice := op == "CallSlice"
|
|
n := t.NumIn()
|
|
isVariadic := t.IsVariadic()
|
|
if isSlice {
|
|
if !isVariadic {
|
|
panic("reflect: CallSlice of non-variadic function")
|
|
}
|
|
if len(in) < n {
|
|
panic("reflect: CallSlice with too few input arguments")
|
|
}
|
|
if len(in) > n {
|
|
panic("reflect: CallSlice with too many input arguments")
|
|
}
|
|
} else {
|
|
if isVariadic {
|
|
n--
|
|
}
|
|
if len(in) < n {
|
|
panic("reflect: Call with too few input arguments")
|
|
}
|
|
if !isVariadic && len(in) > n {
|
|
panic("reflect: Call with too many input arguments")
|
|
}
|
|
}
|
|
for _, x := range in {
|
|
if x.Kind() == Invalid {
|
|
panic("reflect: " + op + " using zero Value argument")
|
|
}
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
|
|
panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
|
|
}
|
|
}
|
|
if !isSlice && isVariadic {
|
|
// prepare slice for remaining values
|
|
m := len(in) - n
|
|
slice := MakeSlice(t.In(n), m, m)
|
|
elem := t.In(n).Elem()
|
|
for i := 0; i < m; i++ {
|
|
x := in[n+i]
|
|
if xt := x.Type(); !xt.AssignableTo(elem) {
|
|
panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
|
|
}
|
|
slice.Index(i).Set(x)
|
|
}
|
|
origIn := in
|
|
in = make([]Value, n+1)
|
|
copy(in[:n], origIn)
|
|
in[n] = slice
|
|
}
|
|
|
|
nin := len(in)
|
|
if nin != t.NumIn() {
|
|
panic("reflect.Value.Call: wrong argument count")
|
|
}
|
|
nout := t.NumOut()
|
|
|
|
// Register argument space.
|
|
var regArgs abi.RegArgs
|
|
|
|
// Compute frame type.
|
|
frametype, framePool, abid := funcLayout(t, rcvrtype)
|
|
|
|
// Allocate a chunk of memory for frame if needed.
|
|
var stackArgs unsafe.Pointer
|
|
if frametype.size != 0 {
|
|
if nout == 0 {
|
|
stackArgs = framePool.Get().(unsafe.Pointer)
|
|
} else {
|
|
// Can't use pool if the function has return values.
|
|
// We will leak pointer to args in ret, so its lifetime is not scoped.
|
|
stackArgs = unsafe_New(frametype)
|
|
}
|
|
}
|
|
frameSize := frametype.size
|
|
|
|
if debugReflectCall {
|
|
println("reflect.call", t.String())
|
|
abid.dump()
|
|
}
|
|
|
|
// Copy inputs into args.
|
|
|
|
// Handle receiver.
|
|
inStart := 0
|
|
if rcvrtype != nil {
|
|
// Guaranteed to only be one word in size,
|
|
// so it will only take up exactly 1 abiStep (either
|
|
// in a register or on the stack).
|
|
switch st := abid.call.steps[0]; st.kind {
|
|
case abiStepStack:
|
|
storeRcvr(rcvr, stackArgs)
|
|
case abiStepPointer:
|
|
storeRcvr(rcvr, unsafe.Pointer(®Args.Ptrs[st.ireg]))
|
|
fallthrough
|
|
case abiStepIntReg:
|
|
storeRcvr(rcvr, unsafe.Pointer(®Args.Ints[st.ireg]))
|
|
case abiStepFloatReg:
|
|
storeRcvr(rcvr, unsafe.Pointer(®Args.Floats[st.freg]))
|
|
default:
|
|
panic("unknown ABI parameter kind")
|
|
}
|
|
inStart = 1
|
|
}
|
|
|
|
// Handle arguments.
|
|
for i, v := range in {
|
|
v.mustBeExported()
|
|
targ := t.In(i).(*rtype)
|
|
// TODO(mknyszek): Figure out if it's possible to get some
|
|
// scratch space for this assignment check. Previously, it
|
|
// was possible to use space in the argument frame.
|
|
v = v.assignTo("reflect.Value.Call", targ, nil)
|
|
stepsLoop:
|
|
for _, st := range abid.call.stepsForValue(i + inStart) {
|
|
switch st.kind {
|
|
case abiStepStack:
|
|
// Copy values to the "stack."
|
|
addr := add(stackArgs, st.stkOff, "precomputed stack arg offset")
|
|
if v.flag&flagIndir != 0 {
|
|
typedmemmove(targ, addr, v.ptr)
|
|
} else {
|
|
*(*unsafe.Pointer)(addr) = v.ptr
|
|
}
|
|
// There's only one step for a stack-allocated value.
|
|
break stepsLoop
|
|
case abiStepIntReg, abiStepPointer:
|
|
// Copy values to "integer registers."
|
|
if v.flag&flagIndir != 0 {
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
if st.kind == abiStepPointer {
|
|
// Duplicate this pointer in the pointer area of the
|
|
// register space. Otherwise, there's the potential for
|
|
// this to be the last reference to v.ptr.
|
|
regArgs.Ptrs[st.ireg] = *(*unsafe.Pointer)(offset)
|
|
}
|
|
intToReg(®Args, st.ireg, st.size, offset)
|
|
} else {
|
|
if st.kind == abiStepPointer {
|
|
// See the comment in abiStepPointer case above.
|
|
regArgs.Ptrs[st.ireg] = v.ptr
|
|
}
|
|
regArgs.Ints[st.ireg] = uintptr(v.ptr)
|
|
}
|
|
case abiStepFloatReg:
|
|
// Copy values to "float registers."
|
|
if v.flag&flagIndir == 0 {
|
|
panic("attempted to copy pointer to FP register")
|
|
}
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
floatToReg(®Args, st.freg, st.size, offset)
|
|
default:
|
|
panic("unknown ABI part kind")
|
|
}
|
|
}
|
|
}
|
|
// TODO(mknyszek): Remove this when we no longer have
|
|
// caller reserved spill space.
|
|
frameSize = align(frameSize, goarch.PtrSize)
|
|
frameSize += abid.spill
|
|
|
|
// Mark pointers in registers for the return path.
|
|
regArgs.ReturnIsPtr = abid.outRegPtrs
|
|
|
|
if debugReflectCall {
|
|
regArgs.Dump()
|
|
}
|
|
|
|
// For testing; see TestCallArgLive.
|
|
if callGC {
|
|
runtime.GC()
|
|
}
|
|
|
|
// Call.
|
|
call(frametype, fn, stackArgs, uint32(frametype.size), uint32(abid.retOffset), uint32(frameSize), ®Args)
|
|
|
|
// For testing; see TestCallMethodJump.
|
|
if callGC {
|
|
runtime.GC()
|
|
}
|
|
|
|
var ret []Value
|
|
if nout == 0 {
|
|
if stackArgs != nil {
|
|
typedmemclr(frametype, stackArgs)
|
|
framePool.Put(stackArgs)
|
|
}
|
|
} else {
|
|
if stackArgs != nil {
|
|
// Zero the now unused input area of args,
|
|
// because the Values returned by this function contain pointers to the args object,
|
|
// and will thus keep the args object alive indefinitely.
|
|
typedmemclrpartial(frametype, stackArgs, 0, abid.retOffset)
|
|
}
|
|
|
|
// Wrap Values around return values in args.
|
|
ret = make([]Value, nout)
|
|
for i := 0; i < nout; i++ {
|
|
tv := t.Out(i)
|
|
if tv.Size() == 0 {
|
|
// For zero-sized return value, args+off may point to the next object.
|
|
// In this case, return the zero value instead.
|
|
ret[i] = Zero(tv)
|
|
continue
|
|
}
|
|
steps := abid.ret.stepsForValue(i)
|
|
if st := steps[0]; st.kind == abiStepStack {
|
|
// This value is on the stack. If part of a value is stack
|
|
// allocated, the entire value is according to the ABI. So
|
|
// just make an indirection into the allocated frame.
|
|
fl := flagIndir | flag(tv.Kind())
|
|
ret[i] = Value{tv.common(), add(stackArgs, st.stkOff, "tv.Size() != 0"), fl}
|
|
// Note: this does introduce false sharing between results -
|
|
// if any result is live, they are all live.
|
|
// (And the space for the args is live as well, but as we've
|
|
// cleared that space it isn't as big a deal.)
|
|
continue
|
|
}
|
|
|
|
// Handle pointers passed in registers.
|
|
if !ifaceIndir(tv.common()) {
|
|
// Pointer-valued data gets put directly
|
|
// into v.ptr.
|
|
if steps[0].kind != abiStepPointer {
|
|
print("kind=", steps[0].kind, ", type=", tv.String(), "\n")
|
|
panic("mismatch between ABI description and types")
|
|
}
|
|
ret[i] = Value{tv.common(), regArgs.Ptrs[steps[0].ireg], flag(tv.Kind())}
|
|
continue
|
|
}
|
|
|
|
// All that's left is values passed in registers that we need to
|
|
// create space for and copy values back into.
|
|
//
|
|
// TODO(mknyszek): We make a new allocation for each register-allocated
|
|
// value, but previously we could always point into the heap-allocated
|
|
// stack frame. This is a regression that could be fixed by adding
|
|
// additional space to the allocated stack frame and storing the
|
|
// register-allocated return values into the allocated stack frame and
|
|
// referring there in the resulting Value.
|
|
s := unsafe_New(tv.common())
|
|
for _, st := range steps {
|
|
switch st.kind {
|
|
case abiStepIntReg:
|
|
offset := add(s, st.offset, "precomputed value offset")
|
|
intFromReg(®Args, st.ireg, st.size, offset)
|
|
case abiStepPointer:
|
|
s := add(s, st.offset, "precomputed value offset")
|
|
*((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg]
|
|
case abiStepFloatReg:
|
|
offset := add(s, st.offset, "precomputed value offset")
|
|
floatFromReg(®Args, st.freg, st.size, offset)
|
|
case abiStepStack:
|
|
panic("register-based return value has stack component")
|
|
default:
|
|
panic("unknown ABI part kind")
|
|
}
|
|
}
|
|
ret[i] = Value{tv.common(), s, flagIndir | flag(tv.Kind())}
|
|
}
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// callReflect is the call implementation used by a function
|
|
// returned by MakeFunc. In many ways it is the opposite of the
|
|
// method Value.call above. The method above converts a call using Values
|
|
// into a call of a function with a concrete argument frame, while
|
|
// callReflect converts a call of a function with a concrete argument
|
|
// frame into a call using Values.
|
|
// It is in this file so that it can be next to the call method above.
|
|
// The remainder of the MakeFunc implementation is in makefunc.go.
|
|
//
|
|
// NOTE: This function must be marked as a "wrapper" in the generated code,
|
|
// so that the linker can make it work correctly for panic and recover.
|
|
// The gc compilers know to do that for the name "reflect.callReflect".
|
|
//
|
|
// ctxt is the "closure" generated by MakeFunc.
|
|
// frame is a pointer to the arguments to that closure on the stack.
|
|
// retValid points to a boolean which should be set when the results
|
|
// section of frame is set.
|
|
//
|
|
// regs contains the argument values passed in registers and will contain
|
|
// the values returned from ctxt.fn in registers.
|
|
func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
|
|
if callGC {
|
|
// Call GC upon entry during testing.
|
|
// Getting our stack scanned here is the biggest hazard, because
|
|
// our caller (makeFuncStub) could have failed to place the last
|
|
// pointer to a value in regs' pointer space, in which case it
|
|
// won't be visible to the GC.
|
|
runtime.GC()
|
|
}
|
|
ftyp := ctxt.ftyp
|
|
f := ctxt.fn
|
|
|
|
_, _, abid := funcLayout(ftyp, nil)
|
|
|
|
// Copy arguments into Values.
|
|
ptr := frame
|
|
in := make([]Value, 0, int(ftyp.inCount))
|
|
for i, typ := range ftyp.in() {
|
|
if typ.Size() == 0 {
|
|
in = append(in, Zero(typ))
|
|
continue
|
|
}
|
|
v := Value{typ, nil, flag(typ.Kind())}
|
|
steps := abid.call.stepsForValue(i)
|
|
if st := steps[0]; st.kind == abiStepStack {
|
|
if ifaceIndir(typ) {
|
|
// value cannot be inlined in interface data.
|
|
// Must make a copy, because f might keep a reference to it,
|
|
// and we cannot let f keep a reference to the stack frame
|
|
// after this function returns, not even a read-only reference.
|
|
v.ptr = unsafe_New(typ)
|
|
if typ.size > 0 {
|
|
typedmemmove(typ, v.ptr, add(ptr, st.stkOff, "typ.size > 0"))
|
|
}
|
|
v.flag |= flagIndir
|
|
} else {
|
|
v.ptr = *(*unsafe.Pointer)(add(ptr, st.stkOff, "1-ptr"))
|
|
}
|
|
} else {
|
|
if ifaceIndir(typ) {
|
|
// All that's left is values passed in registers that we need to
|
|
// create space for the values.
|
|
v.flag |= flagIndir
|
|
v.ptr = unsafe_New(typ)
|
|
for _, st := range steps {
|
|
switch st.kind {
|
|
case abiStepIntReg:
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
intFromReg(regs, st.ireg, st.size, offset)
|
|
case abiStepPointer:
|
|
s := add(v.ptr, st.offset, "precomputed value offset")
|
|
*((*unsafe.Pointer)(s)) = regs.Ptrs[st.ireg]
|
|
case abiStepFloatReg:
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
floatFromReg(regs, st.freg, st.size, offset)
|
|
case abiStepStack:
|
|
panic("register-based return value has stack component")
|
|
default:
|
|
panic("unknown ABI part kind")
|
|
}
|
|
}
|
|
} else {
|
|
// Pointer-valued data gets put directly
|
|
// into v.ptr.
|
|
if steps[0].kind != abiStepPointer {
|
|
print("kind=", steps[0].kind, ", type=", typ.String(), "\n")
|
|
panic("mismatch between ABI description and types")
|
|
}
|
|
v.ptr = regs.Ptrs[steps[0].ireg]
|
|
}
|
|
}
|
|
in = append(in, v)
|
|
}
|
|
|
|
// Call underlying function.
|
|
out := f(in)
|
|
numOut := ftyp.NumOut()
|
|
if len(out) != numOut {
|
|
panic("reflect: wrong return count from function created by MakeFunc")
|
|
}
|
|
|
|
// Copy results back into argument frame and register space.
|
|
if numOut > 0 {
|
|
for i, typ := range ftyp.out() {
|
|
v := out[i]
|
|
if v.typ == nil {
|
|
panic("reflect: function created by MakeFunc using " + funcName(f) +
|
|
" returned zero Value")
|
|
}
|
|
if v.flag&flagRO != 0 {
|
|
panic("reflect: function created by MakeFunc using " + funcName(f) +
|
|
" returned value obtained from unexported field")
|
|
}
|
|
if typ.size == 0 {
|
|
continue
|
|
}
|
|
|
|
// Convert v to type typ if v is assignable to a variable
|
|
// of type t in the language spec.
|
|
// See issue 28761.
|
|
//
|
|
//
|
|
// TODO(mknyszek): In the switch to the register ABI we lost
|
|
// the scratch space here for the register cases (and
|
|
// temporarily for all the cases).
|
|
//
|
|
// If/when this happens, take note of the following:
|
|
//
|
|
// We must clear the destination before calling assignTo,
|
|
// in case assignTo writes (with memory barriers) to the
|
|
// target location used as scratch space. See issue 39541.
|
|
v = v.assignTo("reflect.MakeFunc", typ, nil)
|
|
stepsLoop:
|
|
for _, st := range abid.ret.stepsForValue(i) {
|
|
switch st.kind {
|
|
case abiStepStack:
|
|
// Copy values to the "stack."
|
|
addr := add(ptr, st.stkOff, "precomputed stack arg offset")
|
|
// Do not use write barriers. The stack space used
|
|
// for this call is not adequately zeroed, and we
|
|
// are careful to keep the arguments alive until we
|
|
// return to makeFuncStub's caller.
|
|
if v.flag&flagIndir != 0 {
|
|
memmove(addr, v.ptr, st.size)
|
|
} else {
|
|
// This case must be a pointer type.
|
|
*(*uintptr)(addr) = uintptr(v.ptr)
|
|
}
|
|
// There's only one step for a stack-allocated value.
|
|
break stepsLoop
|
|
case abiStepIntReg, abiStepPointer:
|
|
// Copy values to "integer registers."
|
|
if v.flag&flagIndir != 0 {
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
intToReg(regs, st.ireg, st.size, offset)
|
|
} else {
|
|
// Only populate the Ints space on the return path.
|
|
// This is safe because out is kept alive until the
|
|
// end of this function, and the return path through
|
|
// makeFuncStub has no preemption, so these pointers
|
|
// are always visible to the GC.
|
|
regs.Ints[st.ireg] = uintptr(v.ptr)
|
|
}
|
|
case abiStepFloatReg:
|
|
// Copy values to "float registers."
|
|
if v.flag&flagIndir == 0 {
|
|
panic("attempted to copy pointer to FP register")
|
|
}
|
|
offset := add(v.ptr, st.offset, "precomputed value offset")
|
|
floatToReg(regs, st.freg, st.size, offset)
|
|
default:
|
|
panic("unknown ABI part kind")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Announce that the return values are valid.
|
|
// After this point the runtime can depend on the return values being valid.
|
|
*retValid = true
|
|
|
|
// We have to make sure that the out slice lives at least until
|
|
// the runtime knows the return values are valid. Otherwise, the
|
|
// return values might not be scanned by anyone during a GC.
|
|
// (out would be dead, and the return slots not yet alive.)
|
|
runtime.KeepAlive(out)
|
|
|
|
// runtime.getArgInfo expects to be able to find ctxt on the
|
|
// stack when it finds our caller, makeFuncStub. Make sure it
|
|
// doesn't get garbage collected.
|
|
runtime.KeepAlive(ctxt)
|
|
}
|
|
|
|
// methodReceiver returns information about the receiver
|
|
// described by v. The Value v may or may not have the
|
|
// flagMethod bit set, so the kind cached in v.flag should
|
|
// not be used.
|
|
// The return value rcvrtype gives the method's actual receiver type.
|
|
// The return value t gives the method type signature (without the receiver).
|
|
// The return value fn is a pointer to the method code.
|
|
func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) {
|
|
i := methodIndex
|
|
if v.typ.Kind() == Interface {
|
|
tt := (*interfaceType)(unsafe.Pointer(v.typ))
|
|
if uint(i) >= uint(len(tt.methods)) {
|
|
panic("reflect: internal error: invalid method index")
|
|
}
|
|
m := &tt.methods[i]
|
|
if !tt.nameOff(m.name).isExported() {
|
|
panic("reflect: " + op + " of unexported method")
|
|
}
|
|
iface := (*nonEmptyInterface)(v.ptr)
|
|
if iface.itab == nil {
|
|
panic("reflect: " + op + " of method on nil interface value")
|
|
}
|
|
rcvrtype = iface.itab.typ
|
|
fn = unsafe.Pointer(&iface.itab.fun[i])
|
|
t = (*funcType)(unsafe.Pointer(tt.typeOff(m.typ)))
|
|
} else {
|
|
rcvrtype = v.typ
|
|
ms := v.typ.exportedMethods()
|
|
if uint(i) >= uint(len(ms)) {
|
|
panic("reflect: internal error: invalid method index")
|
|
}
|
|
m := ms[i]
|
|
if !v.typ.nameOff(m.name).isExported() {
|
|
panic("reflect: " + op + " of unexported method")
|
|
}
|
|
ifn := v.typ.textOff(m.ifn)
|
|
fn = unsafe.Pointer(&ifn)
|
|
t = (*funcType)(unsafe.Pointer(v.typ.typeOff(m.mtyp)))
|
|
}
|
|
return
|
|
}
|
|
|
|
// v is a method receiver. Store at p the word which is used to
|
|
// encode that receiver at the start of the argument list.
|
|
// Reflect uses the "interface" calling convention for
|
|
// methods, which always uses one word to record the receiver.
|
|
func storeRcvr(v Value, p unsafe.Pointer) {
|
|
t := v.typ
|
|
if t.Kind() == Interface {
|
|
// the interface data word becomes the receiver word
|
|
iface := (*nonEmptyInterface)(v.ptr)
|
|
*(*unsafe.Pointer)(p) = iface.word
|
|
} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
|
|
*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
|
|
} else {
|
|
*(*unsafe.Pointer)(p) = v.ptr
|
|
}
|
|
}
|
|
|
|
// align returns the result of rounding x up to a multiple of n.
|
|
// n must be a power of two.
|
|
func align(x, n uintptr) uintptr {
|
|
return (x + n - 1) &^ (n - 1)
|
|
}
|
|
|
|
// callMethod is the call implementation used by a function returned
|
|
// by makeMethodValue (used by v.Method(i).Interface()).
|
|
// It is a streamlined version of the usual reflect call: the caller has
|
|
// already laid out the argument frame for us, so we don't have
|
|
// to deal with individual Values for each argument.
|
|
// It is in this file so that it can be next to the two similar functions above.
|
|
// The remainder of the makeMethodValue implementation is in makefunc.go.
|
|
//
|
|
// NOTE: This function must be marked as a "wrapper" in the generated code,
|
|
// so that the linker can make it work correctly for panic and recover.
|
|
// The gc compilers know to do that for the name "reflect.callMethod".
|
|
//
|
|
// ctxt is the "closure" generated by makeVethodValue.
|
|
// frame is a pointer to the arguments to that closure on the stack.
|
|
// retValid points to a boolean which should be set when the results
|
|
// section of frame is set.
|
|
//
|
|
// regs contains the argument values passed in registers and will contain
|
|
// the values returned from ctxt.fn in registers.
|
|
func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
|
|
rcvr := ctxt.rcvr
|
|
rcvrType, valueFuncType, methodFn := methodReceiver("call", rcvr, ctxt.method)
|
|
|
|
// There are two ABIs at play here.
|
|
//
|
|
// methodValueCall was invoked with the ABI assuming there was no
|
|
// receiver ("value ABI") and that's what frame and regs are holding.
|
|
//
|
|
// Meanwhile, we need to actually call the method with a receiver, which
|
|
// has its own ABI ("method ABI"). Everything that follows is a translation
|
|
// between the two.
|
|
_, _, valueABI := funcLayout(valueFuncType, nil)
|
|
valueFrame, valueRegs := frame, regs
|
|
methodFrameType, methodFramePool, methodABI := funcLayout(valueFuncType, rcvrType)
|
|
|
|
// Make a new frame that is one word bigger so we can store the receiver.
|
|
// This space is used for both arguments and return values.
|
|
methodFrame := methodFramePool.Get().(unsafe.Pointer)
|
|
var methodRegs abi.RegArgs
|
|
|
|
// Deal with the receiver. It's guaranteed to only be one word in size.
|
|
switch st := methodABI.call.steps[0]; st.kind {
|
|
case abiStepStack:
|
|
// Only copy the receiver to the stack if the ABI says so.
|
|
// Otherwise, it'll be in a register already.
|
|
storeRcvr(rcvr, methodFrame)
|
|
case abiStepPointer:
|
|
// Put the receiver in a register.
|
|
storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ptrs[st.ireg]))
|
|
fallthrough
|
|
case abiStepIntReg:
|
|
storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ints[st.ireg]))
|
|
case abiStepFloatReg:
|
|
storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Floats[st.freg]))
|
|
default:
|
|
panic("unknown ABI parameter kind")
|
|
}
|
|
|
|
// Translate the rest of the arguments.
|
|
for i, t := range valueFuncType.in() {
|
|
valueSteps := valueABI.call.stepsForValue(i)
|
|
methodSteps := methodABI.call.stepsForValue(i + 1)
|
|
|
|
// Zero-sized types are trivial: nothing to do.
|
|
if len(valueSteps) == 0 {
|
|
if len(methodSteps) != 0 {
|
|
panic("method ABI and value ABI do not align")
|
|
}
|
|
continue
|
|
}
|
|
|
|
// There are four cases to handle in translating each
|
|
// argument:
|
|
// 1. Stack -> stack translation.
|
|
// 2. Stack -> registers translation.
|
|
// 3. Registers -> stack translation.
|
|
// 4. Registers -> registers translation.
|
|
|
|
// If the value ABI passes the value on the stack,
|
|
// then the method ABI does too, because it has strictly
|
|
// fewer arguments. Simply copy between the two.
|
|
if vStep := valueSteps[0]; vStep.kind == abiStepStack {
|
|
mStep := methodSteps[0]
|
|
// Handle stack -> stack translation.
|
|
if mStep.kind == abiStepStack {
|
|
if vStep.size != mStep.size {
|
|
panic("method ABI and value ABI do not align")
|
|
}
|
|
typedmemmove(t,
|
|
add(methodFrame, mStep.stkOff, "precomputed stack offset"),
|
|
add(valueFrame, vStep.stkOff, "precomputed stack offset"))
|
|
continue
|
|
}
|
|
// Handle stack -> register translation.
|
|
for _, mStep := range methodSteps {
|
|
from := add(valueFrame, vStep.stkOff+mStep.offset, "precomputed stack offset")
|
|
switch mStep.kind {
|
|
case abiStepPointer:
|
|
// Do the pointer copy directly so we get a write barrier.
|
|
methodRegs.Ptrs[mStep.ireg] = *(*unsafe.Pointer)(from)
|
|
fallthrough // We need to make sure this ends up in Ints, too.
|
|
case abiStepIntReg:
|
|
intToReg(&methodRegs, mStep.ireg, mStep.size, from)
|
|
case abiStepFloatReg:
|
|
floatToReg(&methodRegs, mStep.freg, mStep.size, from)
|
|
default:
|
|
panic("unexpected method step")
|
|
}
|
|
}
|
|
continue
|
|
}
|
|
// Handle register -> stack translation.
|
|
if mStep := methodSteps[0]; mStep.kind == abiStepStack {
|
|
for _, vStep := range valueSteps {
|
|
to := add(methodFrame, mStep.stkOff+vStep.offset, "precomputed stack offset")
|
|
switch vStep.kind {
|
|
case abiStepPointer:
|
|
// Do the pointer copy directly so we get a write barrier.
|
|
*(*unsafe.Pointer)(to) = valueRegs.Ptrs[vStep.ireg]
|
|
case abiStepIntReg:
|
|
intFromReg(valueRegs, vStep.ireg, vStep.size, to)
|
|
case abiStepFloatReg:
|
|
floatFromReg(valueRegs, vStep.freg, vStep.size, to)
|
|
default:
|
|
panic("unexpected value step")
|
|
}
|
|
}
|
|
continue
|
|
}
|
|
// Handle register -> register translation.
|
|
if len(valueSteps) != len(methodSteps) {
|
|
// Because it's the same type for the value, and it's assigned
|
|
// to registers both times, it should always take up the same
|
|
// number of registers for each ABI.
|
|
panic("method ABI and value ABI don't align")
|
|
}
|
|
for i, vStep := range valueSteps {
|
|
mStep := methodSteps[i]
|
|
if mStep.kind != vStep.kind {
|
|
panic("method ABI and value ABI don't align")
|
|
}
|
|
switch vStep.kind {
|
|
case abiStepPointer:
|
|
// Copy this too, so we get a write barrier.
|
|
methodRegs.Ptrs[mStep.ireg] = valueRegs.Ptrs[vStep.ireg]
|
|
fallthrough
|
|
case abiStepIntReg:
|
|
methodRegs.Ints[mStep.ireg] = valueRegs.Ints[vStep.ireg]
|
|
case abiStepFloatReg:
|
|
methodRegs.Floats[mStep.freg] = valueRegs.Floats[vStep.freg]
|
|
default:
|
|
panic("unexpected value step")
|
|
}
|
|
}
|
|
}
|
|
|
|
methodFrameSize := methodFrameType.size
|
|
// TODO(mknyszek): Remove this when we no longer have
|
|
// caller reserved spill space.
|
|
methodFrameSize = align(methodFrameSize, goarch.PtrSize)
|
|
methodFrameSize += methodABI.spill
|
|
|
|
// Mark pointers in registers for the return path.
|
|
methodRegs.ReturnIsPtr = methodABI.outRegPtrs
|
|
|
|
// Call.
|
|
// Call copies the arguments from scratch to the stack, calls fn,
|
|
// and then copies the results back into scratch.
|
|
call(methodFrameType, methodFn, methodFrame, uint32(methodFrameType.size), uint32(methodABI.retOffset), uint32(methodFrameSize), &methodRegs)
|
|
|
|
// Copy return values.
|
|
//
|
|
// This is somewhat simpler because both ABIs have an identical
|
|
// return value ABI (the types are identical). As a result, register
|
|
// results can simply be copied over. Stack-allocated values are laid
|
|
// out the same, but are at different offsets from the start of the frame
|
|
// Ignore any changes to args.
|
|
// Avoid constructing out-of-bounds pointers if there are no return values.
|
|
// because the arguments may be laid out differently.
|
|
if valueRegs != nil {
|
|
*valueRegs = methodRegs
|
|
}
|
|
if retSize := methodFrameType.size - methodABI.retOffset; retSize > 0 {
|
|
valueRet := add(valueFrame, valueABI.retOffset, "valueFrame's size > retOffset")
|
|
methodRet := add(methodFrame, methodABI.retOffset, "methodFrame's size > retOffset")
|
|
// This copies to the stack. Write barriers are not needed.
|
|
memmove(valueRet, methodRet, retSize)
|
|
}
|
|
|
|
// Tell the runtime it can now depend on the return values
|
|
// being properly initialized.
|
|
*retValid = true
|
|
|
|
// Clear the scratch space and put it back in the pool.
|
|
// This must happen after the statement above, so that the return
|
|
// values will always be scanned by someone.
|
|
typedmemclr(methodFrameType, methodFrame)
|
|
methodFramePool.Put(methodFrame)
|
|
|
|
// See the comment in callReflect.
|
|
runtime.KeepAlive(ctxt)
|
|
|
|
// Keep valueRegs alive because it may hold live pointer results.
|
|
// The caller (methodValueCall) has it as a stack object, which is only
|
|
// scanned when there is a reference to it.
|
|
runtime.KeepAlive(valueRegs)
|
|
}
|
|
|
|
// funcName returns the name of f, for use in error messages.
|
|
func funcName(f func([]Value) []Value) string {
|
|
pc := *(*uintptr)(unsafe.Pointer(&f))
|
|
rf := runtime.FuncForPC(pc)
|
|
if rf != nil {
|
|
return rf.Name()
|
|
}
|
|
return "closure"
|
|
}
|
|
|
|
// Cap returns v's capacity.
|
|
// It panics if v's Kind is not Array, Chan, Slice or pointer to Array.
|
|
func (v Value) Cap() int {
|
|
// capNonSlice is split out to keep Cap inlineable for slice kinds.
|
|
if v.kind() == Slice {
|
|
return (*unsafeheader.Slice)(v.ptr).Cap
|
|
}
|
|
return v.capNonSlice()
|
|
}
|
|
|
|
func (v Value) capNonSlice() int {
|
|
k := v.kind()
|
|
switch k {
|
|
case Array:
|
|
return v.typ.Len()
|
|
case Chan:
|
|
return chancap(v.pointer())
|
|
case Ptr:
|
|
if v.typ.Elem().Kind() == Array {
|
|
return v.typ.Elem().Len()
|
|
}
|
|
panic("reflect: call of reflect.Value.Cap on ptr to non-array Value")
|
|
}
|
|
panic(&ValueError{"reflect.Value.Cap", v.kind()})
|
|
}
|
|
|
|
// Close closes the channel v.
|
|
// It panics if v's Kind is not Chan.
|
|
func (v Value) Close() {
|
|
v.mustBe(Chan)
|
|
v.mustBeExported()
|
|
chanclose(v.pointer())
|
|
}
|
|
|
|
// CanComplex reports whether Complex can be used without panicking.
|
|
func (v Value) CanComplex() bool {
|
|
switch v.kind() {
|
|
case Complex64, Complex128:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Complex returns v's underlying value, as a complex128.
|
|
// It panics if v's Kind is not Complex64 or Complex128
|
|
func (v Value) Complex() complex128 {
|
|
k := v.kind()
|
|
switch k {
|
|
case Complex64:
|
|
return complex128(*(*complex64)(v.ptr))
|
|
case Complex128:
|
|
return *(*complex128)(v.ptr)
|
|
}
|
|
panic(&ValueError{"reflect.Value.Complex", v.kind()})
|
|
}
|
|
|
|
// Elem returns the value that the interface v contains
|
|
// or that the pointer v points to.
|
|
// It panics if v's Kind is not Interface or Pointer.
|
|
// It returns the zero Value if v is nil.
|
|
func (v Value) Elem() Value {
|
|
k := v.kind()
|
|
switch k {
|
|
case Interface:
|
|
var eface any
|
|
if v.typ.NumMethod() == 0 {
|
|
eface = *(*any)(v.ptr)
|
|
} else {
|
|
eface = (any)(*(*interface {
|
|
M()
|
|
})(v.ptr))
|
|
}
|
|
x := unpackEface(eface)
|
|
if x.flag != 0 {
|
|
x.flag |= v.flag.ro()
|
|
}
|
|
return x
|
|
case Pointer:
|
|
ptr := v.ptr
|
|
if v.flag&flagIndir != 0 {
|
|
if ifaceIndir(v.typ) {
|
|
// This is a pointer to a not-in-heap object. ptr points to a uintptr
|
|
// in the heap. That uintptr is the address of a not-in-heap object.
|
|
// In general, pointers to not-in-heap objects can be total junk.
|
|
// But Elem() is asking to dereference it, so the user has asserted
|
|
// that at least it is a valid pointer (not just an integer stored in
|
|
// a pointer slot). So let's check, to make sure that it isn't a pointer
|
|
// that the runtime will crash on if it sees it during GC or write barriers.
|
|
// Since it is a not-in-heap pointer, all pointers to the heap are
|
|
// forbidden! That makes the test pretty easy.
|
|
// See issue 48399.
|
|
if !verifyNotInHeapPtr(*(*uintptr)(ptr)) {
|
|
panic("reflect: reflect.Value.Elem on an invalid notinheap pointer")
|
|
}
|
|
}
|
|
ptr = *(*unsafe.Pointer)(ptr)
|
|
}
|
|
// The returned value's address is v's value.
|
|
if ptr == nil {
|
|
return Value{}
|
|
}
|
|
tt := (*ptrType)(unsafe.Pointer(v.typ))
|
|
typ := tt.elem
|
|
fl := v.flag&flagRO | flagIndir | flagAddr
|
|
fl |= flag(typ.Kind())
|
|
return Value{typ, ptr, fl}
|
|
}
|
|
panic(&ValueError{"reflect.Value.Elem", v.kind()})
|
|
}
|
|
|
|
// Field returns the i'th field of the struct v.
|
|
// It panics if v's Kind is not Struct or i is out of range.
|
|
func (v Value) Field(i int) Value {
|
|
if v.kind() != Struct {
|
|
panic(&ValueError{"reflect.Value.Field", v.kind()})
|
|
}
|
|
tt := (*structType)(unsafe.Pointer(v.typ))
|
|
if uint(i) >= uint(len(tt.fields)) {
|
|
panic("reflect: Field index out of range")
|
|
}
|
|
field := &tt.fields[i]
|
|
typ := field.typ
|
|
|
|
// Inherit permission bits from v, but clear flagEmbedRO.
|
|
fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
|
|
// Using an unexported field forces flagRO.
|
|
if !field.name.isExported() {
|
|
if field.embedded() {
|
|
fl |= flagEmbedRO
|
|
} else {
|
|
fl |= flagStickyRO
|
|
}
|
|
}
|
|
// Either flagIndir is set and v.ptr points at struct,
|
|
// or flagIndir is not set and v.ptr is the actual struct data.
|
|
// In the former case, we want v.ptr + offset.
|
|
// In the latter case, we must have field.offset = 0,
|
|
// so v.ptr + field.offset is still the correct address.
|
|
ptr := add(v.ptr, field.offset, "same as non-reflect &v.field")
|
|
return Value{typ, ptr, fl}
|
|
}
|
|
|
|
// FieldByIndex returns the nested field corresponding to index.
|
|
// It panics if evaluation requires stepping through a nil
|
|
// pointer or a field that is not a struct.
|
|
func (v Value) FieldByIndex(index []int) Value {
|
|
if len(index) == 1 {
|
|
return v.Field(index[0])
|
|
}
|
|
v.mustBe(Struct)
|
|
for i, x := range index {
|
|
if i > 0 {
|
|
if v.Kind() == Pointer && v.typ.Elem().Kind() == Struct {
|
|
if v.IsNil() {
|
|
panic("reflect: indirection through nil pointer to embedded struct")
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
}
|
|
v = v.Field(x)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// FieldByIndexErr returns the nested field corresponding to index.
|
|
// It returns an error if evaluation requires stepping through a nil
|
|
// pointer, but panics if it must step through a field that
|
|
// is not a struct.
|
|
func (v Value) FieldByIndexErr(index []int) (Value, error) {
|
|
if len(index) == 1 {
|
|
return v.Field(index[0]), nil
|
|
}
|
|
v.mustBe(Struct)
|
|
for i, x := range index {
|
|
if i > 0 {
|
|
if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
|
|
if v.IsNil() {
|
|
return Value{}, errors.New("reflect: indirection through nil pointer to embedded struct field " + v.typ.Elem().Name())
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
}
|
|
v = v.Field(x)
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// FieldByName returns the struct field with the given name.
|
|
// It returns the zero Value if no field was found.
|
|
// It panics if v's Kind is not struct.
|
|
func (v Value) FieldByName(name string) Value {
|
|
v.mustBe(Struct)
|
|
if f, ok := v.typ.FieldByName(name); ok {
|
|
return v.FieldByIndex(f.Index)
|
|
}
|
|
return Value{}
|
|
}
|
|
|
|
// FieldByNameFunc returns the struct field with a name
|
|
// that satisfies the match function.
|
|
// It panics if v's Kind is not struct.
|
|
// It returns the zero Value if no field was found.
|
|
func (v Value) FieldByNameFunc(match func(string) bool) Value {
|
|
if f, ok := v.typ.FieldByNameFunc(match); ok {
|
|
return v.FieldByIndex(f.Index)
|
|
}
|
|
return Value{}
|
|
}
|
|
|
|
// CanFloat reports whether Float can be used without panicking.
|
|
func (v Value) CanFloat() bool {
|
|
switch v.kind() {
|
|
case Float32, Float64:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Float returns v's underlying value, as a float64.
|
|
// It panics if v's Kind is not Float32 or Float64
|
|
func (v Value) Float() float64 {
|
|
k := v.kind()
|
|
switch k {
|
|
case Float32:
|
|
return float64(*(*float32)(v.ptr))
|
|
case Float64:
|
|
return *(*float64)(v.ptr)
|
|
}
|
|
panic(&ValueError{"reflect.Value.Float", v.kind()})
|
|
}
|
|
|
|
var uint8Type = TypeOf(uint8(0)).(*rtype)
|
|
|
|
// Index returns v's i'th element.
|
|
// It panics if v's Kind is not Array, Slice, or String or i is out of range.
|
|
func (v Value) Index(i int) Value {
|
|
switch v.kind() {
|
|
case Array:
|
|
tt := (*arrayType)(unsafe.Pointer(v.typ))
|
|
if uint(i) >= uint(tt.len) {
|
|
panic("reflect: array index out of range")
|
|
}
|
|
typ := tt.elem
|
|
offset := uintptr(i) * typ.size
|
|
|
|
// Either flagIndir is set and v.ptr points at array,
|
|
// or flagIndir is not set and v.ptr is the actual array data.
|
|
// In the former case, we want v.ptr + offset.
|
|
// In the latter case, we must be doing Index(0), so offset = 0,
|
|
// so v.ptr + offset is still the correct address.
|
|
val := add(v.ptr, offset, "same as &v[i], i < tt.len")
|
|
fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
|
|
return Value{typ, val, fl}
|
|
|
|
case Slice:
|
|
// Element flag same as Elem of Pointer.
|
|
// Addressable, indirect, possibly read-only.
|
|
s := (*unsafeheader.Slice)(v.ptr)
|
|
if uint(i) >= uint(s.Len) {
|
|
panic("reflect: slice index out of range")
|
|
}
|
|
tt := (*sliceType)(unsafe.Pointer(v.typ))
|
|
typ := tt.elem
|
|
val := arrayAt(s.Data, i, typ.size, "i < s.Len")
|
|
fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
|
|
return Value{typ, val, fl}
|
|
|
|
case String:
|
|
s := (*unsafeheader.String)(v.ptr)
|
|
if uint(i) >= uint(s.Len) {
|
|
panic("reflect: string index out of range")
|
|
}
|
|
p := arrayAt(s.Data, i, 1, "i < s.Len")
|
|
fl := v.flag.ro() | flag(Uint8) | flagIndir
|
|
return Value{uint8Type, p, fl}
|
|
}
|
|
panic(&ValueError{"reflect.Value.Index", v.kind()})
|
|
}
|
|
|
|
// CanInt reports whether Int can be used without panicking.
|
|
func (v Value) CanInt() bool {
|
|
switch v.kind() {
|
|
case Int, Int8, Int16, Int32, Int64:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Int returns v's underlying value, as an int64.
|
|
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
|
|
func (v Value) Int() int64 {
|
|
k := v.kind()
|
|
p := v.ptr
|
|
switch k {
|
|
case Int:
|
|
return int64(*(*int)(p))
|
|
case Int8:
|
|
return int64(*(*int8)(p))
|
|
case Int16:
|
|
return int64(*(*int16)(p))
|
|
case Int32:
|
|
return int64(*(*int32)(p))
|
|
case Int64:
|
|
return *(*int64)(p)
|
|
}
|
|
panic(&ValueError{"reflect.Value.Int", v.kind()})
|
|
}
|
|
|
|
// CanInterface reports whether Interface can be used without panicking.
|
|
func (v Value) CanInterface() bool {
|
|
if v.flag == 0 {
|
|
panic(&ValueError{"reflect.Value.CanInterface", Invalid})
|
|
}
|
|
return v.flag&flagRO == 0
|
|
}
|
|
|
|
// Interface returns v's current value as an interface{}.
|
|
// It is equivalent to:
|
|
//
|
|
// var i interface{} = (v's underlying value)
|
|
//
|
|
// It panics if the Value was obtained by accessing
|
|
// unexported struct fields.
|
|
func (v Value) Interface() (i any) {
|
|
return valueInterface(v, true)
|
|
}
|
|
|
|
func valueInterface(v Value, safe bool) any {
|
|
if v.flag == 0 {
|
|
panic(&ValueError{"reflect.Value.Interface", Invalid})
|
|
}
|
|
if safe && v.flag&flagRO != 0 {
|
|
// Do not allow access to unexported values via Interface,
|
|
// because they might be pointers that should not be
|
|
// writable or methods or function that should not be callable.
|
|
panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
|
|
}
|
|
if v.flag&flagMethod != 0 {
|
|
v = makeMethodValue("Interface", v)
|
|
}
|
|
|
|
if v.kind() == Interface {
|
|
// Special case: return the element inside the interface.
|
|
// Empty interface has one layout, all interfaces with
|
|
// methods have a second layout.
|
|
if v.NumMethod() == 0 {
|
|
return *(*any)(v.ptr)
|
|
}
|
|
return *(*interface {
|
|
M()
|
|
})(v.ptr)
|
|
}
|
|
|
|
// TODO: pass safe to packEface so we don't need to copy if safe==true?
|
|
return packEface(v)
|
|
}
|
|
|
|
// InterfaceData returns a pair of unspecified uintptr values.
|
|
// It panics if v's Kind is not Interface.
|
|
//
|
|
// In earlier versions of Go, this function returned the interface's
|
|
// value as a uintptr pair. As of Go 1.4, the implementation of
|
|
// interface values precludes any defined use of InterfaceData.
|
|
//
|
|
// Deprecated: The memory representation of interface values is not
|
|
// compatible with InterfaceData.
|
|
func (v Value) InterfaceData() [2]uintptr {
|
|
v.mustBe(Interface)
|
|
// We treat this as a read operation, so we allow
|
|
// it even for unexported data, because the caller
|
|
// has to import "unsafe" to turn it into something
|
|
// that can be abused.
|
|
// Interface value is always bigger than a word; assume flagIndir.
|
|
return *(*[2]uintptr)(v.ptr)
|
|
}
|
|
|
|
// IsNil reports whether its argument v is nil. The argument must be
|
|
// a chan, func, interface, map, pointer, or slice value; if it is
|
|
// not, IsNil panics. Note that IsNil is not always equivalent to a
|
|
// regular comparison with nil in Go. For example, if v was created
|
|
// by calling ValueOf with an uninitialized interface variable i,
|
|
// i==nil will be true but v.IsNil will panic as v will be the zero
|
|
// Value.
|
|
func (v Value) IsNil() bool {
|
|
k := v.kind()
|
|
switch k {
|
|
case Chan, Func, Map, Pointer, UnsafePointer:
|
|
if v.flag&flagMethod != 0 {
|
|
return false
|
|
}
|
|
ptr := v.ptr
|
|
if v.flag&flagIndir != 0 {
|
|
ptr = *(*unsafe.Pointer)(ptr)
|
|
}
|
|
return ptr == nil
|
|
case Interface, Slice:
|
|
// Both interface and slice are nil if first word is 0.
|
|
// Both are always bigger than a word; assume flagIndir.
|
|
return *(*unsafe.Pointer)(v.ptr) == nil
|
|
}
|
|
panic(&ValueError{"reflect.Value.IsNil", v.kind()})
|
|
}
|
|
|
|
// IsValid reports whether v represents a value.
|
|
// It returns false if v is the zero Value.
|
|
// If IsValid returns false, all other methods except String panic.
|
|
// Most functions and methods never return an invalid Value.
|
|
// If one does, its documentation states the conditions explicitly.
|
|
func (v Value) IsValid() bool {
|
|
return v.flag != 0
|
|
}
|
|
|
|
// IsZero reports whether v is the zero value for its type.
|
|
// It panics if the argument is invalid.
|
|
func (v Value) IsZero() bool {
|
|
switch v.kind() {
|
|
case Bool:
|
|
return !v.Bool()
|
|
case Int, Int8, Int16, Int32, Int64:
|
|
return v.Int() == 0
|
|
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
return v.Uint() == 0
|
|
case Float32, Float64:
|
|
return math.Float64bits(v.Float()) == 0
|
|
case Complex64, Complex128:
|
|
c := v.Complex()
|
|
return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
|
|
case Array:
|
|
for i := 0; i < v.Len(); i++ {
|
|
if !v.Index(i).IsZero() {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer:
|
|
return v.IsNil()
|
|
case String:
|
|
return v.Len() == 0
|
|
case Struct:
|
|
for i := 0; i < v.NumField(); i++ {
|
|
if !v.Field(i).IsZero() {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
default:
|
|
// This should never happens, but will act as a safeguard for
|
|
// later, as a default value doesn't makes sense here.
|
|
panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
|
|
}
|
|
}
|
|
|
|
// Kind returns v's Kind.
|
|
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
|
|
func (v Value) Kind() Kind {
|
|
return v.kind()
|
|
}
|
|
|
|
// Len returns v's length.
|
|
// It panics if v's Kind is not Array, Chan, Map, Slice, String, or pointer to Array.
|
|
func (v Value) Len() int {
|
|
// lenNonSlice is split out to keep Len inlineable for slice kinds.
|
|
if v.kind() == Slice {
|
|
return (*unsafeheader.Slice)(v.ptr).Len
|
|
}
|
|
return v.lenNonSlice()
|
|
}
|
|
|
|
func (v Value) lenNonSlice() int {
|
|
switch k := v.kind(); k {
|
|
case Array:
|
|
tt := (*arrayType)(unsafe.Pointer(v.typ))
|
|
return int(tt.len)
|
|
case Chan:
|
|
return chanlen(v.pointer())
|
|
case Map:
|
|
return maplen(v.pointer())
|
|
case String:
|
|
// String is bigger than a word; assume flagIndir.
|
|
return (*unsafeheader.String)(v.ptr).Len
|
|
case Ptr:
|
|
if v.typ.Elem().Kind() == Array {
|
|
return v.typ.Elem().Len()
|
|
}
|
|
panic("reflect: call of reflect.Value.Len on ptr to non-array Value")
|
|
}
|
|
panic(&ValueError{"reflect.Value.Len", v.kind()})
|
|
}
|
|
|
|
var stringType = TypeOf("").(*rtype)
|
|
|
|
// MapIndex returns the value associated with key in the map v.
|
|
// It panics if v's Kind is not Map.
|
|
// It returns the zero Value if key is not found in the map or if v represents a nil map.
|
|
// As in Go, the key's value must be assignable to the map's key type.
|
|
func (v Value) MapIndex(key Value) Value {
|
|
v.mustBe(Map)
|
|
tt := (*mapType)(unsafe.Pointer(v.typ))
|
|
|
|
// Do not require key to be exported, so that DeepEqual
|
|
// and other programs can use all the keys returned by
|
|
// MapKeys as arguments to MapIndex. If either the map
|
|
// or the key is unexported, though, the result will be
|
|
// considered unexported. This is consistent with the
|
|
// behavior for structs, which allow read but not write
|
|
// of unexported fields.
|
|
|
|
var e unsafe.Pointer
|
|
if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize {
|
|
k := *(*string)(key.ptr)
|
|
e = mapaccess_faststr(v.typ, v.pointer(), k)
|
|
} else {
|
|
key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
|
|
var k unsafe.Pointer
|
|
if key.flag&flagIndir != 0 {
|
|
k = key.ptr
|
|
} else {
|
|
k = unsafe.Pointer(&key.ptr)
|
|
}
|
|
e = mapaccess(v.typ, v.pointer(), k)
|
|
}
|
|
if e == nil {
|
|
return Value{}
|
|
}
|
|
typ := tt.elem
|
|
fl := (v.flag | key.flag).ro()
|
|
fl |= flag(typ.Kind())
|
|
return copyVal(typ, fl, e)
|
|
}
|
|
|
|
// MapKeys returns a slice containing all the keys present in the map,
|
|
// in unspecified order.
|
|
// It panics if v's Kind is not Map.
|
|
// It returns an empty slice if v represents a nil map.
|
|
func (v Value) MapKeys() []Value {
|
|
v.mustBe(Map)
|
|
tt := (*mapType)(unsafe.Pointer(v.typ))
|
|
keyType := tt.key
|
|
|
|
fl := v.flag.ro() | flag(keyType.Kind())
|
|
|
|
m := v.pointer()
|
|
mlen := int(0)
|
|
if m != nil {
|
|
mlen = maplen(m)
|
|
}
|
|
var it hiter
|
|
mapiterinit(v.typ, m, &it)
|
|
a := make([]Value, mlen)
|
|
var i int
|
|
for i = 0; i < len(a); i++ {
|
|
key := mapiterkey(&it)
|
|
if key == nil {
|
|
// Someone deleted an entry from the map since we
|
|
// called maplen above. It's a data race, but nothing
|
|
// we can do about it.
|
|
break
|
|
}
|
|
a[i] = copyVal(keyType, fl, key)
|
|
mapiternext(&it)
|
|
}
|
|
return a[:i]
|
|
}
|
|
|
|
// hiter's structure matches runtime.hiter's structure.
|
|
// Having a clone here allows us to embed a map iterator
|
|
// inside type MapIter so that MapIters can be re-used
|
|
// without doing any allocations.
|
|
type hiter struct {
|
|
key unsafe.Pointer
|
|
elem unsafe.Pointer
|
|
t unsafe.Pointer
|
|
h unsafe.Pointer
|
|
buckets unsafe.Pointer
|
|
bptr unsafe.Pointer
|
|
overflow *[]unsafe.Pointer
|
|
oldoverflow *[]unsafe.Pointer
|
|
startBucket uintptr
|
|
offset uint8
|
|
wrapped bool
|
|
B uint8
|
|
i uint8
|
|
bucket uintptr
|
|
checkBucket uintptr
|
|
}
|
|
|
|
func (h *hiter) initialized() bool {
|
|
return h.t != nil
|
|
}
|
|
|
|
// A MapIter is an iterator for ranging over a map.
|
|
// See Value.MapRange.
|
|
type MapIter struct {
|
|
m Value
|
|
hiter hiter
|
|
}
|
|
|
|
// Key returns the key of iter's current map entry.
|
|
func (iter *MapIter) Key() Value {
|
|
if !iter.hiter.initialized() {
|
|
panic("MapIter.Key called before Next")
|
|
}
|
|
iterkey := mapiterkey(&iter.hiter)
|
|
if iterkey == nil {
|
|
panic("MapIter.Key called on exhausted iterator")
|
|
}
|
|
|
|
t := (*mapType)(unsafe.Pointer(iter.m.typ))
|
|
ktype := t.key
|
|
return copyVal(ktype, iter.m.flag.ro()|flag(ktype.Kind()), iterkey)
|
|
}
|
|
|
|
// SetIterKey assigns to v the key of iter's current map entry.
|
|
// It is equivalent to v.Set(iter.Key()), but it avoids allocating a new Value.
|
|
// As in Go, the key must be assignable to v's type.
|
|
func (v Value) SetIterKey(iter *MapIter) {
|
|
if !iter.hiter.initialized() {
|
|
panic("reflect: Value.SetIterKey called before Next")
|
|
}
|
|
iterkey := mapiterkey(&iter.hiter)
|
|
if iterkey == nil {
|
|
panic("reflect: Value.SetIterKey called on exhausted iterator")
|
|
}
|
|
|
|
v.mustBeAssignable()
|
|
var target unsafe.Pointer
|
|
if v.kind() == Interface {
|
|
target = v.ptr
|
|
}
|
|
|
|
t := (*mapType)(unsafe.Pointer(iter.m.typ))
|
|
ktype := t.key
|
|
|
|
key := Value{ktype, iterkey, iter.m.flag | flag(ktype.Kind()) | flagIndir}
|
|
key = key.assignTo("reflect.MapIter.SetKey", v.typ, target)
|
|
typedmemmove(v.typ, v.ptr, key.ptr)
|
|
}
|
|
|
|
// Value returns the value of iter's current map entry.
|
|
func (iter *MapIter) Value() Value {
|
|
if !iter.hiter.initialized() {
|
|
panic("MapIter.Value called before Next")
|
|
}
|
|
iterelem := mapiterelem(&iter.hiter)
|
|
if iterelem == nil {
|
|
panic("MapIter.Value called on exhausted iterator")
|
|
}
|
|
|
|
t := (*mapType)(unsafe.Pointer(iter.m.typ))
|
|
vtype := t.elem
|
|
return copyVal(vtype, iter.m.flag.ro()|flag(vtype.Kind()), iterelem)
|
|
}
|
|
|
|
// SetIterValue assigns to v the value of iter's current map entry.
|
|
// It is equivalent to v.Set(iter.Value()), but it avoids allocating a new Value.
|
|
// As in Go, the value must be assignable to v's type.
|
|
func (v Value) SetIterValue(iter *MapIter) {
|
|
if !iter.hiter.initialized() {
|
|
panic("reflect: Value.SetIterValue called before Next")
|
|
}
|
|
iterelem := mapiterelem(&iter.hiter)
|
|
if iterelem == nil {
|
|
panic("reflect: Value.SetIterValue called on exhausted iterator")
|
|
}
|
|
|
|
v.mustBeAssignable()
|
|
var target unsafe.Pointer
|
|
if v.kind() == Interface {
|
|
target = v.ptr
|
|
}
|
|
|
|
t := (*mapType)(unsafe.Pointer(iter.m.typ))
|
|
vtype := t.elem
|
|
|
|
elem := Value{vtype, iterelem, iter.m.flag | flag(vtype.Kind()) | flagIndir}
|
|
elem = elem.assignTo("reflect.MapIter.SetValue", v.typ, target)
|
|
typedmemmove(v.typ, v.ptr, elem.ptr)
|
|
}
|
|
|
|
// Next advances the map iterator and reports whether there is another
|
|
// entry. It returns false when iter is exhausted; subsequent
|
|
// calls to Key, Value, or Next will panic.
|
|
func (iter *MapIter) Next() bool {
|
|
if !iter.m.IsValid() {
|
|
panic("MapIter.Next called on an iterator that does not have an associated map Value")
|
|
}
|
|
if !iter.hiter.initialized() {
|
|
mapiterinit(iter.m.typ, iter.m.pointer(), &iter.hiter)
|
|
} else {
|
|
if mapiterkey(&iter.hiter) == nil {
|
|
panic("MapIter.Next called on exhausted iterator")
|
|
}
|
|
mapiternext(&iter.hiter)
|
|
}
|
|
return mapiterkey(&iter.hiter) != nil
|
|
}
|
|
|
|
// Reset modifies iter to iterate over v.
|
|
// It panics if v's Kind is not Map and v is not the zero Value.
|
|
// Reset(Value{}) causes iter to not to refer to any map,
|
|
// which may allow the previously iterated-over map to be garbage collected.
|
|
func (iter *MapIter) Reset(v Value) {
|
|
if v.IsValid() {
|
|
v.mustBe(Map)
|
|
}
|
|
iter.m = v
|
|
iter.hiter = hiter{}
|
|
}
|
|
|
|
// MapRange returns a range iterator for a map.
|
|
// It panics if v's Kind is not Map.
|
|
//
|
|
// Call Next to advance the iterator, and Key/Value to access each entry.
|
|
// Next returns false when the iterator is exhausted.
|
|
// MapRange follows the same iteration semantics as a range statement.
|
|
//
|
|
// Example:
|
|
//
|
|
// iter := reflect.ValueOf(m).MapRange()
|
|
// for iter.Next() {
|
|
// k := iter.Key()
|
|
// v := iter.Value()
|
|
// ...
|
|
// }
|
|
func (v Value) MapRange() *MapIter {
|
|
// This is inlinable to take advantage of "function outlining".
|
|
// The allocation of MapIter can be stack allocated if the caller
|
|
// does not allow it to escape.
|
|
// See https://blog.filippo.io/efficient-go-apis-with-the-inliner/
|
|
if v.kind() != Map {
|
|
v.panicNotMap()
|
|
}
|
|
return &MapIter{m: v}
|
|
}
|
|
|
|
func (f flag) panicNotMap() {
|
|
f.mustBe(Map)
|
|
}
|
|
|
|
// copyVal returns a Value containing the map key or value at ptr,
|
|
// allocating a new variable as needed.
|
|
func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
|
|
if ifaceIndir(typ) {
|
|
// Copy result so future changes to the map
|
|
// won't change the underlying value.
|
|
c := unsafe_New(typ)
|
|
typedmemmove(typ, c, ptr)
|
|
return Value{typ, c, fl | flagIndir}
|
|
}
|
|
return Value{typ, *(*unsafe.Pointer)(ptr), fl}
|
|
}
|
|
|
|
// Method returns a function value corresponding to v's i'th method.
|
|
// The arguments to a Call on the returned function should not include
|
|
// a receiver; the returned function will always use v as the receiver.
|
|
// Method panics if i is out of range or if v is a nil interface value.
|
|
func (v Value) Method(i int) Value {
|
|
if v.typ == nil {
|
|
panic(&ValueError{"reflect.Value.Method", Invalid})
|
|
}
|
|
if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
|
|
panic("reflect: Method index out of range")
|
|
}
|
|
if v.typ.Kind() == Interface && v.IsNil() {
|
|
panic("reflect: Method on nil interface value")
|
|
}
|
|
fl := v.flag.ro() | (v.flag & flagIndir)
|
|
fl |= flag(Func)
|
|
fl |= flag(i)<<flagMethodShift | flagMethod
|
|
return Value{v.typ, v.ptr, fl}
|
|
}
|
|
|
|
// NumMethod returns the number of methods in the value's method set.
|
|
//
|
|
// For a non-interface type, it returns the number of exported methods.
|
|
//
|
|
// For an interface type, it returns the number of exported and unexported methods.
|
|
func (v Value) NumMethod() int {
|
|
if v.typ == nil {
|
|
panic(&ValueError{"reflect.Value.NumMethod", Invalid})
|
|
}
|
|
if v.flag&flagMethod != 0 {
|
|
return 0
|
|
}
|
|
return v.typ.NumMethod()
|
|
}
|
|
|
|
// MethodByName returns a function value corresponding to the method
|
|
// of v with the given name.
|
|
// The arguments to a Call on the returned function should not include
|
|
// a receiver; the returned function will always use v as the receiver.
|
|
// It returns the zero Value if no method was found.
|
|
func (v Value) MethodByName(name string) Value {
|
|
if v.typ == nil {
|
|
panic(&ValueError{"reflect.Value.MethodByName", Invalid})
|
|
}
|
|
if v.flag&flagMethod != 0 {
|
|
return Value{}
|
|
}
|
|
m, ok := v.typ.MethodByName(name)
|
|
if !ok {
|
|
return Value{}
|
|
}
|
|
return v.Method(m.Index)
|
|
}
|
|
|
|
// NumField returns the number of fields in the struct v.
|
|
// It panics if v's Kind is not Struct.
|
|
func (v Value) NumField() int {
|
|
v.mustBe(Struct)
|
|
tt := (*structType)(unsafe.Pointer(v.typ))
|
|
return len(tt.fields)
|
|
}
|
|
|
|
// OverflowComplex reports whether the complex128 x cannot be represented by v's type.
|
|
// It panics if v's Kind is not Complex64 or Complex128.
|
|
func (v Value) OverflowComplex(x complex128) bool {
|
|
k := v.kind()
|
|
switch k {
|
|
case Complex64:
|
|
return overflowFloat32(real(x)) || overflowFloat32(imag(x))
|
|
case Complex128:
|
|
return false
|
|
}
|
|
panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
|
|
}
|
|
|
|
// OverflowFloat reports whether the float64 x cannot be represented by v's type.
|
|
// It panics if v's Kind is not Float32 or Float64.
|
|
func (v Value) OverflowFloat(x float64) bool {
|
|
k := v.kind()
|
|
switch k {
|
|
case Float32:
|
|
return overflowFloat32(x)
|
|
case Float64:
|
|
return false
|
|
}
|
|
panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
|
|
}
|
|
|
|
func overflowFloat32(x float64) bool {
|
|
if x < 0 {
|
|
x = -x
|
|
}
|
|
return math.MaxFloat32 < x && x <= math.MaxFloat64
|
|
}
|
|
|
|
// OverflowInt reports whether the int64 x cannot be represented by v's type.
|
|
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
|
|
func (v Value) OverflowInt(x int64) bool {
|
|
k := v.kind()
|
|
switch k {
|
|
case Int, Int8, Int16, Int32, Int64:
|
|
bitSize := v.typ.size * 8
|
|
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
|
|
return x != trunc
|
|
}
|
|
panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
|
|
}
|
|
|
|
// OverflowUint reports whether the uint64 x cannot be represented by v's type.
|
|
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
|
|
func (v Value) OverflowUint(x uint64) bool {
|
|
k := v.kind()
|
|
switch k {
|
|
case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
|
|
bitSize := v.typ.size * 8
|
|
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
|
|
return x != trunc
|
|
}
|
|
panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
|
|
}
|
|
|
|
//go:nocheckptr
|
|
// This prevents inlining Value.Pointer when -d=checkptr is enabled,
|
|
// which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
|
|
// and make an exception.
|
|
|
|
// Pointer returns v's value as a uintptr.
|
|
// It returns uintptr instead of unsafe.Pointer so that
|
|
// code using reflect cannot obtain unsafe.Pointers
|
|
// without importing the unsafe package explicitly.
|
|
// It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer.
|
|
//
|
|
// If v's Kind is Func, the returned pointer is an underlying
|
|
// code pointer, but not necessarily enough to identify a
|
|
// single function uniquely. The only guarantee is that the
|
|
// result is zero if and only if v is a nil func Value.
|
|
//
|
|
// If v's Kind is Slice, the returned pointer is to the first
|
|
// element of the slice. If the slice is nil the returned value
|
|
// is 0. If the slice is empty but non-nil the return value is non-zero.
|
|
//
|
|
// It's preferred to use uintptr(Value.UnsafePointer()) to get the equivalent result.
|
|
func (v Value) Pointer() uintptr {
|
|
k := v.kind()
|
|
switch k {
|
|
case Pointer:
|
|
if v.typ.ptrdata == 0 {
|
|
val := *(*uintptr)(v.ptr)
|
|
// Since it is a not-in-heap pointer, all pointers to the heap are
|
|
// forbidden! See comment in Value.Elem and issue #48399.
|
|
if !verifyNotInHeapPtr(val) {
|
|
panic("reflect: reflect.Value.Pointer on an invalid notinheap pointer")
|
|
}
|
|
return val
|
|
}
|
|
fallthrough
|
|
case Chan, Map, UnsafePointer:
|
|
return uintptr(v.pointer())
|
|
case Func:
|
|
if v.flag&flagMethod != 0 {
|
|
// As the doc comment says, the returned pointer is an
|
|
// underlying code pointer but not necessarily enough to
|
|
// identify a single function uniquely. All method expressions
|
|
// created via reflect have the same underlying code pointer,
|
|
// so their Pointers are equal. The function used here must
|
|
// match the one used in makeMethodValue.
|
|
return methodValueCallCodePtr()
|
|
}
|
|
p := v.pointer()
|
|
// Non-nil func value points at data block.
|
|
// First word of data block is actual code.
|
|
if p != nil {
|
|
p = *(*unsafe.Pointer)(p)
|
|
}
|
|
return uintptr(p)
|
|
|
|
case Slice:
|
|
return (*SliceHeader)(v.ptr).Data
|
|
}
|
|
panic(&ValueError{"reflect.Value.Pointer", v.kind()})
|
|
}
|
|
|
|
// Recv receives and returns a value from the channel v.
|
|
// It panics if v's Kind is not Chan.
|
|
// The receive blocks until a value is ready.
|
|
// The boolean value ok is true if the value x corresponds to a send
|
|
// on the channel, false if it is a zero value received because the channel is closed.
|
|
func (v Value) Recv() (x Value, ok bool) {
|
|
v.mustBe(Chan)
|
|
v.mustBeExported()
|
|
return v.recv(false)
|
|
}
|
|
|
|
// internal recv, possibly non-blocking (nb).
|
|
// v is known to be a channel.
|
|
func (v Value) recv(nb bool) (val Value, ok bool) {
|
|
tt := (*chanType)(unsafe.Pointer(v.typ))
|
|
if ChanDir(tt.dir)&RecvDir == 0 {
|
|
panic("reflect: recv on send-only channel")
|
|
}
|
|
t := tt.elem
|
|
val = Value{t, nil, flag(t.Kind())}
|
|
var p unsafe.Pointer
|
|
if ifaceIndir(t) {
|
|
p = unsafe_New(t)
|
|
val.ptr = p
|
|
val.flag |= flagIndir
|
|
} else {
|
|
p = unsafe.Pointer(&val.ptr)
|
|
}
|
|
selected, ok := chanrecv(v.pointer(), nb, p)
|
|
if !selected {
|
|
val = Value{}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Send sends x on the channel v.
|
|
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
|
|
// As in Go, x's value must be assignable to the channel's element type.
|
|
func (v Value) Send(x Value) {
|
|
v.mustBe(Chan)
|
|
v.mustBeExported()
|
|
v.send(x, false)
|
|
}
|
|
|
|
// internal send, possibly non-blocking.
|
|
// v is known to be a channel.
|
|
func (v Value) send(x Value, nb bool) (selected bool) {
|
|
tt := (*chanType)(unsafe.Pointer(v.typ))
|
|
if ChanDir(tt.dir)&SendDir == 0 {
|
|
panic("reflect: send on recv-only channel")
|
|
}
|
|
x.mustBeExported()
|
|
x = x.assignTo("reflect.Value.Send", tt.elem, nil)
|
|
var p unsafe.Pointer
|
|
if x.flag&flagIndir != 0 {
|
|
p = x.ptr
|
|
} else {
|
|
p = unsafe.Pointer(&x.ptr)
|
|
}
|
|
return chansend(v.pointer(), p, nb)
|
|
}
|
|
|
|
// Set assigns x to the value v.
|
|
// It panics if CanSet returns false.
|
|
// As in Go, x's value must be assignable to v's type.
|
|
func (v Value) Set(x Value) {
|
|
v.mustBeAssignable()
|
|
x.mustBeExported() // do not let unexported x leak
|
|
var target unsafe.Pointer
|
|
if v.kind() == Interface {
|
|
target = v.ptr
|
|
}
|
|
x = x.assignTo("reflect.Set", v.typ, target)
|
|
if x.flag&flagIndir != 0 {
|
|
if x.ptr == unsafe.Pointer(&zeroVal[0]) {
|
|
typedmemclr(v.typ, v.ptr)
|
|
} else {
|
|
typedmemmove(v.typ, v.ptr, x.ptr)
|
|
}
|
|
} else {
|
|
*(*unsafe.Pointer)(v.ptr) = x.ptr
|
|
}
|
|
}
|
|
|
|
// SetBool sets v's underlying value.
|
|
// It panics if v's Kind is not Bool or if CanSet() is false.
|
|
func (v Value) SetBool(x bool) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(Bool)
|
|
*(*bool)(v.ptr) = x
|
|
}
|
|
|
|
// SetBytes sets v's underlying value.
|
|
// It panics if v's underlying value is not a slice of bytes.
|
|
func (v Value) SetBytes(x []byte) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(Slice)
|
|
if v.typ.Elem().Kind() != Uint8 {
|
|
panic("reflect.Value.SetBytes of non-byte slice")
|
|
}
|
|
*(*[]byte)(v.ptr) = x
|
|
}
|
|
|
|
// setRunes sets v's underlying value.
|
|
// It panics if v's underlying value is not a slice of runes (int32s).
|
|
func (v Value) setRunes(x []rune) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(Slice)
|
|
if v.typ.Elem().Kind() != Int32 {
|
|
panic("reflect.Value.setRunes of non-rune slice")
|
|
}
|
|
*(*[]rune)(v.ptr) = x
|
|
}
|
|
|
|
// SetComplex sets v's underlying value to x.
|
|
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
|
|
func (v Value) SetComplex(x complex128) {
|
|
v.mustBeAssignable()
|
|
switch k := v.kind(); k {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
|
|
case Complex64:
|
|
*(*complex64)(v.ptr) = complex64(x)
|
|
case Complex128:
|
|
*(*complex128)(v.ptr) = x
|
|
}
|
|
}
|
|
|
|
// SetFloat sets v's underlying value to x.
|
|
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
|
|
func (v Value) SetFloat(x float64) {
|
|
v.mustBeAssignable()
|
|
switch k := v.kind(); k {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
|
|
case Float32:
|
|
*(*float32)(v.ptr) = float32(x)
|
|
case Float64:
|
|
*(*float64)(v.ptr) = x
|
|
}
|
|
}
|
|
|
|
// SetInt sets v's underlying value to x.
|
|
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
|
|
func (v Value) SetInt(x int64) {
|
|
v.mustBeAssignable()
|
|
switch k := v.kind(); k {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.SetInt", v.kind()})
|
|
case Int:
|
|
*(*int)(v.ptr) = int(x)
|
|
case Int8:
|
|
*(*int8)(v.ptr) = int8(x)
|
|
case Int16:
|
|
*(*int16)(v.ptr) = int16(x)
|
|
case Int32:
|
|
*(*int32)(v.ptr) = int32(x)
|
|
case Int64:
|
|
*(*int64)(v.ptr) = x
|
|
}
|
|
}
|
|
|
|
// SetLen sets v's length to n.
|
|
// It panics if v's Kind is not Slice or if n is negative or
|
|
// greater than the capacity of the slice.
|
|
func (v Value) SetLen(n int) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(Slice)
|
|
s := (*unsafeheader.Slice)(v.ptr)
|
|
if uint(n) > uint(s.Cap) {
|
|
panic("reflect: slice length out of range in SetLen")
|
|
}
|
|
s.Len = n
|
|
}
|
|
|
|
// SetCap sets v's capacity to n.
|
|
// It panics if v's Kind is not Slice or if n is smaller than the length or
|
|
// greater than the capacity of the slice.
|
|
func (v Value) SetCap(n int) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(Slice)
|
|
s := (*unsafeheader.Slice)(v.ptr)
|
|
if n < s.Len || n > s.Cap {
|
|
panic("reflect: slice capacity out of range in SetCap")
|
|
}
|
|
s.Cap = n
|
|
}
|
|
|
|
// SetMapIndex sets the element associated with key in the map v to elem.
|
|
// It panics if v's Kind is not Map.
|
|
// If elem is the zero Value, SetMapIndex deletes the key from the map.
|
|
// Otherwise if v holds a nil map, SetMapIndex will panic.
|
|
// As in Go, key's elem must be assignable to the map's key type,
|
|
// and elem's value must be assignable to the map's elem type.
|
|
func (v Value) SetMapIndex(key, elem Value) {
|
|
v.mustBe(Map)
|
|
v.mustBeExported()
|
|
key.mustBeExported()
|
|
tt := (*mapType)(unsafe.Pointer(v.typ))
|
|
|
|
if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize {
|
|
k := *(*string)(key.ptr)
|
|
if elem.typ == nil {
|
|
mapdelete_faststr(v.typ, v.pointer(), k)
|
|
return
|
|
}
|
|
elem.mustBeExported()
|
|
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
|
|
var e unsafe.Pointer
|
|
if elem.flag&flagIndir != 0 {
|
|
e = elem.ptr
|
|
} else {
|
|
e = unsafe.Pointer(&elem.ptr)
|
|
}
|
|
mapassign_faststr(v.typ, v.pointer(), k, e)
|
|
return
|
|
}
|
|
|
|
key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
|
|
var k unsafe.Pointer
|
|
if key.flag&flagIndir != 0 {
|
|
k = key.ptr
|
|
} else {
|
|
k = unsafe.Pointer(&key.ptr)
|
|
}
|
|
if elem.typ == nil {
|
|
mapdelete(v.typ, v.pointer(), k)
|
|
return
|
|
}
|
|
elem.mustBeExported()
|
|
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
|
|
var e unsafe.Pointer
|
|
if elem.flag&flagIndir != 0 {
|
|
e = elem.ptr
|
|
} else {
|
|
e = unsafe.Pointer(&elem.ptr)
|
|
}
|
|
mapassign(v.typ, v.pointer(), k, e)
|
|
}
|
|
|
|
// SetUint sets v's underlying value to x.
|
|
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
|
|
func (v Value) SetUint(x uint64) {
|
|
v.mustBeAssignable()
|
|
switch k := v.kind(); k {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.SetUint", v.kind()})
|
|
case Uint:
|
|
*(*uint)(v.ptr) = uint(x)
|
|
case Uint8:
|
|
*(*uint8)(v.ptr) = uint8(x)
|
|
case Uint16:
|
|
*(*uint16)(v.ptr) = uint16(x)
|
|
case Uint32:
|
|
*(*uint32)(v.ptr) = uint32(x)
|
|
case Uint64:
|
|
*(*uint64)(v.ptr) = x
|
|
case Uintptr:
|
|
*(*uintptr)(v.ptr) = uintptr(x)
|
|
}
|
|
}
|
|
|
|
// SetPointer sets the unsafe.Pointer value v to x.
|
|
// It panics if v's Kind is not UnsafePointer.
|
|
func (v Value) SetPointer(x unsafe.Pointer) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(UnsafePointer)
|
|
*(*unsafe.Pointer)(v.ptr) = x
|
|
}
|
|
|
|
// SetString sets v's underlying value to x.
|
|
// It panics if v's Kind is not String or if CanSet() is false.
|
|
func (v Value) SetString(x string) {
|
|
v.mustBeAssignable()
|
|
v.mustBe(String)
|
|
*(*string)(v.ptr) = x
|
|
}
|
|
|
|
// Slice returns v[i:j].
|
|
// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
|
|
// or if the indexes are out of bounds.
|
|
func (v Value) Slice(i, j int) Value {
|
|
var (
|
|
cap int
|
|
typ *sliceType
|
|
base unsafe.Pointer
|
|
)
|
|
switch kind := v.kind(); kind {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.Slice", v.kind()})
|
|
|
|
case Array:
|
|
if v.flag&flagAddr == 0 {
|
|
panic("reflect.Value.Slice: slice of unaddressable array")
|
|
}
|
|
tt := (*arrayType)(unsafe.Pointer(v.typ))
|
|
cap = int(tt.len)
|
|
typ = (*sliceType)(unsafe.Pointer(tt.slice))
|
|
base = v.ptr
|
|
|
|
case Slice:
|
|
typ = (*sliceType)(unsafe.Pointer(v.typ))
|
|
s := (*unsafeheader.Slice)(v.ptr)
|
|
base = s.Data
|
|
cap = s.Cap
|
|
|
|
case String:
|
|
s := (*unsafeheader.String)(v.ptr)
|
|
if i < 0 || j < i || j > s.Len {
|
|
panic("reflect.Value.Slice: string slice index out of bounds")
|
|
}
|
|
var t unsafeheader.String
|
|
if i < s.Len {
|
|
t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
|
|
}
|
|
return Value{v.typ, unsafe.Pointer(&t), v.flag}
|
|
}
|
|
|
|
if i < 0 || j < i || j > cap {
|
|
panic("reflect.Value.Slice: slice index out of bounds")
|
|
}
|
|
|
|
// Declare slice so that gc can see the base pointer in it.
|
|
var x []unsafe.Pointer
|
|
|
|
// Reinterpret as *unsafeheader.Slice to edit.
|
|
s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
|
|
s.Len = j - i
|
|
s.Cap = cap - i
|
|
if cap-i > 0 {
|
|
s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
|
|
} else {
|
|
// do not advance pointer, to avoid pointing beyond end of slice
|
|
s.Data = base
|
|
}
|
|
|
|
fl := v.flag.ro() | flagIndir | flag(Slice)
|
|
return Value{typ.common(), unsafe.Pointer(&x), fl}
|
|
}
|
|
|
|
// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
|
|
// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
|
|
// or if the indexes are out of bounds.
|
|
func (v Value) Slice3(i, j, k int) Value {
|
|
var (
|
|
cap int
|
|
typ *sliceType
|
|
base unsafe.Pointer
|
|
)
|
|
switch kind := v.kind(); kind {
|
|
default:
|
|
panic(&ValueError{"reflect.Value.Slice3", v.kind()})
|
|
|
|
case Array:
|
|
if v.flag&flagAddr == 0 {
|
|
panic("reflect.Value.Slice3: slice of unaddressable array")
|
|
}
|
|
tt := (*arrayType)(unsafe.Pointer(v.typ))
|
|
cap = int(tt.len)
|
|
typ = (*sliceType)(unsafe.Pointer(tt.slice))
|
|
base = v.ptr
|
|
|
|
case Slice:
|
|
typ = (*sliceType)(unsafe.Pointer(v.typ))
|
|
s := (*unsafeheader.Slice)(v.ptr)
|
|
base = s.Data
|
|
cap = s.Cap
|
|
}
|
|
|
|
if i < 0 || j < i || k < j || k > cap {
|
|
panic("reflect.Value.Slice3: slice index out of bounds")
|
|
}
|
|
|
|
// Declare slice so that the garbage collector
|
|
// can see the base pointer in it.
|
|
var x []unsafe.Pointer
|
|
|
|
// Reinterpret as *unsafeheader.Slice to edit.
|
|
s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
|
|
s.Len = j - i
|
|
s.Cap = k - i
|
|
if k-i > 0 {
|
|
s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap")
|
|
} else {
|
|
// do not advance pointer, to avoid pointing beyond end of slice
|
|
s.Data = base
|
|
}
|
|
|
|
fl := v.flag.ro() | flagIndir | flag(Slice)
|
|
return Value{typ.common(), unsafe.Pointer(&x), fl}
|
|
}
|
|
|
|
// String returns the string v's underlying value, as a string.
|
|
// String is a special case because of Go's String method convention.
|
|
// Unlike the other getters, it does not panic if v's Kind is not String.
|
|
// Instead, it returns a string of the form "<T value>" where T is v's type.
|
|
// The fmt package treats Values specially. It does not call their String
|
|
// method implicitly but instead prints the concrete values they hold.
|
|
func (v Value) String() string {
|
|
// stringNonString is split out to keep String inlineable for string kinds.
|
|
if v.kind() == String {
|
|
return *(*string)(v.ptr)
|
|
}
|
|
return v.stringNonString()
|
|
}
|
|
|
|
func (v Value) stringNonString() string {
|
|
if v.kind() == Invalid {
|
|
return "<invalid Value>"
|
|
}
|
|
// If you call String on a reflect.Value of other type, it's better to
|
|
// print something than to panic. Useful in debugging.
|
|
return "<" + v.Type().String() + " Value>"
|
|
}
|
|
|
|
// TryRecv attempts to receive a value from the channel v but will not block.
|
|
// It panics if v's Kind is not Chan.
|
|
// If the receive delivers a value, x is the transferred value and ok is true.
|
|
// If the receive cannot finish without blocking, x is the zero Value and ok is false.
|
|
// If the channel is closed, x is the zero value for the channel's element type and ok is false.
|
|
func (v Value) TryRecv() (x Value, ok bool) {
|
|
v.mustBe(Chan)
|
|
v.mustBeExported()
|
|
return v.recv(true)
|
|
}
|
|
|
|
// TrySend attempts to send x on the channel v but will not block.
|
|
// It panics if v's Kind is not Chan.
|
|
// It reports whether the value was sent.
|
|
// As in Go, x's value must be assignable to the channel's element type.
|
|
func (v Value) TrySend(x Value) bool {
|
|
v.mustBe(Chan)
|
|
v.mustBeExported()
|
|
return v.send(x, true)
|
|
}
|
|
|
|
// Type returns v's type.
|
|
func (v Value) Type() Type {
|
|
if v.flag != 0 && v.flag&flagMethod == 0 {
|
|
return v.typ
|
|
}
|
|
return v.typeSlow()
|
|
}
|
|
|
|
func (v Value) typeSlow() Type {
|
|
if v.flag == 0 {
|
|
panic(&ValueError{"reflect.Value.Type", Invalid})
|
|
}
|
|
if v.flag&flagMethod == 0 {
|
|
return v.typ
|
|
}
|
|
|
|
// Method value.
|
|
// v.typ describes the receiver, not the method type.
|
|
i := int(v.flag) >> flagMethodShift
|
|
if v.typ.Kind() == Interface {
|
|
// Method on interface.
|
|
tt := (*interfaceType)(unsafe.Pointer(v.typ))
|
|
if uint(i) >= uint(len(tt.methods)) {
|
|
panic("reflect: internal error: invalid method index")
|
|
}
|
|
m := &tt.methods[i]
|
|
return v.typ.typeOff(m.typ)
|
|
}
|
|
// Method on concrete type.
|
|
ms := v.typ.exportedMethods()
|
|
if uint(i) >= uint(len(ms)) {
|
|
panic("reflect: internal error: invalid method index")
|
|
}
|
|
m := ms[i]
|
|
return v.typ.typeOff(m.mtyp)
|
|
}
|
|
|
|
// CanUint reports whether Uint can be used without panicking.
|
|
func (v Value) CanUint() bool {
|
|
switch v.kind() {
|
|
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Uint returns v's underlying value, as a uint64.
|
|
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
|
|
func (v Value) Uint() uint64 {
|
|
k := v.kind()
|
|
p := v.ptr
|
|
switch k {
|
|
case Uint:
|
|
return uint64(*(*uint)(p))
|
|
case Uint8:
|
|
return uint64(*(*uint8)(p))
|
|
case Uint16:
|
|
return uint64(*(*uint16)(p))
|
|
case Uint32:
|
|
return uint64(*(*uint32)(p))
|
|
case Uint64:
|
|
return *(*uint64)(p)
|
|
case Uintptr:
|
|
return uint64(*(*uintptr)(p))
|
|
}
|
|
panic(&ValueError{"reflect.Value.Uint", v.kind()})
|
|
}
|
|
|
|
//go:nocheckptr
|
|
// This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
|
|
// which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
|
|
// and make an exception.
|
|
|
|
// UnsafeAddr returns a pointer to v's data, as a uintptr.
|
|
// It is for advanced clients that also import the "unsafe" package.
|
|
// It panics if v is not addressable.
|
|
//
|
|
// It's preferred to use uintptr(Value.Addr().UnsafePointer()) to get the equivalent result.
|
|
func (v Value) UnsafeAddr() uintptr {
|
|
if v.typ == nil {
|
|
panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
|
|
}
|
|
if v.flag&flagAddr == 0 {
|
|
panic("reflect.Value.UnsafeAddr of unaddressable value")
|
|
}
|
|
return uintptr(v.ptr)
|
|
}
|
|
|
|
// UnsafePointer returns v's value as a unsafe.Pointer.
|
|
// It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer.
|
|
//
|
|
// If v's Kind is Func, the returned pointer is an underlying
|
|
// code pointer, but not necessarily enough to identify a
|
|
// single function uniquely. The only guarantee is that the
|
|
// result is zero if and only if v is a nil func Value.
|
|
//
|
|
// If v's Kind is Slice, the returned pointer is to the first
|
|
// element of the slice. If the slice is nil the returned value
|
|
// is nil. If the slice is empty but non-nil the return value is non-nil.
|
|
func (v Value) UnsafePointer() unsafe.Pointer {
|
|
k := v.kind()
|
|
switch k {
|
|
case Pointer:
|
|
if v.typ.ptrdata == 0 {
|
|
// Since it is a not-in-heap pointer, all pointers to the heap are
|
|
// forbidden! See comment in Value.Elem and issue #48399.
|
|
if !verifyNotInHeapPtr(*(*uintptr)(v.ptr)) {
|
|
panic("reflect: reflect.Value.UnsafePointer on an invalid notinheap pointer")
|
|
}
|
|
return *(*unsafe.Pointer)(v.ptr)
|
|
}
|
|
fallthrough
|
|
case Chan, Map, UnsafePointer:
|
|
return v.pointer()
|
|
case Func:
|
|
if v.flag&flagMethod != 0 {
|
|
// As the doc comment says, the returned pointer is an
|
|
// underlying code pointer but not necessarily enough to
|
|
// identify a single function uniquely. All method expressions
|
|
// created via reflect have the same underlying code pointer,
|
|
// so their Pointers are equal. The function used here must
|
|
// match the one used in makeMethodValue.
|
|
code := methodValueCallCodePtr()
|
|
return *(*unsafe.Pointer)(unsafe.Pointer(&code))
|
|
}
|
|
p := v.pointer()
|
|
// Non-nil func value points at data block.
|
|
// First word of data block is actual code.
|
|
if p != nil {
|
|
p = *(*unsafe.Pointer)(p)
|
|
}
|
|
return p
|
|
|
|
case Slice:
|
|
return (*unsafeheader.Slice)(v.ptr).Data
|
|
}
|
|
panic(&ValueError{"reflect.Value.UnsafePointer", v.kind()})
|
|
}
|
|
|
|
// StringHeader is the runtime representation of a string.
|
|
// It cannot be used safely or portably and its representation may
|
|
// change in a later release.
|
|
// Moreover, the Data field is not sufficient to guarantee the data
|
|
// it references will not be garbage collected, so programs must keep
|
|
// a separate, correctly typed pointer to the underlying data.
|
|
type StringHeader struct {
|
|
Data uintptr
|
|
Len int
|
|
}
|
|
|
|
// SliceHeader is the runtime representation of a slice.
|
|
// It cannot be used safely or portably and its representation may
|
|
// change in a later release.
|
|
// Moreover, the Data field is not sufficient to guarantee the data
|
|
// it references will not be garbage collected, so programs must keep
|
|
// a separate, correctly typed pointer to the underlying data.
|
|
type SliceHeader struct {
|
|
Data uintptr
|
|
Len int
|
|
Cap int
|
|
}
|
|
|
|
func typesMustMatch(what string, t1, t2 Type) {
|
|
if t1 != t2 {
|
|
panic(what + ": " + t1.String() + " != " + t2.String())
|
|
}
|
|
}
|
|
|
|
// arrayAt returns the i-th element of p,
|
|
// an array whose elements are eltSize bytes wide.
|
|
// The array pointed at by p must have at least i+1 elements:
|
|
// it is invalid (but impossible to check here) to pass i >= len,
|
|
// because then the result will point outside the array.
|
|
// whySafe must explain why i < len. (Passing "i < len" is fine;
|
|
// the benefit is to surface this assumption at the call site.)
|
|
func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
|
|
return add(p, uintptr(i)*eltSize, "i < len")
|
|
}
|
|
|
|
// grow grows the slice s so that it can hold extra more values, allocating
|
|
// more capacity if needed. It also returns the old and new slice lengths.
|
|
func grow(s Value, extra int) (Value, int, int) {
|
|
i0 := s.Len()
|
|
i1 := i0 + extra
|
|
if i1 < i0 {
|
|
panic("reflect.Append: slice overflow")
|
|
}
|
|
m := s.Cap()
|
|
if i1 <= m {
|
|
return s.Slice(0, i1), i0, i1
|
|
}
|
|
if m == 0 {
|
|
m = extra
|
|
} else {
|
|
const threshold = 256
|
|
for m < i1 {
|
|
if i0 < threshold {
|
|
m += m
|
|
} else {
|
|
m += (m + 3*threshold) / 4
|
|
}
|
|
}
|
|
}
|
|
t := MakeSlice(s.Type(), i1, m)
|
|
Copy(t, s)
|
|
return t, i0, i1
|
|
}
|
|
|
|
// Append appends the values x to a slice s and returns the resulting slice.
|
|
// As in Go, each x's value must be assignable to the slice's element type.
|
|
func Append(s Value, x ...Value) Value {
|
|
s.mustBe(Slice)
|
|
s, i0, i1 := grow(s, len(x))
|
|
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
|
|
s.Index(i).Set(x[j])
|
|
}
|
|
return s
|
|
}
|
|
|
|
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
|
|
// The slices s and t must have the same element type.
|
|
func AppendSlice(s, t Value) Value {
|
|
s.mustBe(Slice)
|
|
t.mustBe(Slice)
|
|
typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
|
|
s, i0, i1 := grow(s, t.Len())
|
|
Copy(s.Slice(i0, i1), t)
|
|
return s
|
|
}
|
|
|
|
// Copy copies the contents of src into dst until either
|
|
// dst has been filled or src has been exhausted.
|
|
// It returns the number of elements copied.
|
|
// Dst and src each must have kind Slice or Array, and
|
|
// dst and src must have the same element type.
|
|
//
|
|
// As a special case, src can have kind String if the element type of dst is kind Uint8.
|
|
func Copy(dst, src Value) int {
|
|
dk := dst.kind()
|
|
if dk != Array && dk != Slice {
|
|
panic(&ValueError{"reflect.Copy", dk})
|
|
}
|
|
if dk == Array {
|
|
dst.mustBeAssignable()
|
|
}
|
|
dst.mustBeExported()
|
|
|
|
sk := src.kind()
|
|
var stringCopy bool
|
|
if sk != Array && sk != Slice {
|
|
stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8
|
|
if !stringCopy {
|
|
panic(&ValueError{"reflect.Copy", sk})
|
|
}
|
|
}
|
|
src.mustBeExported()
|
|
|
|
de := dst.typ.Elem()
|
|
if !stringCopy {
|
|
se := src.typ.Elem()
|
|
typesMustMatch("reflect.Copy", de, se)
|
|
}
|
|
|
|
var ds, ss unsafeheader.Slice
|
|
if dk == Array {
|
|
ds.Data = dst.ptr
|
|
ds.Len = dst.Len()
|
|
ds.Cap = ds.Len
|
|
} else {
|
|
ds = *(*unsafeheader.Slice)(dst.ptr)
|
|
}
|
|
if sk == Array {
|
|
ss.Data = src.ptr
|
|
ss.Len = src.Len()
|
|
ss.Cap = ss.Len
|
|
} else if sk == Slice {
|
|
ss = *(*unsafeheader.Slice)(src.ptr)
|
|
} else {
|
|
sh := *(*unsafeheader.String)(src.ptr)
|
|
ss.Data = sh.Data
|
|
ss.Len = sh.Len
|
|
ss.Cap = sh.Len
|
|
}
|
|
|
|
return typedslicecopy(de.common(), ds, ss)
|
|
}
|
|
|
|
// A runtimeSelect is a single case passed to rselect.
|
|
// This must match ../runtime/select.go:/runtimeSelect
|
|
type runtimeSelect struct {
|
|
dir SelectDir // SelectSend, SelectRecv or SelectDefault
|
|
typ *rtype // channel type
|
|
ch unsafe.Pointer // channel
|
|
val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
|
|
}
|
|
|
|
// rselect runs a select. It returns the index of the chosen case.
|
|
// If the case was a receive, val is filled in with the received value.
|
|
// The conventional OK bool indicates whether the receive corresponds
|
|
// to a sent value.
|
|
//
|
|
//go:noescape
|
|
func rselect([]runtimeSelect) (chosen int, recvOK bool)
|
|
|
|
// A SelectDir describes the communication direction of a select case.
|
|
type SelectDir int
|
|
|
|
// NOTE: These values must match ../runtime/select.go:/selectDir.
|
|
|
|
const (
|
|
_ SelectDir = iota
|
|
SelectSend // case Chan <- Send
|
|
SelectRecv // case <-Chan:
|
|
SelectDefault // default
|
|
)
|
|
|
|
// A SelectCase describes a single case in a select operation.
|
|
// The kind of case depends on Dir, the communication direction.
|
|
//
|
|
// If Dir is SelectDefault, the case represents a default case.
|
|
// Chan and Send must be zero Values.
|
|
//
|
|
// If Dir is SelectSend, the case represents a send operation.
|
|
// Normally Chan's underlying value must be a channel, and Send's underlying value must be
|
|
// assignable to the channel's element type. As a special case, if Chan is a zero Value,
|
|
// then the case is ignored, and the field Send will also be ignored and may be either zero
|
|
// or non-zero.
|
|
//
|
|
// If Dir is SelectRecv, the case represents a receive operation.
|
|
// Normally Chan's underlying value must be a channel and Send must be a zero Value.
|
|
// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
|
|
// When a receive operation is selected, the received Value is returned by Select.
|
|
type SelectCase struct {
|
|
Dir SelectDir // direction of case
|
|
Chan Value // channel to use (for send or receive)
|
|
Send Value // value to send (for send)
|
|
}
|
|
|
|
// Select executes a select operation described by the list of cases.
|
|
// Like the Go select statement, it blocks until at least one of the cases
|
|
// can proceed, makes a uniform pseudo-random choice,
|
|
// and then executes that case. It returns the index of the chosen case
|
|
// and, if that case was a receive operation, the value received and a
|
|
// boolean indicating whether the value corresponds to a send on the channel
|
|
// (as opposed to a zero value received because the channel is closed).
|
|
// Select supports a maximum of 65536 cases.
|
|
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
|
|
if len(cases) > 65536 {
|
|
panic("reflect.Select: too many cases (max 65536)")
|
|
}
|
|
// NOTE: Do not trust that caller is not modifying cases data underfoot.
|
|
// The range is safe because the caller cannot modify our copy of the len
|
|
// and each iteration makes its own copy of the value c.
|
|
var runcases []runtimeSelect
|
|
if len(cases) > 4 {
|
|
// Slice is heap allocated due to runtime dependent capacity.
|
|
runcases = make([]runtimeSelect, len(cases))
|
|
} else {
|
|
// Slice can be stack allocated due to constant capacity.
|
|
runcases = make([]runtimeSelect, len(cases), 4)
|
|
}
|
|
|
|
haveDefault := false
|
|
for i, c := range cases {
|
|
rc := &runcases[i]
|
|
rc.dir = c.Dir
|
|
switch c.Dir {
|
|
default:
|
|
panic("reflect.Select: invalid Dir")
|
|
|
|
case SelectDefault: // default
|
|
if haveDefault {
|
|
panic("reflect.Select: multiple default cases")
|
|
}
|
|
haveDefault = true
|
|
if c.Chan.IsValid() {
|
|
panic("reflect.Select: default case has Chan value")
|
|
}
|
|
if c.Send.IsValid() {
|
|
panic("reflect.Select: default case has Send value")
|
|
}
|
|
|
|
case SelectSend:
|
|
ch := c.Chan
|
|
if !ch.IsValid() {
|
|
break
|
|
}
|
|
ch.mustBe(Chan)
|
|
ch.mustBeExported()
|
|
tt := (*chanType)(unsafe.Pointer(ch.typ))
|
|
if ChanDir(tt.dir)&SendDir == 0 {
|
|
panic("reflect.Select: SendDir case using recv-only channel")
|
|
}
|
|
rc.ch = ch.pointer()
|
|
rc.typ = &tt.rtype
|
|
v := c.Send
|
|
if !v.IsValid() {
|
|
panic("reflect.Select: SendDir case missing Send value")
|
|
}
|
|
v.mustBeExported()
|
|
v = v.assignTo("reflect.Select", tt.elem, nil)
|
|
if v.flag&flagIndir != 0 {
|
|
rc.val = v.ptr
|
|
} else {
|
|
rc.val = unsafe.Pointer(&v.ptr)
|
|
}
|
|
|
|
case SelectRecv:
|
|
if c.Send.IsValid() {
|
|
panic("reflect.Select: RecvDir case has Send value")
|
|
}
|
|
ch := c.Chan
|
|
if !ch.IsValid() {
|
|
break
|
|
}
|
|
ch.mustBe(Chan)
|
|
ch.mustBeExported()
|
|
tt := (*chanType)(unsafe.Pointer(ch.typ))
|
|
if ChanDir(tt.dir)&RecvDir == 0 {
|
|
panic("reflect.Select: RecvDir case using send-only channel")
|
|
}
|
|
rc.ch = ch.pointer()
|
|
rc.typ = &tt.rtype
|
|
rc.val = unsafe_New(tt.elem)
|
|
}
|
|
}
|
|
|
|
chosen, recvOK = rselect(runcases)
|
|
if runcases[chosen].dir == SelectRecv {
|
|
tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
|
|
t := tt.elem
|
|
p := runcases[chosen].val
|
|
fl := flag(t.Kind())
|
|
if ifaceIndir(t) {
|
|
recv = Value{t, p, fl | flagIndir}
|
|
} else {
|
|
recv = Value{t, *(*unsafe.Pointer)(p), fl}
|
|
}
|
|
}
|
|
return chosen, recv, recvOK
|
|
}
|
|
|
|
/*
|
|
* constructors
|
|
*/
|
|
|
|
// implemented in package runtime
|
|
func unsafe_New(*rtype) unsafe.Pointer
|
|
func unsafe_NewArray(*rtype, int) unsafe.Pointer
|
|
|
|
// MakeSlice creates a new zero-initialized slice value
|
|
// for the specified slice type, length, and capacity.
|
|
func MakeSlice(typ Type, len, cap int) Value {
|
|
if typ.Kind() != Slice {
|
|
panic("reflect.MakeSlice of non-slice type")
|
|
}
|
|
if len < 0 {
|
|
panic("reflect.MakeSlice: negative len")
|
|
}
|
|
if cap < 0 {
|
|
panic("reflect.MakeSlice: negative cap")
|
|
}
|
|
if len > cap {
|
|
panic("reflect.MakeSlice: len > cap")
|
|
}
|
|
|
|
s := unsafeheader.Slice{Data: unsafe_NewArray(typ.Elem().(*rtype), cap), Len: len, Cap: cap}
|
|
return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)}
|
|
}
|
|
|
|
// MakeChan creates a new channel with the specified type and buffer size.
|
|
func MakeChan(typ Type, buffer int) Value {
|
|
if typ.Kind() != Chan {
|
|
panic("reflect.MakeChan of non-chan type")
|
|
}
|
|
if buffer < 0 {
|
|
panic("reflect.MakeChan: negative buffer size")
|
|
}
|
|
if typ.ChanDir() != BothDir {
|
|
panic("reflect.MakeChan: unidirectional channel type")
|
|
}
|
|
t := typ.(*rtype)
|
|
ch := makechan(t, buffer)
|
|
return Value{t, ch, flag(Chan)}
|
|
}
|
|
|
|
// MakeMap creates a new map with the specified type.
|
|
func MakeMap(typ Type) Value {
|
|
return MakeMapWithSize(typ, 0)
|
|
}
|
|
|
|
// MakeMapWithSize creates a new map with the specified type
|
|
// and initial space for approximately n elements.
|
|
func MakeMapWithSize(typ Type, n int) Value {
|
|
if typ.Kind() != Map {
|
|
panic("reflect.MakeMapWithSize of non-map type")
|
|
}
|
|
t := typ.(*rtype)
|
|
m := makemap(t, n)
|
|
return Value{t, m, flag(Map)}
|
|
}
|
|
|
|
// Indirect returns the value that v points to.
|
|
// If v is a nil pointer, Indirect returns a zero Value.
|
|
// If v is not a pointer, Indirect returns v.
|
|
func Indirect(v Value) Value {
|
|
if v.Kind() != Pointer {
|
|
return v
|
|
}
|
|
return v.Elem()
|
|
}
|
|
|
|
// ValueOf returns a new Value initialized to the concrete value
|
|
// stored in the interface i. ValueOf(nil) returns the zero Value.
|
|
func ValueOf(i any) Value {
|
|
if i == nil {
|
|
return Value{}
|
|
}
|
|
|
|
// TODO: Maybe allow contents of a Value to live on the stack.
|
|
// For now we make the contents always escape to the heap. It
|
|
// makes life easier in a few places (see chanrecv/mapassign
|
|
// comment below).
|
|
escapes(i)
|
|
|
|
return unpackEface(i)
|
|
}
|
|
|
|
// Zero returns a Value representing the zero value for the specified type.
|
|
// The result is different from the zero value of the Value struct,
|
|
// which represents no value at all.
|
|
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
|
|
// The returned value is neither addressable nor settable.
|
|
func Zero(typ Type) Value {
|
|
if typ == nil {
|
|
panic("reflect: Zero(nil)")
|
|
}
|
|
t := typ.(*rtype)
|
|
fl := flag(t.Kind())
|
|
if ifaceIndir(t) {
|
|
var p unsafe.Pointer
|
|
if t.size <= maxZero {
|
|
p = unsafe.Pointer(&zeroVal[0])
|
|
} else {
|
|
p = unsafe_New(t)
|
|
}
|
|
return Value{t, p, fl | flagIndir}
|
|
}
|
|
return Value{t, nil, fl}
|
|
}
|
|
|
|
// must match declarations in runtime/map.go.
|
|
const maxZero = 1024
|
|
|
|
//go:linkname zeroVal runtime.zeroVal
|
|
var zeroVal [maxZero]byte
|
|
|
|
// New returns a Value representing a pointer to a new zero value
|
|
// for the specified type. That is, the returned Value's Type is PointerTo(typ).
|
|
func New(typ Type) Value {
|
|
if typ == nil {
|
|
panic("reflect: New(nil)")
|
|
}
|
|
t := typ.(*rtype)
|
|
pt := t.ptrTo()
|
|
if ifaceIndir(pt) {
|
|
// This is a pointer to a go:notinheap type.
|
|
panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)")
|
|
}
|
|
ptr := unsafe_New(t)
|
|
fl := flag(Pointer)
|
|
return Value{pt, ptr, fl}
|
|
}
|
|
|
|
// NewAt returns a Value representing a pointer to a value of the
|
|
// specified type, using p as that pointer.
|
|
func NewAt(typ Type, p unsafe.Pointer) Value {
|
|
fl := flag(Pointer)
|
|
t := typ.(*rtype)
|
|
return Value{t.ptrTo(), p, fl}
|
|
}
|
|
|
|
// assignTo returns a value v that can be assigned directly to dst.
|
|
// It panics if v is not assignable to dst.
|
|
// For a conversion to an interface type, target, if not nil,
|
|
// is a suggested scratch space to use.
|
|
// target must be initialized memory (or nil).
|
|
func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
|
|
if v.flag&flagMethod != 0 {
|
|
v = makeMethodValue(context, v)
|
|
}
|
|
|
|
switch {
|
|
case directlyAssignable(dst, v.typ):
|
|
// Overwrite type so that they match.
|
|
// Same memory layout, so no harm done.
|
|
fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
|
|
fl |= flag(dst.Kind())
|
|
return Value{dst, v.ptr, fl}
|
|
|
|
case implements(dst, v.typ):
|
|
if v.Kind() == Interface && v.IsNil() {
|
|
// A nil ReadWriter passed to nil Reader is OK,
|
|
// but using ifaceE2I below will panic.
|
|
// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
|
|
return Value{dst, nil, flag(Interface)}
|
|
}
|
|
x := valueInterface(v, false)
|
|
if target == nil {
|
|
target = unsafe_New(dst)
|
|
}
|
|
if dst.NumMethod() == 0 {
|
|
*(*any)(target) = x
|
|
} else {
|
|
ifaceE2I(dst, x, target)
|
|
}
|
|
return Value{dst, target, flagIndir | flag(Interface)}
|
|
}
|
|
|
|
// Failed.
|
|
panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
|
|
}
|
|
|
|
// Convert returns the value v converted to type t.
|
|
// If the usual Go conversion rules do not allow conversion
|
|
// of the value v to type t, or if converting v to type t panics, Convert panics.
|
|
func (v Value) Convert(t Type) Value {
|
|
if v.flag&flagMethod != 0 {
|
|
v = makeMethodValue("Convert", v)
|
|
}
|
|
op := convertOp(t.common(), v.typ)
|
|
if op == nil {
|
|
panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
|
|
}
|
|
return op(v, t)
|
|
}
|
|
|
|
// CanConvert reports whether the value v can be converted to type t.
|
|
// If v.CanConvert(t) returns true then v.Convert(t) will not panic.
|
|
func (v Value) CanConvert(t Type) bool {
|
|
vt := v.Type()
|
|
if !vt.ConvertibleTo(t) {
|
|
return false
|
|
}
|
|
// Currently the only conversion that is OK in terms of type
|
|
// but that can panic depending on the value is converting
|
|
// from slice to pointer-to-array.
|
|
if vt.Kind() == Slice && t.Kind() == Pointer && t.Elem().Kind() == Array {
|
|
n := t.Elem().Len()
|
|
if n > v.Len() {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// convertOp returns the function to convert a value of type src
|
|
// to a value of type dst. If the conversion is illegal, convertOp returns nil.
|
|
func convertOp(dst, src *rtype) func(Value, Type) Value {
|
|
switch src.Kind() {
|
|
case Int, Int8, Int16, Int32, Int64:
|
|
switch dst.Kind() {
|
|
case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
return cvtInt
|
|
case Float32, Float64:
|
|
return cvtIntFloat
|
|
case String:
|
|
return cvtIntString
|
|
}
|
|
|
|
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
switch dst.Kind() {
|
|
case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
return cvtUint
|
|
case Float32, Float64:
|
|
return cvtUintFloat
|
|
case String:
|
|
return cvtUintString
|
|
}
|
|
|
|
case Float32, Float64:
|
|
switch dst.Kind() {
|
|
case Int, Int8, Int16, Int32, Int64:
|
|
return cvtFloatInt
|
|
case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
|
|
return cvtFloatUint
|
|
case Float32, Float64:
|
|
return cvtFloat
|
|
}
|
|
|
|
case Complex64, Complex128:
|
|
switch dst.Kind() {
|
|
case Complex64, Complex128:
|
|
return cvtComplex
|
|
}
|
|
|
|
case String:
|
|
if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
|
|
switch dst.Elem().Kind() {
|
|
case Uint8:
|
|
return cvtStringBytes
|
|
case Int32:
|
|
return cvtStringRunes
|
|
}
|
|
}
|
|
|
|
case Slice:
|
|
if dst.Kind() == String && src.Elem().PkgPath() == "" {
|
|
switch src.Elem().Kind() {
|
|
case Uint8:
|
|
return cvtBytesString
|
|
case Int32:
|
|
return cvtRunesString
|
|
}
|
|
}
|
|
// "x is a slice, T is a pointer-to-array type,
|
|
// and the slice and array types have identical element types."
|
|
if dst.Kind() == Pointer && dst.Elem().Kind() == Array && src.Elem() == dst.Elem().Elem() {
|
|
return cvtSliceArrayPtr
|
|
}
|
|
|
|
case Chan:
|
|
if dst.Kind() == Chan && specialChannelAssignability(dst, src) {
|
|
return cvtDirect
|
|
}
|
|
}
|
|
|
|
// dst and src have same underlying type.
|
|
if haveIdenticalUnderlyingType(dst, src, false) {
|
|
return cvtDirect
|
|
}
|
|
|
|
// dst and src are non-defined pointer types with same underlying base type.
|
|
if dst.Kind() == Pointer && dst.Name() == "" &&
|
|
src.Kind() == Pointer && src.Name() == "" &&
|
|
haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
|
|
return cvtDirect
|
|
}
|
|
|
|
if implements(dst, src) {
|
|
if src.Kind() == Interface {
|
|
return cvtI2I
|
|
}
|
|
return cvtT2I
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// makeInt returns a Value of type t equal to bits (possibly truncated),
|
|
// where t is a signed or unsigned int type.
|
|
func makeInt(f flag, bits uint64, t Type) Value {
|
|
typ := t.common()
|
|
ptr := unsafe_New(typ)
|
|
switch typ.size {
|
|
case 1:
|
|
*(*uint8)(ptr) = uint8(bits)
|
|
case 2:
|
|
*(*uint16)(ptr) = uint16(bits)
|
|
case 4:
|
|
*(*uint32)(ptr) = uint32(bits)
|
|
case 8:
|
|
*(*uint64)(ptr) = bits
|
|
}
|
|
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
|
|
}
|
|
|
|
// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
|
|
// where t is a float32 or float64 type.
|
|
func makeFloat(f flag, v float64, t Type) Value {
|
|
typ := t.common()
|
|
ptr := unsafe_New(typ)
|
|
switch typ.size {
|
|
case 4:
|
|
*(*float32)(ptr) = float32(v)
|
|
case 8:
|
|
*(*float64)(ptr) = v
|
|
}
|
|
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
|
|
}
|
|
|
|
// makeFloat returns a Value of type t equal to v, where t is a float32 type.
|
|
func makeFloat32(f flag, v float32, t Type) Value {
|
|
typ := t.common()
|
|
ptr := unsafe_New(typ)
|
|
*(*float32)(ptr) = v
|
|
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
|
|
}
|
|
|
|
// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
|
|
// where t is a complex64 or complex128 type.
|
|
func makeComplex(f flag, v complex128, t Type) Value {
|
|
typ := t.common()
|
|
ptr := unsafe_New(typ)
|
|
switch typ.size {
|
|
case 8:
|
|
*(*complex64)(ptr) = complex64(v)
|
|
case 16:
|
|
*(*complex128)(ptr) = v
|
|
}
|
|
return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
|
|
}
|
|
|
|
func makeString(f flag, v string, t Type) Value {
|
|
ret := New(t).Elem()
|
|
ret.SetString(v)
|
|
ret.flag = ret.flag&^flagAddr | f
|
|
return ret
|
|
}
|
|
|
|
func makeBytes(f flag, v []byte, t Type) Value {
|
|
ret := New(t).Elem()
|
|
ret.SetBytes(v)
|
|
ret.flag = ret.flag&^flagAddr | f
|
|
return ret
|
|
}
|
|
|
|
func makeRunes(f flag, v []rune, t Type) Value {
|
|
ret := New(t).Elem()
|
|
ret.setRunes(v)
|
|
ret.flag = ret.flag&^flagAddr | f
|
|
return ret
|
|
}
|
|
|
|
// These conversion functions are returned by convertOp
|
|
// for classes of conversions. For example, the first function, cvtInt,
|
|
// takes any value v of signed int type and returns the value converted
|
|
// to type t, where t is any signed or unsigned int type.
|
|
|
|
// convertOp: intXX -> [u]intXX
|
|
func cvtInt(v Value, t Type) Value {
|
|
return makeInt(v.flag.ro(), uint64(v.Int()), t)
|
|
}
|
|
|
|
// convertOp: uintXX -> [u]intXX
|
|
func cvtUint(v Value, t Type) Value {
|
|
return makeInt(v.flag.ro(), v.Uint(), t)
|
|
}
|
|
|
|
// convertOp: floatXX -> intXX
|
|
func cvtFloatInt(v Value, t Type) Value {
|
|
return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
|
|
}
|
|
|
|
// convertOp: floatXX -> uintXX
|
|
func cvtFloatUint(v Value, t Type) Value {
|
|
return makeInt(v.flag.ro(), uint64(v.Float()), t)
|
|
}
|
|
|
|
// convertOp: intXX -> floatXX
|
|
func cvtIntFloat(v Value, t Type) Value {
|
|
return makeFloat(v.flag.ro(), float64(v.Int()), t)
|
|
}
|
|
|
|
// convertOp: uintXX -> floatXX
|
|
func cvtUintFloat(v Value, t Type) Value {
|
|
return makeFloat(v.flag.ro(), float64(v.Uint()), t)
|
|
}
|
|
|
|
// convertOp: floatXX -> floatXX
|
|
func cvtFloat(v Value, t Type) Value {
|
|
if v.Type().Kind() == Float32 && t.Kind() == Float32 {
|
|
// Don't do any conversion if both types have underlying type float32.
|
|
// This avoids converting to float64 and back, which will
|
|
// convert a signaling NaN to a quiet NaN. See issue 36400.
|
|
return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
|
|
}
|
|
return makeFloat(v.flag.ro(), v.Float(), t)
|
|
}
|
|
|
|
// convertOp: complexXX -> complexXX
|
|
func cvtComplex(v Value, t Type) Value {
|
|
return makeComplex(v.flag.ro(), v.Complex(), t)
|
|
}
|
|
|
|
// convertOp: intXX -> string
|
|
func cvtIntString(v Value, t Type) Value {
|
|
s := "\uFFFD"
|
|
if x := v.Int(); int64(rune(x)) == x {
|
|
s = string(rune(x))
|
|
}
|
|
return makeString(v.flag.ro(), s, t)
|
|
}
|
|
|
|
// convertOp: uintXX -> string
|
|
func cvtUintString(v Value, t Type) Value {
|
|
s := "\uFFFD"
|
|
if x := v.Uint(); uint64(rune(x)) == x {
|
|
s = string(rune(x))
|
|
}
|
|
return makeString(v.flag.ro(), s, t)
|
|
}
|
|
|
|
// convertOp: []byte -> string
|
|
func cvtBytesString(v Value, t Type) Value {
|
|
return makeString(v.flag.ro(), string(v.Bytes()), t)
|
|
}
|
|
|
|
// convertOp: string -> []byte
|
|
func cvtStringBytes(v Value, t Type) Value {
|
|
return makeBytes(v.flag.ro(), []byte(v.String()), t)
|
|
}
|
|
|
|
// convertOp: []rune -> string
|
|
func cvtRunesString(v Value, t Type) Value {
|
|
return makeString(v.flag.ro(), string(v.runes()), t)
|
|
}
|
|
|
|
// convertOp: string -> []rune
|
|
func cvtStringRunes(v Value, t Type) Value {
|
|
return makeRunes(v.flag.ro(), []rune(v.String()), t)
|
|
}
|
|
|
|
// convertOp: []T -> *[N]T
|
|
func cvtSliceArrayPtr(v Value, t Type) Value {
|
|
n := t.Elem().Len()
|
|
if n > v.Len() {
|
|
panic("reflect: cannot convert slice with length " + itoa.Itoa(v.Len()) + " to pointer to array with length " + itoa.Itoa(n))
|
|
}
|
|
h := (*unsafeheader.Slice)(v.ptr)
|
|
return Value{t.common(), h.Data, v.flag&^(flagIndir|flagAddr|flagKindMask) | flag(Pointer)}
|
|
}
|
|
|
|
// convertOp: direct copy
|
|
func cvtDirect(v Value, typ Type) Value {
|
|
f := v.flag
|
|
t := typ.common()
|
|
ptr := v.ptr
|
|
if f&flagAddr != 0 {
|
|
// indirect, mutable word - make a copy
|
|
c := unsafe_New(t)
|
|
typedmemmove(t, c, ptr)
|
|
ptr = c
|
|
f &^= flagAddr
|
|
}
|
|
return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
|
|
}
|
|
|
|
// convertOp: concrete -> interface
|
|
func cvtT2I(v Value, typ Type) Value {
|
|
target := unsafe_New(typ.common())
|
|
x := valueInterface(v, false)
|
|
if typ.NumMethod() == 0 {
|
|
*(*any)(target) = x
|
|
} else {
|
|
ifaceE2I(typ.(*rtype), x, target)
|
|
}
|
|
return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
|
|
}
|
|
|
|
// convertOp: interface -> interface
|
|
func cvtI2I(v Value, typ Type) Value {
|
|
if v.IsNil() {
|
|
ret := Zero(typ)
|
|
ret.flag |= v.flag.ro()
|
|
return ret
|
|
}
|
|
return cvtT2I(v.Elem(), typ)
|
|
}
|
|
|
|
// implemented in ../runtime
|
|
func chancap(ch unsafe.Pointer) int
|
|
func chanclose(ch unsafe.Pointer)
|
|
func chanlen(ch unsafe.Pointer) int
|
|
|
|
// Note: some of the noescape annotations below are technically a lie,
|
|
// but safe in the context of this package. Functions like chansend
|
|
// and mapassign don't escape the referent, but may escape anything
|
|
// the referent points to (they do shallow copies of the referent).
|
|
// It is safe in this package because the referent may only point
|
|
// to something a Value may point to, and that is always in the heap
|
|
// (due to the escapes() call in ValueOf).
|
|
|
|
//go:noescape
|
|
func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
|
|
|
|
//go:noescape
|
|
func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
|
|
|
|
func makechan(typ *rtype, size int) (ch unsafe.Pointer)
|
|
func makemap(t *rtype, cap int) (m unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapaccess_faststr(t *rtype, m unsafe.Pointer, key string) (val unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapassign_faststr(t *rtype, m unsafe.Pointer, key string, val unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapdelete_faststr(t *rtype, m unsafe.Pointer, key string)
|
|
|
|
//go:noescape
|
|
func mapiterinit(t *rtype, m unsafe.Pointer, it *hiter)
|
|
|
|
//go:noescape
|
|
func mapiterkey(it *hiter) (key unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapiterelem(it *hiter) (elem unsafe.Pointer)
|
|
|
|
//go:noescape
|
|
func mapiternext(it *hiter)
|
|
|
|
//go:noescape
|
|
func maplen(m unsafe.Pointer) int
|
|
|
|
// call calls fn with "stackArgsSize" bytes of stack arguments laid out
|
|
// at stackArgs and register arguments laid out in regArgs. frameSize is
|
|
// the total amount of stack space that will be reserved by call, so this
|
|
// should include enough space to spill register arguments to the stack in
|
|
// case of preemption.
|
|
//
|
|
// After fn returns, call copies stackArgsSize-stackRetOffset result bytes
|
|
// back into stackArgs+stackRetOffset before returning, for any return
|
|
// values passed on the stack. Register-based return values will be found
|
|
// in the same regArgs structure.
|
|
//
|
|
// regArgs must also be prepared with an appropriate ReturnIsPtr bitmap
|
|
// indicating which registers will contain pointer-valued return values. The
|
|
// purpose of this bitmap is to keep pointers visible to the GC between
|
|
// returning from reflectcall and actually using them.
|
|
//
|
|
// If copying result bytes back from the stack, the caller must pass the
|
|
// argument frame type as stackArgsType, so that call can execute appropriate
|
|
// write barriers during the copy.
|
|
//
|
|
// Arguments passed through to call do not escape. The type is used only in a
|
|
// very limited callee of call, the stackArgs are copied, and regArgs is only
|
|
// used in the call frame.
|
|
//
|
|
//go:noescape
|
|
//go:linkname call runtime.reflectcall
|
|
func call(stackArgsType *rtype, f, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
|
|
|
|
func ifaceE2I(t *rtype, src any, dst unsafe.Pointer)
|
|
|
|
// memmove copies size bytes to dst from src. No write barriers are used.
|
|
//
|
|
//go:noescape
|
|
func memmove(dst, src unsafe.Pointer, size uintptr)
|
|
|
|
// typedmemmove copies a value of type t to dst from src.
|
|
//
|
|
//go:noescape
|
|
func typedmemmove(t *rtype, dst, src unsafe.Pointer)
|
|
|
|
// typedmemmovepartial is like typedmemmove but assumes that
|
|
// dst and src point off bytes into the value and only copies size bytes.
|
|
//
|
|
//go:noescape
|
|
func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
|
|
|
|
// typedmemclr zeros the value at ptr of type t.
|
|
//
|
|
//go:noescape
|
|
func typedmemclr(t *rtype, ptr unsafe.Pointer)
|
|
|
|
// typedmemclrpartial is like typedmemclr but assumes that
|
|
// dst points off bytes into the value and only clears size bytes.
|
|
//
|
|
//go:noescape
|
|
func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr)
|
|
|
|
// typedslicecopy copies a slice of elemType values from src to dst,
|
|
// returning the number of elements copied.
|
|
//
|
|
//go:noescape
|
|
func typedslicecopy(elemType *rtype, dst, src unsafeheader.Slice) int
|
|
|
|
//go:noescape
|
|
func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr
|
|
|
|
func verifyNotInHeapPtr(p uintptr) bool
|
|
|
|
// Dummy annotation marking that the value x escapes,
|
|
// for use in cases where the reflect code is so clever that
|
|
// the compiler cannot follow.
|
|
func escapes(x any) {
|
|
if dummy.b {
|
|
dummy.x = x
|
|
}
|
|
}
|
|
|
|
var dummy struct {
|
|
b bool
|
|
x any
|
|
}
|