mirror of
https://github.com/golang/go.git
synced 2025-05-05 23:53:05 +00:00
This lets us get rid of lots of specialized opcodes for storing zero. Instead, use regular store opcodes that just happen to use the zero register as one of their inputs. Change-Id: I2902a6f9b0831cb598df45189ca6bb57221bef72 Reviewed-on: https://go-review.googlesource.com/c/go/+/633075 Reviewed-by: Cherry Mui <cherryyz@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Keith Randall <khr@google.com>
531 lines
19 KiB
Go
531 lines
19 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
import (
|
|
"cmd/compile/internal/abi"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
// An Op encodes the specific operation that a Value performs.
|
|
// Opcodes' semantics can be modified by the type and aux fields of the Value.
|
|
// For instance, OpAdd can be 32 or 64 bit, signed or unsigned, float or complex, depending on Value.Type.
|
|
// Semantics of each op are described in the opcode files in _gen/*Ops.go.
|
|
// There is one file for generic (architecture-independent) ops and one file
|
|
// for each architecture.
|
|
type Op int32
|
|
|
|
type opInfo struct {
|
|
name string
|
|
reg regInfo
|
|
auxType auxType
|
|
argLen int32 // the number of arguments, -1 if variable length
|
|
asm obj.As
|
|
generic bool // this is a generic (arch-independent) opcode
|
|
rematerializeable bool // this op is rematerializeable
|
|
commutative bool // this operation is commutative (e.g. addition)
|
|
resultInArg0 bool // (first, if a tuple) output of v and v.Args[0] must be allocated to the same register
|
|
resultNotInArgs bool // outputs must not be allocated to the same registers as inputs
|
|
clobberFlags bool // this op clobbers flags register
|
|
needIntTemp bool // need a temporary free integer register
|
|
call bool // is a function call
|
|
tailCall bool // is a tail call
|
|
nilCheck bool // this op is a nil check on arg0
|
|
faultOnNilArg0 bool // this op will fault if arg0 is nil (and aux encodes a small offset)
|
|
faultOnNilArg1 bool // this op will fault if arg1 is nil (and aux encodes a small offset)
|
|
usesScratch bool // this op requires scratch memory space
|
|
hasSideEffects bool // for "reasons", not to be eliminated. E.g., atomic store, #19182.
|
|
zeroWidth bool // op never translates into any machine code. example: copy, which may sometimes translate to machine code, is not zero-width.
|
|
unsafePoint bool // this op is an unsafe point, i.e. not safe for async preemption
|
|
fixedReg bool // this op will be assigned a fixed register
|
|
symEffect SymEffect // effect this op has on symbol in aux
|
|
scale uint8 // amd64/386 indexed load scale
|
|
}
|
|
|
|
type inputInfo struct {
|
|
idx int // index in Args array
|
|
regs regMask // allowed input registers
|
|
}
|
|
|
|
type outputInfo struct {
|
|
idx int // index in output tuple
|
|
regs regMask // allowed output registers
|
|
}
|
|
|
|
type regInfo struct {
|
|
// inputs encodes the register restrictions for an instruction's inputs.
|
|
// Each entry specifies an allowed register set for a particular input.
|
|
// They are listed in the order in which regalloc should pick a register
|
|
// from the register set (most constrained first).
|
|
// Inputs which do not need registers are not listed.
|
|
inputs []inputInfo
|
|
// clobbers encodes the set of registers that are overwritten by
|
|
// the instruction (other than the output registers).
|
|
clobbers regMask
|
|
// outputs is the same as inputs, but for the outputs of the instruction.
|
|
outputs []outputInfo
|
|
}
|
|
|
|
func (r *regInfo) String() string {
|
|
s := ""
|
|
s += "INS:\n"
|
|
for _, i := range r.inputs {
|
|
mask := fmt.Sprintf("%64b", i.regs)
|
|
mask = strings.Replace(mask, "0", ".", -1)
|
|
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
|
|
}
|
|
s += "OUTS:\n"
|
|
for _, i := range r.outputs {
|
|
mask := fmt.Sprintf("%64b", i.regs)
|
|
mask = strings.Replace(mask, "0", ".", -1)
|
|
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
|
|
}
|
|
s += "CLOBBERS:\n"
|
|
mask := fmt.Sprintf("%64b", r.clobbers)
|
|
mask = strings.Replace(mask, "0", ".", -1)
|
|
s += fmt.Sprintf(" |%s|\n", mask)
|
|
return s
|
|
}
|
|
|
|
type auxType int8
|
|
|
|
type AuxNameOffset struct {
|
|
Name *ir.Name
|
|
Offset int64
|
|
}
|
|
|
|
func (a *AuxNameOffset) CanBeAnSSAAux() {}
|
|
func (a *AuxNameOffset) String() string {
|
|
return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset)
|
|
}
|
|
|
|
func (a *AuxNameOffset) FrameOffset() int64 {
|
|
return a.Name.FrameOffset() + a.Offset
|
|
}
|
|
|
|
type AuxCall struct {
|
|
Fn *obj.LSym
|
|
reg *regInfo // regInfo for this call
|
|
abiInfo *abi.ABIParamResultInfo
|
|
}
|
|
|
|
// Reg returns the regInfo for a given call, combining the derived in/out register masks
|
|
// with the machine-specific register information in the input i. (The machine-specific
|
|
// regInfo is much handier at the call site than it is when the AuxCall is being constructed,
|
|
// therefore do this lazily).
|
|
//
|
|
// TODO: there is a Clever Hack that allows pre-generation of a small-ish number of the slices
|
|
// of inputInfo and outputInfo used here, provided that we are willing to reorder the inputs
|
|
// and outputs from calls, so that all integer registers come first, then all floating registers.
|
|
// At this point (active development of register ABI) that is very premature,
|
|
// but if this turns out to be a cost, we could do it.
|
|
func (a *AuxCall) Reg(i *regInfo, c *Config) *regInfo {
|
|
if a.reg.clobbers != 0 {
|
|
// Already updated
|
|
return a.reg
|
|
}
|
|
if a.abiInfo.InRegistersUsed()+a.abiInfo.OutRegistersUsed() == 0 {
|
|
// Shortcut for zero case, also handles old ABI.
|
|
a.reg = i
|
|
return a.reg
|
|
}
|
|
|
|
k := len(i.inputs)
|
|
for _, p := range a.abiInfo.InParams() {
|
|
for _, r := range p.Registers {
|
|
m := archRegForAbiReg(r, c)
|
|
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
|
|
k++
|
|
}
|
|
}
|
|
a.reg.inputs = append(a.reg.inputs, i.inputs...) // These are less constrained, thus should come last
|
|
k = len(i.outputs)
|
|
for _, p := range a.abiInfo.OutParams() {
|
|
for _, r := range p.Registers {
|
|
m := archRegForAbiReg(r, c)
|
|
a.reg.outputs = append(a.reg.outputs, outputInfo{idx: k, regs: (1 << m)})
|
|
k++
|
|
}
|
|
}
|
|
a.reg.outputs = append(a.reg.outputs, i.outputs...)
|
|
a.reg.clobbers = i.clobbers
|
|
return a.reg
|
|
}
|
|
func (a *AuxCall) ABI() *abi.ABIConfig {
|
|
return a.abiInfo.Config()
|
|
}
|
|
func (a *AuxCall) ABIInfo() *abi.ABIParamResultInfo {
|
|
return a.abiInfo
|
|
}
|
|
func (a *AuxCall) ResultReg(c *Config) *regInfo {
|
|
if a.abiInfo.OutRegistersUsed() == 0 {
|
|
return a.reg
|
|
}
|
|
if len(a.reg.inputs) > 0 {
|
|
return a.reg
|
|
}
|
|
k := 0
|
|
for _, p := range a.abiInfo.OutParams() {
|
|
for _, r := range p.Registers {
|
|
m := archRegForAbiReg(r, c)
|
|
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
|
|
k++
|
|
}
|
|
}
|
|
return a.reg
|
|
}
|
|
|
|
// For ABI register index r, returns the (dense) register number used in
|
|
// SSA backend.
|
|
func archRegForAbiReg(r abi.RegIndex, c *Config) uint8 {
|
|
var m int8
|
|
if int(r) < len(c.intParamRegs) {
|
|
m = c.intParamRegs[r]
|
|
} else {
|
|
m = c.floatParamRegs[int(r)-len(c.intParamRegs)]
|
|
}
|
|
return uint8(m)
|
|
}
|
|
|
|
// For ABI register index r, returns the register number used in the obj
|
|
// package (assembler).
|
|
func ObjRegForAbiReg(r abi.RegIndex, c *Config) int16 {
|
|
m := archRegForAbiReg(r, c)
|
|
return c.registers[m].objNum
|
|
}
|
|
|
|
// ArgWidth returns the amount of stack needed for all the inputs
|
|
// and outputs of a function or method, including ABI-defined parameter
|
|
// slots and ABI-defined spill slots for register-resident parameters.
|
|
//
|
|
// The name is taken from the types package's ArgWidth(<function type>),
|
|
// which predated changes to the ABI; this version handles those changes.
|
|
func (a *AuxCall) ArgWidth() int64 {
|
|
return a.abiInfo.ArgWidth()
|
|
}
|
|
|
|
// ParamAssignmentForResult returns the ABI Parameter assignment for result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) ParamAssignmentForResult(which int64) *abi.ABIParamAssignment {
|
|
return a.abiInfo.OutParam(int(which))
|
|
}
|
|
|
|
// OffsetOfResult returns the SP offset of result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) OffsetOfResult(which int64) int64 {
|
|
n := int64(a.abiInfo.OutParam(int(which)).Offset())
|
|
return n
|
|
}
|
|
|
|
// OffsetOfArg returns the SP offset of argument which (indexed 0, 1, etc).
|
|
// If the call is to a method, the receiver is the first argument (i.e., index 0)
|
|
func (a *AuxCall) OffsetOfArg(which int64) int64 {
|
|
n := int64(a.abiInfo.InParam(int(which)).Offset())
|
|
return n
|
|
}
|
|
|
|
// RegsOfResult returns the register(s) used for result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) RegsOfResult(which int64) []abi.RegIndex {
|
|
return a.abiInfo.OutParam(int(which)).Registers
|
|
}
|
|
|
|
// RegsOfArg returns the register(s) used for argument which (indexed 0, 1, etc).
|
|
// If the call is to a method, the receiver is the first argument (i.e., index 0)
|
|
func (a *AuxCall) RegsOfArg(which int64) []abi.RegIndex {
|
|
return a.abiInfo.InParam(int(which)).Registers
|
|
}
|
|
|
|
// NameOfResult returns the ir.Name of result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) NameOfResult(which int64) *ir.Name {
|
|
return a.abiInfo.OutParam(int(which)).Name
|
|
}
|
|
|
|
// TypeOfResult returns the type of result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) TypeOfResult(which int64) *types.Type {
|
|
return a.abiInfo.OutParam(int(which)).Type
|
|
}
|
|
|
|
// TypeOfArg returns the type of argument which (indexed 0, 1, etc).
|
|
// If the call is to a method, the receiver is the first argument (i.e., index 0)
|
|
func (a *AuxCall) TypeOfArg(which int64) *types.Type {
|
|
return a.abiInfo.InParam(int(which)).Type
|
|
}
|
|
|
|
// SizeOfResult returns the size of result which (indexed 0, 1, etc).
|
|
func (a *AuxCall) SizeOfResult(which int64) int64 {
|
|
return a.TypeOfResult(which).Size()
|
|
}
|
|
|
|
// SizeOfArg returns the size of argument which (indexed 0, 1, etc).
|
|
// If the call is to a method, the receiver is the first argument (i.e., index 0)
|
|
func (a *AuxCall) SizeOfArg(which int64) int64 {
|
|
return a.TypeOfArg(which).Size()
|
|
}
|
|
|
|
// NResults returns the number of results.
|
|
func (a *AuxCall) NResults() int64 {
|
|
return int64(len(a.abiInfo.OutParams()))
|
|
}
|
|
|
|
// LateExpansionResultType returns the result type (including trailing mem)
|
|
// for a call that will be expanded later in the SSA phase.
|
|
func (a *AuxCall) LateExpansionResultType() *types.Type {
|
|
var tys []*types.Type
|
|
for i := int64(0); i < a.NResults(); i++ {
|
|
tys = append(tys, a.TypeOfResult(i))
|
|
}
|
|
tys = append(tys, types.TypeMem)
|
|
return types.NewResults(tys)
|
|
}
|
|
|
|
// NArgs returns the number of arguments (including receiver, if there is one).
|
|
func (a *AuxCall) NArgs() int64 {
|
|
return int64(len(a.abiInfo.InParams()))
|
|
}
|
|
|
|
// String returns "AuxCall{<fn>}"
|
|
func (a *AuxCall) String() string {
|
|
var fn string
|
|
if a.Fn == nil {
|
|
fn = "AuxCall{nil" // could be interface/closure etc.
|
|
} else {
|
|
fn = fmt.Sprintf("AuxCall{%v", a.Fn)
|
|
}
|
|
// TODO how much of the ABI should be printed?
|
|
|
|
return fn + "}"
|
|
}
|
|
|
|
// StaticAuxCall returns an AuxCall for a static call.
|
|
func StaticAuxCall(sym *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
|
|
if paramResultInfo == nil {
|
|
panic(fmt.Errorf("Nil paramResultInfo, sym=%v", sym))
|
|
}
|
|
var reg *regInfo
|
|
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
|
|
reg = ®Info{}
|
|
}
|
|
return &AuxCall{Fn: sym, abiInfo: paramResultInfo, reg: reg}
|
|
}
|
|
|
|
// InterfaceAuxCall returns an AuxCall for an interface call.
|
|
func InterfaceAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
|
|
var reg *regInfo
|
|
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
|
|
reg = ®Info{}
|
|
}
|
|
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
|
|
}
|
|
|
|
// ClosureAuxCall returns an AuxCall for a closure call.
|
|
func ClosureAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
|
|
var reg *regInfo
|
|
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
|
|
reg = ®Info{}
|
|
}
|
|
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
|
|
}
|
|
|
|
func (*AuxCall) CanBeAnSSAAux() {}
|
|
|
|
// OwnAuxCall returns a function's own AuxCall.
|
|
func OwnAuxCall(fn *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
|
|
// TODO if this remains identical to ClosureAuxCall above after new ABI is done, should deduplicate.
|
|
var reg *regInfo
|
|
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
|
|
reg = ®Info{}
|
|
}
|
|
return &AuxCall{Fn: fn, abiInfo: paramResultInfo, reg: reg}
|
|
}
|
|
|
|
const (
|
|
auxNone auxType = iota
|
|
auxBool // auxInt is 0/1 for false/true
|
|
auxInt8 // auxInt is an 8-bit integer
|
|
auxInt16 // auxInt is a 16-bit integer
|
|
auxInt32 // auxInt is a 32-bit integer
|
|
auxInt64 // auxInt is a 64-bit integer
|
|
auxInt128 // auxInt represents a 128-bit integer. Always 0.
|
|
auxUInt8 // auxInt is an 8-bit unsigned integer
|
|
auxFloat32 // auxInt is a float32 (encoded with math.Float64bits)
|
|
auxFloat64 // auxInt is a float64 (encoded with math.Float64bits)
|
|
auxFlagConstant // auxInt is a flagConstant
|
|
auxCCop // auxInt is a ssa.Op that represents a flags-to-bool conversion (e.g. LessThan)
|
|
auxNameOffsetInt8 // aux is a &struct{Name ir.Name, Offset int64}; auxInt is index in parameter registers array
|
|
auxString // aux is a string
|
|
auxSym // aux is a symbol (a *ir.Name for locals, an *obj.LSym for globals, or nil for none)
|
|
auxSymOff // aux is a symbol, auxInt is an offset
|
|
auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff
|
|
auxTyp // aux is a type
|
|
auxTypSize // aux is a type, auxInt is a size, must have Aux.(Type).Size() == AuxInt
|
|
auxCall // aux is a *ssa.AuxCall
|
|
auxCallOff // aux is a *ssa.AuxCall, AuxInt is int64 param (in+out) size
|
|
|
|
// architecture specific aux types
|
|
auxARM64BitField // aux is an arm64 bitfield lsb and width packed into auxInt
|
|
auxS390XRotateParams // aux is a s390x rotate parameters object encoding start bit, end bit and rotate amount
|
|
auxS390XCCMask // aux is a s390x 4-bit condition code mask
|
|
auxS390XCCMaskInt8 // aux is a s390x 4-bit condition code mask, auxInt is an int8 immediate
|
|
auxS390XCCMaskUint8 // aux is a s390x 4-bit condition code mask, auxInt is a uint8 immediate
|
|
)
|
|
|
|
// A SymEffect describes the effect that an SSA Value has on the variable
|
|
// identified by the symbol in its Aux field.
|
|
type SymEffect int8
|
|
|
|
const (
|
|
SymRead SymEffect = 1 << iota
|
|
SymWrite
|
|
SymAddr
|
|
|
|
SymRdWr = SymRead | SymWrite
|
|
|
|
SymNone SymEffect = 0
|
|
)
|
|
|
|
// A Sym represents a symbolic offset from a base register.
|
|
// Currently a Sym can be one of 3 things:
|
|
// - a *ir.Name, for an offset from SP (the stack pointer)
|
|
// - a *obj.LSym, for an offset from SB (the global pointer)
|
|
// - nil, for no offset
|
|
type Sym interface {
|
|
Aux
|
|
CanBeAnSSASym()
|
|
}
|
|
|
|
// A ValAndOff is used by the several opcodes. It holds
|
|
// both a value and a pointer offset.
|
|
// A ValAndOff is intended to be encoded into an AuxInt field.
|
|
// The zero ValAndOff encodes a value of 0 and an offset of 0.
|
|
// The high 32 bits hold a value.
|
|
// The low 32 bits hold a pointer offset.
|
|
type ValAndOff int64
|
|
|
|
func (x ValAndOff) Val() int32 { return int32(int64(x) >> 32) }
|
|
func (x ValAndOff) Val64() int64 { return int64(x) >> 32 }
|
|
func (x ValAndOff) Val16() int16 { return int16(int64(x) >> 32) }
|
|
func (x ValAndOff) Val8() int8 { return int8(int64(x) >> 32) }
|
|
|
|
func (x ValAndOff) Off64() int64 { return int64(int32(x)) }
|
|
func (x ValAndOff) Off() int32 { return int32(x) }
|
|
|
|
func (x ValAndOff) String() string {
|
|
return fmt.Sprintf("val=%d,off=%d", x.Val(), x.Off())
|
|
}
|
|
|
|
// validVal reports whether the value can be used
|
|
// as an argument to makeValAndOff.
|
|
func validVal(val int64) bool {
|
|
return val == int64(int32(val))
|
|
}
|
|
|
|
func makeValAndOff(val, off int32) ValAndOff {
|
|
return ValAndOff(int64(val)<<32 + int64(uint32(off)))
|
|
}
|
|
|
|
func (x ValAndOff) canAdd32(off int32) bool {
|
|
newoff := x.Off64() + int64(off)
|
|
return newoff == int64(int32(newoff))
|
|
}
|
|
func (x ValAndOff) canAdd64(off int64) bool {
|
|
newoff := x.Off64() + off
|
|
return newoff == int64(int32(newoff))
|
|
}
|
|
|
|
func (x ValAndOff) addOffset32(off int32) ValAndOff {
|
|
if !x.canAdd32(off) {
|
|
panic("invalid ValAndOff.addOffset32")
|
|
}
|
|
return makeValAndOff(x.Val(), x.Off()+off)
|
|
}
|
|
func (x ValAndOff) addOffset64(off int64) ValAndOff {
|
|
if !x.canAdd64(off) {
|
|
panic("invalid ValAndOff.addOffset64")
|
|
}
|
|
return makeValAndOff(x.Val(), x.Off()+int32(off))
|
|
}
|
|
|
|
// int128 is a type that stores a 128-bit constant.
|
|
// The only allowed constant right now is 0, so we can cheat quite a bit.
|
|
type int128 int64
|
|
|
|
type BoundsKind uint8
|
|
|
|
const (
|
|
BoundsIndex BoundsKind = iota // indexing operation, 0 <= idx < len failed
|
|
BoundsIndexU // ... with unsigned idx
|
|
BoundsSliceAlen // 2-arg slicing operation, 0 <= high <= len failed
|
|
BoundsSliceAlenU // ... with unsigned high
|
|
BoundsSliceAcap // 2-arg slicing operation, 0 <= high <= cap failed
|
|
BoundsSliceAcapU // ... with unsigned high
|
|
BoundsSliceB // 2-arg slicing operation, 0 <= low <= high failed
|
|
BoundsSliceBU // ... with unsigned low
|
|
BoundsSlice3Alen // 3-arg slicing operation, 0 <= max <= len failed
|
|
BoundsSlice3AlenU // ... with unsigned max
|
|
BoundsSlice3Acap // 3-arg slicing operation, 0 <= max <= cap failed
|
|
BoundsSlice3AcapU // ... with unsigned max
|
|
BoundsSlice3B // 3-arg slicing operation, 0 <= high <= max failed
|
|
BoundsSlice3BU // ... with unsigned high
|
|
BoundsSlice3C // 3-arg slicing operation, 0 <= low <= high failed
|
|
BoundsSlice3CU // ... with unsigned low
|
|
BoundsConvert // conversion to array pointer failed
|
|
BoundsKindCount
|
|
)
|
|
|
|
// boundsABI determines which register arguments a bounds check call should use. For an [a:b:c] slice, we do:
|
|
//
|
|
// CMPQ c, cap
|
|
// JA fail1
|
|
// CMPQ b, c
|
|
// JA fail2
|
|
// CMPQ a, b
|
|
// JA fail3
|
|
//
|
|
// fail1: CALL panicSlice3Acap (c, cap)
|
|
// fail2: CALL panicSlice3B (b, c)
|
|
// fail3: CALL panicSlice3C (a, b)
|
|
//
|
|
// When we register allocate that code, we want the same register to be used for
|
|
// the first arg of panicSlice3Acap and the second arg to panicSlice3B. That way,
|
|
// initializing that register once will satisfy both calls.
|
|
// That desire ends up dividing the set of bounds check calls into 3 sets. This function
|
|
// determines which set to use for a given panic call.
|
|
// The first arg for set 0 should be the second arg for set 1.
|
|
// The first arg for set 1 should be the second arg for set 2.
|
|
func boundsABI(b int64) int {
|
|
switch BoundsKind(b) {
|
|
case BoundsSlice3Alen,
|
|
BoundsSlice3AlenU,
|
|
BoundsSlice3Acap,
|
|
BoundsSlice3AcapU,
|
|
BoundsConvert:
|
|
return 0
|
|
case BoundsSliceAlen,
|
|
BoundsSliceAlenU,
|
|
BoundsSliceAcap,
|
|
BoundsSliceAcapU,
|
|
BoundsSlice3B,
|
|
BoundsSlice3BU:
|
|
return 1
|
|
case BoundsIndex,
|
|
BoundsIndexU,
|
|
BoundsSliceB,
|
|
BoundsSliceBU,
|
|
BoundsSlice3C,
|
|
BoundsSlice3CU:
|
|
return 2
|
|
default:
|
|
panic("bad BoundsKind")
|
|
}
|
|
}
|
|
|
|
// arm64BitField is the GO type of ARM64BitField auxInt.
|
|
// if x is an ARM64BitField, then width=x&0xff, lsb=(x>>8)&0xff, and
|
|
// width+lsb<64 for 64-bit variant, width+lsb<32 for 32-bit variant.
|
|
// the meaning of width and lsb are instruction-dependent.
|
|
type arm64BitField int16
|