khr@golang.org e373771490 cmd/compile: use zero register instead of specialized *zero instructions
This lets us get rid of lots of specialized opcodes for storing zero.
Instead, use regular store opcodes that just happen to use the zero
register as one of their inputs.

Change-Id: I2902a6f9b0831cb598df45189ca6bb57221bef72
Reviewed-on: https://go-review.googlesource.com/c/go/+/633075
Reviewed-by: Cherry Mui <cherryyz@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Keith Randall <khr@google.com>
2025-04-04 15:26:24 -07:00

531 lines
19 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/obj"
"fmt"
"strings"
)
// An Op encodes the specific operation that a Value performs.
// Opcodes' semantics can be modified by the type and aux fields of the Value.
// For instance, OpAdd can be 32 or 64 bit, signed or unsigned, float or complex, depending on Value.Type.
// Semantics of each op are described in the opcode files in _gen/*Ops.go.
// There is one file for generic (architecture-independent) ops and one file
// for each architecture.
type Op int32
type opInfo struct {
name string
reg regInfo
auxType auxType
argLen int32 // the number of arguments, -1 if variable length
asm obj.As
generic bool // this is a generic (arch-independent) opcode
rematerializeable bool // this op is rematerializeable
commutative bool // this operation is commutative (e.g. addition)
resultInArg0 bool // (first, if a tuple) output of v and v.Args[0] must be allocated to the same register
resultNotInArgs bool // outputs must not be allocated to the same registers as inputs
clobberFlags bool // this op clobbers flags register
needIntTemp bool // need a temporary free integer register
call bool // is a function call
tailCall bool // is a tail call
nilCheck bool // this op is a nil check on arg0
faultOnNilArg0 bool // this op will fault if arg0 is nil (and aux encodes a small offset)
faultOnNilArg1 bool // this op will fault if arg1 is nil (and aux encodes a small offset)
usesScratch bool // this op requires scratch memory space
hasSideEffects bool // for "reasons", not to be eliminated. E.g., atomic store, #19182.
zeroWidth bool // op never translates into any machine code. example: copy, which may sometimes translate to machine code, is not zero-width.
unsafePoint bool // this op is an unsafe point, i.e. not safe for async preemption
fixedReg bool // this op will be assigned a fixed register
symEffect SymEffect // effect this op has on symbol in aux
scale uint8 // amd64/386 indexed load scale
}
type inputInfo struct {
idx int // index in Args array
regs regMask // allowed input registers
}
type outputInfo struct {
idx int // index in output tuple
regs regMask // allowed output registers
}
type regInfo struct {
// inputs encodes the register restrictions for an instruction's inputs.
// Each entry specifies an allowed register set for a particular input.
// They are listed in the order in which regalloc should pick a register
// from the register set (most constrained first).
// Inputs which do not need registers are not listed.
inputs []inputInfo
// clobbers encodes the set of registers that are overwritten by
// the instruction (other than the output registers).
clobbers regMask
// outputs is the same as inputs, but for the outputs of the instruction.
outputs []outputInfo
}
func (r *regInfo) String() string {
s := ""
s += "INS:\n"
for _, i := range r.inputs {
mask := fmt.Sprintf("%64b", i.regs)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
}
s += "OUTS:\n"
for _, i := range r.outputs {
mask := fmt.Sprintf("%64b", i.regs)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
}
s += "CLOBBERS:\n"
mask := fmt.Sprintf("%64b", r.clobbers)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf(" |%s|\n", mask)
return s
}
type auxType int8
type AuxNameOffset struct {
Name *ir.Name
Offset int64
}
func (a *AuxNameOffset) CanBeAnSSAAux() {}
func (a *AuxNameOffset) String() string {
return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset)
}
func (a *AuxNameOffset) FrameOffset() int64 {
return a.Name.FrameOffset() + a.Offset
}
type AuxCall struct {
Fn *obj.LSym
reg *regInfo // regInfo for this call
abiInfo *abi.ABIParamResultInfo
}
// Reg returns the regInfo for a given call, combining the derived in/out register masks
// with the machine-specific register information in the input i. (The machine-specific
// regInfo is much handier at the call site than it is when the AuxCall is being constructed,
// therefore do this lazily).
//
// TODO: there is a Clever Hack that allows pre-generation of a small-ish number of the slices
// of inputInfo and outputInfo used here, provided that we are willing to reorder the inputs
// and outputs from calls, so that all integer registers come first, then all floating registers.
// At this point (active development of register ABI) that is very premature,
// but if this turns out to be a cost, we could do it.
func (a *AuxCall) Reg(i *regInfo, c *Config) *regInfo {
if a.reg.clobbers != 0 {
// Already updated
return a.reg
}
if a.abiInfo.InRegistersUsed()+a.abiInfo.OutRegistersUsed() == 0 {
// Shortcut for zero case, also handles old ABI.
a.reg = i
return a.reg
}
k := len(i.inputs)
for _, p := range a.abiInfo.InParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
k++
}
}
a.reg.inputs = append(a.reg.inputs, i.inputs...) // These are less constrained, thus should come last
k = len(i.outputs)
for _, p := range a.abiInfo.OutParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.outputs = append(a.reg.outputs, outputInfo{idx: k, regs: (1 << m)})
k++
}
}
a.reg.outputs = append(a.reg.outputs, i.outputs...)
a.reg.clobbers = i.clobbers
return a.reg
}
func (a *AuxCall) ABI() *abi.ABIConfig {
return a.abiInfo.Config()
}
func (a *AuxCall) ABIInfo() *abi.ABIParamResultInfo {
return a.abiInfo
}
func (a *AuxCall) ResultReg(c *Config) *regInfo {
if a.abiInfo.OutRegistersUsed() == 0 {
return a.reg
}
if len(a.reg.inputs) > 0 {
return a.reg
}
k := 0
for _, p := range a.abiInfo.OutParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
k++
}
}
return a.reg
}
// For ABI register index r, returns the (dense) register number used in
// SSA backend.
func archRegForAbiReg(r abi.RegIndex, c *Config) uint8 {
var m int8
if int(r) < len(c.intParamRegs) {
m = c.intParamRegs[r]
} else {
m = c.floatParamRegs[int(r)-len(c.intParamRegs)]
}
return uint8(m)
}
// For ABI register index r, returns the register number used in the obj
// package (assembler).
func ObjRegForAbiReg(r abi.RegIndex, c *Config) int16 {
m := archRegForAbiReg(r, c)
return c.registers[m].objNum
}
// ArgWidth returns the amount of stack needed for all the inputs
// and outputs of a function or method, including ABI-defined parameter
// slots and ABI-defined spill slots for register-resident parameters.
//
// The name is taken from the types package's ArgWidth(<function type>),
// which predated changes to the ABI; this version handles those changes.
func (a *AuxCall) ArgWidth() int64 {
return a.abiInfo.ArgWidth()
}
// ParamAssignmentForResult returns the ABI Parameter assignment for result which (indexed 0, 1, etc).
func (a *AuxCall) ParamAssignmentForResult(which int64) *abi.ABIParamAssignment {
return a.abiInfo.OutParam(int(which))
}
// OffsetOfResult returns the SP offset of result which (indexed 0, 1, etc).
func (a *AuxCall) OffsetOfResult(which int64) int64 {
n := int64(a.abiInfo.OutParam(int(which)).Offset())
return n
}
// OffsetOfArg returns the SP offset of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) OffsetOfArg(which int64) int64 {
n := int64(a.abiInfo.InParam(int(which)).Offset())
return n
}
// RegsOfResult returns the register(s) used for result which (indexed 0, 1, etc).
func (a *AuxCall) RegsOfResult(which int64) []abi.RegIndex {
return a.abiInfo.OutParam(int(which)).Registers
}
// RegsOfArg returns the register(s) used for argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) RegsOfArg(which int64) []abi.RegIndex {
return a.abiInfo.InParam(int(which)).Registers
}
// NameOfResult returns the ir.Name of result which (indexed 0, 1, etc).
func (a *AuxCall) NameOfResult(which int64) *ir.Name {
return a.abiInfo.OutParam(int(which)).Name
}
// TypeOfResult returns the type of result which (indexed 0, 1, etc).
func (a *AuxCall) TypeOfResult(which int64) *types.Type {
return a.abiInfo.OutParam(int(which)).Type
}
// TypeOfArg returns the type of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) TypeOfArg(which int64) *types.Type {
return a.abiInfo.InParam(int(which)).Type
}
// SizeOfResult returns the size of result which (indexed 0, 1, etc).
func (a *AuxCall) SizeOfResult(which int64) int64 {
return a.TypeOfResult(which).Size()
}
// SizeOfArg returns the size of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) SizeOfArg(which int64) int64 {
return a.TypeOfArg(which).Size()
}
// NResults returns the number of results.
func (a *AuxCall) NResults() int64 {
return int64(len(a.abiInfo.OutParams()))
}
// LateExpansionResultType returns the result type (including trailing mem)
// for a call that will be expanded later in the SSA phase.
func (a *AuxCall) LateExpansionResultType() *types.Type {
var tys []*types.Type
for i := int64(0); i < a.NResults(); i++ {
tys = append(tys, a.TypeOfResult(i))
}
tys = append(tys, types.TypeMem)
return types.NewResults(tys)
}
// NArgs returns the number of arguments (including receiver, if there is one).
func (a *AuxCall) NArgs() int64 {
return int64(len(a.abiInfo.InParams()))
}
// String returns "AuxCall{<fn>}"
func (a *AuxCall) String() string {
var fn string
if a.Fn == nil {
fn = "AuxCall{nil" // could be interface/closure etc.
} else {
fn = fmt.Sprintf("AuxCall{%v", a.Fn)
}
// TODO how much of the ABI should be printed?
return fn + "}"
}
// StaticAuxCall returns an AuxCall for a static call.
func StaticAuxCall(sym *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
if paramResultInfo == nil {
panic(fmt.Errorf("Nil paramResultInfo, sym=%v", sym))
}
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = &regInfo{}
}
return &AuxCall{Fn: sym, abiInfo: paramResultInfo, reg: reg}
}
// InterfaceAuxCall returns an AuxCall for an interface call.
func InterfaceAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = &regInfo{}
}
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}
// ClosureAuxCall returns an AuxCall for a closure call.
func ClosureAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = &regInfo{}
}
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}
func (*AuxCall) CanBeAnSSAAux() {}
// OwnAuxCall returns a function's own AuxCall.
func OwnAuxCall(fn *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
// TODO if this remains identical to ClosureAuxCall above after new ABI is done, should deduplicate.
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = &regInfo{}
}
return &AuxCall{Fn: fn, abiInfo: paramResultInfo, reg: reg}
}
const (
auxNone auxType = iota
auxBool // auxInt is 0/1 for false/true
auxInt8 // auxInt is an 8-bit integer
auxInt16 // auxInt is a 16-bit integer
auxInt32 // auxInt is a 32-bit integer
auxInt64 // auxInt is a 64-bit integer
auxInt128 // auxInt represents a 128-bit integer. Always 0.
auxUInt8 // auxInt is an 8-bit unsigned integer
auxFloat32 // auxInt is a float32 (encoded with math.Float64bits)
auxFloat64 // auxInt is a float64 (encoded with math.Float64bits)
auxFlagConstant // auxInt is a flagConstant
auxCCop // auxInt is a ssa.Op that represents a flags-to-bool conversion (e.g. LessThan)
auxNameOffsetInt8 // aux is a &struct{Name ir.Name, Offset int64}; auxInt is index in parameter registers array
auxString // aux is a string
auxSym // aux is a symbol (a *ir.Name for locals, an *obj.LSym for globals, or nil for none)
auxSymOff // aux is a symbol, auxInt is an offset
auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff
auxTyp // aux is a type
auxTypSize // aux is a type, auxInt is a size, must have Aux.(Type).Size() == AuxInt
auxCall // aux is a *ssa.AuxCall
auxCallOff // aux is a *ssa.AuxCall, AuxInt is int64 param (in+out) size
// architecture specific aux types
auxARM64BitField // aux is an arm64 bitfield lsb and width packed into auxInt
auxS390XRotateParams // aux is a s390x rotate parameters object encoding start bit, end bit and rotate amount
auxS390XCCMask // aux is a s390x 4-bit condition code mask
auxS390XCCMaskInt8 // aux is a s390x 4-bit condition code mask, auxInt is an int8 immediate
auxS390XCCMaskUint8 // aux is a s390x 4-bit condition code mask, auxInt is a uint8 immediate
)
// A SymEffect describes the effect that an SSA Value has on the variable
// identified by the symbol in its Aux field.
type SymEffect int8
const (
SymRead SymEffect = 1 << iota
SymWrite
SymAddr
SymRdWr = SymRead | SymWrite
SymNone SymEffect = 0
)
// A Sym represents a symbolic offset from a base register.
// Currently a Sym can be one of 3 things:
// - a *ir.Name, for an offset from SP (the stack pointer)
// - a *obj.LSym, for an offset from SB (the global pointer)
// - nil, for no offset
type Sym interface {
Aux
CanBeAnSSASym()
}
// A ValAndOff is used by the several opcodes. It holds
// both a value and a pointer offset.
// A ValAndOff is intended to be encoded into an AuxInt field.
// The zero ValAndOff encodes a value of 0 and an offset of 0.
// The high 32 bits hold a value.
// The low 32 bits hold a pointer offset.
type ValAndOff int64
func (x ValAndOff) Val() int32 { return int32(int64(x) >> 32) }
func (x ValAndOff) Val64() int64 { return int64(x) >> 32 }
func (x ValAndOff) Val16() int16 { return int16(int64(x) >> 32) }
func (x ValAndOff) Val8() int8 { return int8(int64(x) >> 32) }
func (x ValAndOff) Off64() int64 { return int64(int32(x)) }
func (x ValAndOff) Off() int32 { return int32(x) }
func (x ValAndOff) String() string {
return fmt.Sprintf("val=%d,off=%d", x.Val(), x.Off())
}
// validVal reports whether the value can be used
// as an argument to makeValAndOff.
func validVal(val int64) bool {
return val == int64(int32(val))
}
func makeValAndOff(val, off int32) ValAndOff {
return ValAndOff(int64(val)<<32 + int64(uint32(off)))
}
func (x ValAndOff) canAdd32(off int32) bool {
newoff := x.Off64() + int64(off)
return newoff == int64(int32(newoff))
}
func (x ValAndOff) canAdd64(off int64) bool {
newoff := x.Off64() + off
return newoff == int64(int32(newoff))
}
func (x ValAndOff) addOffset32(off int32) ValAndOff {
if !x.canAdd32(off) {
panic("invalid ValAndOff.addOffset32")
}
return makeValAndOff(x.Val(), x.Off()+off)
}
func (x ValAndOff) addOffset64(off int64) ValAndOff {
if !x.canAdd64(off) {
panic("invalid ValAndOff.addOffset64")
}
return makeValAndOff(x.Val(), x.Off()+int32(off))
}
// int128 is a type that stores a 128-bit constant.
// The only allowed constant right now is 0, so we can cheat quite a bit.
type int128 int64
type BoundsKind uint8
const (
BoundsIndex BoundsKind = iota // indexing operation, 0 <= idx < len failed
BoundsIndexU // ... with unsigned idx
BoundsSliceAlen // 2-arg slicing operation, 0 <= high <= len failed
BoundsSliceAlenU // ... with unsigned high
BoundsSliceAcap // 2-arg slicing operation, 0 <= high <= cap failed
BoundsSliceAcapU // ... with unsigned high
BoundsSliceB // 2-arg slicing operation, 0 <= low <= high failed
BoundsSliceBU // ... with unsigned low
BoundsSlice3Alen // 3-arg slicing operation, 0 <= max <= len failed
BoundsSlice3AlenU // ... with unsigned max
BoundsSlice3Acap // 3-arg slicing operation, 0 <= max <= cap failed
BoundsSlice3AcapU // ... with unsigned max
BoundsSlice3B // 3-arg slicing operation, 0 <= high <= max failed
BoundsSlice3BU // ... with unsigned high
BoundsSlice3C // 3-arg slicing operation, 0 <= low <= high failed
BoundsSlice3CU // ... with unsigned low
BoundsConvert // conversion to array pointer failed
BoundsKindCount
)
// boundsABI determines which register arguments a bounds check call should use. For an [a:b:c] slice, we do:
//
// CMPQ c, cap
// JA fail1
// CMPQ b, c
// JA fail2
// CMPQ a, b
// JA fail3
//
// fail1: CALL panicSlice3Acap (c, cap)
// fail2: CALL panicSlice3B (b, c)
// fail3: CALL panicSlice3C (a, b)
//
// When we register allocate that code, we want the same register to be used for
// the first arg of panicSlice3Acap and the second arg to panicSlice3B. That way,
// initializing that register once will satisfy both calls.
// That desire ends up dividing the set of bounds check calls into 3 sets. This function
// determines which set to use for a given panic call.
// The first arg for set 0 should be the second arg for set 1.
// The first arg for set 1 should be the second arg for set 2.
func boundsABI(b int64) int {
switch BoundsKind(b) {
case BoundsSlice3Alen,
BoundsSlice3AlenU,
BoundsSlice3Acap,
BoundsSlice3AcapU,
BoundsConvert:
return 0
case BoundsSliceAlen,
BoundsSliceAlenU,
BoundsSliceAcap,
BoundsSliceAcapU,
BoundsSlice3B,
BoundsSlice3BU:
return 1
case BoundsIndex,
BoundsIndexU,
BoundsSliceB,
BoundsSliceBU,
BoundsSlice3C,
BoundsSlice3CU:
return 2
default:
panic("bad BoundsKind")
}
}
// arm64BitField is the GO type of ARM64BitField auxInt.
// if x is an ARM64BitField, then width=x&0xff, lsb=(x>>8)&0xff, and
// width+lsb<64 for 64-bit variant, width+lsb<32 for 32-bit variant.
// the meaning of width and lsb are instruction-dependent.
type arm64BitField int16