I recently got random test_commit_parallel*() failures, and this patch appears
to fix the problem.
SimpleOpHeadsStore::update_op_heads() adds new_id file and removes old_ids
files in that order. It ensures that there exists at least one id file, but it
doesn't mean readdir() can observe the added id file.
1. process A: get_op_heads() -> opendir()
2. process B: update_op_heads() -> add_op_head(new_id), remove_op_head(old_id)
3. process A: -> readdir() (can miss new_id)
update_op_heads() could do rename(old_ids[0], new_id), but I don't remember if
readdir() can always pick up a renamed entry.
The resolver callback usually returns wider error type, which I don't think
is a variant of OpHeadResolutionError.
To help type inference, resolver's error type is E, not E1 where E: From<E1>.
I think the idea behind `handle_ancestor_ops()` was to let our backend
at Google delegate the work to the server, which could then avoid
walking ancestors. However, we're now thinking that we're going to
make our server resolve divergent operations on its own instead, so
the client will never see more than one op head, unless it manually
creates the second op head itself (e.g. because the user ran two
concurrent commands). In those cases it should be fine to do the
walk. So let's simplify the trait by removing the function.
Consider how one would implment the current `OpHeadsStore` interface
for a cloud-based backend. After `OpHeadsStore::add_op_head()` is
called, the set of op heads temporarily contains two heads (typically)
until `OpHeadsStore::remove_op_head()` is called. That's not invalid,
but it's annoying to have to deal with that state more than
necessary. Also, it's unnecessarily inefficient to send the addition
and removal of op heads as separate RPCs. This patch therefore adds a
`update_op_heads()` method that takes a list of old heads to remove
and a single new head to add. Coming patches will start migrating to
that method.
We need to .collect_vec() the parents iterator to temporary buffer since the
borrowed iterator can't be returned back to the dag_walk functions. Another
option is to clone op_store and parent ids to remove &self lifetime from the
iterator, but that also means a temporary Vec is created.
Make op resolution a closed operation, powered by a callback provided by the
caller which runs under an internal lock scope. This allows for greatly
simplifying the internal lifetime structuring.
The implementation has some hoops to jump through because Rust does not allow
`self: &Arc<Self>` on trait methods, and two of the OpHeadsStore functions need
to return cloned selves. This is worked around by making the implementation type
itself a wrapper around Arc<>.
This is not particularly note worthy for the current implementation type where
the only data copied is a PathBuf, but for extensions it is likely to be more
critical that the lifetime management of the OpHeadsStore is properly
maintained.
Let's acknowledge everyone's contributions by replacing "Google LLC"
in the copyright header by "The Jujutsu Authors". If I understand
correctly, it won't have any legal effect, but maybe it still helps
reduce concerns from contributors (though I haven't heard any
concerns).
Google employees can read about Google's policy at
go/releasing/contributions#copyright.
It's useful for the UI layer to know that there's been concurrent
operations, so it can inform the user that that happened. It'll be
even more useful when we soon start making the resolution involve
rebasing commits, since that's even more important for the UI layer to
present to the user. This patch gets us a bit closer to that by moving
the resolution to the repo level.
We had a few lines of similar code where we added a new of the
operation log and then removed the old heads. By moving that code into
a new type, we prepare for further refactorings.
I've wanted the API to look like this for a while. It seems like a
good API to me. It means that the caller won't have to reload the repo
after committing. The cost seems relatively small. It involves copying
potentially a lot of data in memory (at least the View object), but it
shouldn't involve reading from disk or any other processing. To reduce
the amount of data to copy, it may be worth switching to persistent
data types. I've also wanted to do that for the copying we do when
start a transaction.
I couldn't measure any slowdown caused by this change.
This adds `MutableRepo::merge()`, which applies the difference between
two `ReadonRepo`s to itself. That results in much simpler code than
the current code in `merge_op_heads()`. It also lets us write `undo`
using the new function. Finally -- and this is the actual reason I did
it now -- it prepares for using the index when enforcing view
invariants.
This is yet another step towards making the `View` types
simpler. Perhaps we eventually won't need to wrap the types returned
from the `OpStore` at all.
This continues the work to make the `View` types be only about the
state of the current view and not about operations in general (which
has been moved out `OpStore` and qOpHeadsStore`).
This is more code, but I think it's clearer because the code for
removing the ancestors from the set of parents and from disk is now
close. I hope this will also help prepare for some further changes.