`MergedTree` is now ready to be used when checking if a commit has
conflicts, and when listing conflicts. We don't yet a way for the user
to say they want to use tree-level conflicts even for these
cases. However, since the backend can decide, we should be able to
have our backend return tree-level conflicts. All writes will still
use path-level conflicts, so the experimentation we can do at Google
is limited.
Beacause `MergedTree` doesn't yet have a way of walking conflicts
while restricting it by a matcher, this will make `jj resolve` a
little slower. I suspect no one will notice.
Tree-level conflicts (#1624) will be stored as multiple trees
associated with a single commit. This patch adds support for that in
`backend::Commit` and in the backends.
When the Git backend writes a tree conflict, it creates a special root
tree for the commit. That tree has only the individual trees from the
conflict as subtrees. That way we prevent the trees from getting
GC'd. We also write the tree ids to the extra metadata table
(i.e. outside of the Git repo) so we don't need to load the tree
object to determine if there are conflicts.
I also added new flag to `backend::Commit` indicating whether the
commit is a new-style commit (with support for tree-level
conflicts). That will help with the migration. We will remove it once
we no longer care about old repos. When the flag is set, we know that
a commit with a single tree cannot have conflicts. When the flag is
not set, it's an old-style commit where we have to walk the whole tree
to find conflicts.
With `MergedTree`, we can iterate over conflicts by descending into
only the subdirectories that cannot be trivially resolved. We assume
that the trees have previously been resolved as much as possible, so
we don't attempt to resolve conflicts again.
This adds a function for resolving conflicts that can be automatically
resolved, i.e. like our current `merge_trees()` function. However, the
new function is written to merge an arbitrary number of trees and, in
case of unresolvable conflicts, to produce a `Conflict<TreeId>` as
result instead of writing path-level conflicts to the backend. Like
`merge_trees()`, it still leaves conflicts unresolved at the file
level if any hunks conflict, and it resolves paths that can be
trivially resolved even if there are other paths that do conflict.
In order to store conflicts in the commit, as conflicts between a set
of trees, we want to be able merge those trees on the fly. This
introduces a type for that. It has a `Merge(Conflict(Tree))` variant,
where the individual trees cannot have path-level conflicts. It also
has a `Legacy(Tree)` variant, which does allow path-level conflicts. I
think that should help us with the migration.
Alternatively, we can wrap BTreeMap<String, Option<RefTarget>> to flatten
Option<&Option<..>> internally, but doing that would be tedious. It would
also be unclear if map.remove(name) should construct an absent RefTarget if
the ref doesn't exist.
The next commit will change these maps to store Option<RefTarget> entries, but
None entries will still be omitted from the serialized data. Since ContentHash
should describe the serialized data, relying on the generic ContentHash would
cause future hash conflict where absent RefTarget entries will be preserved.
For example, ([remove], [None, add]) will be serialized as ([remove], [add]),
and deserialized to ([remove], [add, None]). If we add support for lossless
serialization, hash(([remove], [None, add])) should differ from the lossy one.
Summary: Now that we have Rust 1.71.0 at our fingertips, the `map_first_last`
feature has been stabilized. That means we can get rid of the `jj-lib` build
script and also the `nightly_shims` module.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Change-Id: Ibb5ce3258818a2de670763fbbaf3c2e7
Since RefTarget will be reimplemented on top of Conflict<Option<CommitId>>,
we won't be able to simply return a slice of type &[CommitId]. These functions
are also renamed in order to disambiguate from Conflict::adds()/removes().
.unwrap() calls will be removed if we migrate RefTarget to new Conflict-based
type. Some of them were previously .unwrap_or_default(), but they would panic
anyway inside ref_target_from_proto().
is_none()/is_some() are wrapped as is_absent()/is_present() respectively.
If we see new RefTarget as a Conflict, an "absent" target isn't an emptyish
value like None, but an add of single [None]. It seemed a bit weird to call
such target is_none().
RefTarget type will be a wrapper around Conflict<Option<CommitId>>, and the
match arms would be more verbose. Fortunately, new code looks simpler since
we can merge non-conflicting cases.
It's named after Conflict::from_legacy_form(). If RefTarget is migrated to
new Conflict type, from_legacy_form([], [add]) will create a normal target,
and from_legacy_form([], []) will be equivalent to the current None target.
That's why this function isn't named as RefTarget::conflict().
If RefTarget is migrated to new Conflict type, this function will create
RefTarget(Conflict::resolved(Some(id))).
We still need some .unwrap() to insert Option<RefTarget> into map, but maps
will be changed to store new RefTarget type, and their mutation API will
guarantee that Conflict::resolved(None) is eliminated.
Perhaps, all view.get_<kind>(name) functions can return reference, but I'm
not willing to change the interface at this point. I'll revisit this after
migrating Option<RefTarget> to new Conflict-based type.
If we migrate RefTarget to new Conflict-based type, it won't store
Conflict<CommitId>, but Conflict<Option<CommitId>>. As the Option will
be internalized, new RefTarget type will also represent an absent target.
The 'target: Option<RefTarget>' argument will be replaced with new RefTarget
type.
I've also renamed the function for consistency with the following changes.
It would be surprising if set_local_branch(name, target) could remove the
branch. I feel the name set_local_branch_target() is less confusing.
This might look more complicated than the original code, but it clarifies
that we always eliminate a (remove, add) pair. The behavior slightly changed
since an absent ref (i.e. None) in "removes" can now be paired with an "add"
even if "removes" contained other ids. Before, it was possible only when
removes.is_empty().
The order of conflicted ids slightly changed since Conflict::simplify()
tries to preserve diff pairs. It shouldn't matter so long as the result is
stable.
Git CLI rejects it (though the data model would probably work fine with
"HEAD" branch.) This ensures that HEAD@git in JJ world is not an exported
branch named "HEAD".
This is (almost) a result of running
cargo +nightly clippy --workspace --all-targets --fix \
-- -A 'clippy::needless_raw_string_hashes'
with yesterday's nightly clippy.
https://github.com/mitsuhiko/insta/issues/389 causes numerous additional
`needless_raw_string_hashes` warnings, but it will hopefully be fixed soon.
For now, I recommend appending the second line to your invocations.