use super::hashable_value::HashableValue; use itertools::Itertools; use nu_engine::CallExt; use nu_protocol::ast::Call; use nu_protocol::engine::{Command, EngineState, Stack}; use nu_protocol::{ record, Category, Example, IntoPipelineData, PipelineData, Record, ShellError, Signature, Span, Spanned, SyntaxShape, Type, Value, }; use std::collections::HashMap; #[derive(Clone)] pub struct Histogram; enum PercentageCalcMethod { Normalize, Relative, } impl Command for Histogram { fn name(&self) -> &str { "histogram" } fn signature(&self) -> Signature { Signature::build("histogram") .input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::Table(vec![])),]) .optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.") .optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.") .named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t')) .category(Category::Chart) } fn usage(&self) -> &str { "Creates a new table with a histogram based on the column name passed in." } fn examples(&self) -> Vec { vec![ Example { description: "Compute a histogram of file types", example: "ls | histogram type", result: None, }, Example { description: "Compute a histogram for the types of files, with frequency column named freq", example: "ls | histogram type freq", result: None, }, Example { description: "Compute a histogram for a list of numbers", example: "[1 2 1] | histogram", result: Some(Value::test_list ( vec![Value::test_record(record! { "value" => Value::test_int(1), "count" => Value::test_int(2), "quantile" => Value::test_float(0.6666666666666666), "percentage" => Value::test_string("66.67%"), "frequency" => Value::test_string("******************************************************************"), }), Value::test_record(record! { "value" => Value::test_int(2), "count" => Value::test_int(1), "quantile" => Value::test_float(0.3333333333333333), "percentage" => Value::test_string("33.33%"), "frequency" => Value::test_string("*********************************"), })], ) ), }, Example { description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value", example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative", result: None, } ] } fn run( &self, engine_state: &EngineState, stack: &mut Stack, call: &Call, input: PipelineData, ) -> Result { // input check. let column_name: Option> = call.opt(engine_state, stack, 0)?; let frequency_name_arg = call.opt::>(engine_state, stack, 1)?; let frequency_column_name = match frequency_name_arg { Some(inner) => { let forbidden_column_names = ["value", "count", "quantile", "percentage"]; if forbidden_column_names.contains(&inner.item.as_str()) { return Err(ShellError::TypeMismatch { err_message: format!( "frequency-column-name can't be {}", forbidden_column_names .iter() .map(|val| format!("'{}'", val)) .collect::>() .join(", ") ), span: inner.span, }); } inner.item } None => "frequency".to_string(), }; let calc_method: Option> = call.get_flag(engine_state, stack, "percentage-type")?; let calc_method = match calc_method { None => PercentageCalcMethod::Normalize, Some(inner) => match inner.item.as_str() { "normalize" => PercentageCalcMethod::Normalize, "relative" => PercentageCalcMethod::Relative, _ => { return Err(ShellError::TypeMismatch { err_message: "calc method can only be 'normalize' or 'relative'" .to_string(), span: inner.span, }) } }, }; let span = call.head; let data_as_value = input.into_value(span); // `input` is not a list, here we can return an error. run_histogram( data_as_value.as_list()?.to_vec(), column_name, frequency_column_name, calc_method, span, // Note that as_list() filters out Value::Error here. data_as_value.span(), ) } } fn run_histogram( values: Vec, column_name: Option>, freq_column: String, calc_method: PercentageCalcMethod, head_span: Span, list_span: Span, ) -> Result { let mut inputs = vec![]; // convert from inputs to hashable values. match column_name { None => { // some invalid input scenario needs to handle: // Expect input is a list of hashable value, if one value is not hashable, throw out error. for v in values { match v { // Propagate existing errors. Value::Error { error, .. } => return Err(*error), _ => { let t = v.get_type(); let span = v.span(); inputs.push(HashableValue::from_value(v, head_span).map_err(|_| { ShellError::UnsupportedInput { msg: "Since --column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!( "input type: {t:?}" ), msg_span: head_span, input_span: span } })?) } } } } Some(ref col) => { // some invalid input scenario needs to handle: // * item in `input` is not a record, just skip it. // * a record doesn't contain specific column, just skip it. // * all records don't contain specific column, throw out error, indicate at least one row should contains specific column. // * a record contain a value which can't be hashed, skip it. let col_name = &col.item; for v in values { match v { // parse record, and fill valid value to actual input. Value::Record { val, .. } => { for (c, v) in val { if &c == col_name { if let Ok(v) = HashableValue::from_value(v, head_span) { inputs.push(v); } } } } // Propagate existing errors. Value::Error { error, .. } => return Err(*error), _ => continue, } } if inputs.is_empty() { return Err(ShellError::CantFindColumn { col_name: col_name.clone(), span: head_span, src_span: list_span, }); } } } let value_column_name = column_name .map(|x| x.item) .unwrap_or_else(|| "value".to_string()); Ok(histogram_impl( inputs, &value_column_name, calc_method, &freq_column, head_span, )) } fn histogram_impl( inputs: Vec, value_column_name: &str, calc_method: PercentageCalcMethod, freq_column: &str, span: Span, ) -> PipelineData { // here we can make sure that inputs is not empty, and every elements // is a simple val and ok to make count. let mut counter = HashMap::new(); let mut max_cnt = 0; let total_cnt = inputs.len(); for i in inputs { let new_cnt = *counter.get(&i).unwrap_or(&0) + 1; counter.insert(i, new_cnt); if new_cnt > max_cnt { max_cnt = new_cnt; } } let mut result = vec![]; let result_cols = vec![ value_column_name.to_string(), "count".to_string(), "quantile".to_string(), "percentage".to_string(), freq_column.to_string(), ]; const MAX_FREQ_COUNT: f64 = 100.0; for (val, count) in counter.into_iter().sorted() { let quantile = match calc_method { PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64, PercentageCalcMethod::Relative => count as f64 / max_cnt as f64, }; let percentage = format!("{:.2}%", quantile * 100_f64); let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize); result.push(( count, // attach count first for easily sorting. Value::record( Record::from_raw_cols_vals_unchecked( result_cols.clone(), vec![ val.into_value(), Value::int(count, span), Value::float(quantile, span), Value::string(percentage, span), Value::string(freq, span), ], ), span, ), )); } result.sort_by(|a, b| b.0.cmp(&a.0)); Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data() } #[cfg(test)] mod tests { use super::*; #[test] fn test_examples() { use crate::test_examples; test_examples(Histogram) } }