mirror of
https://github.com/nushell/nushell.git
synced 2025-05-23 08:01:18 +00:00
# Description Lint: `clippy::uninlined_format_args` More readable in most situations. (May be slightly confusing for modifier format strings https://doc.rust-lang.org/std/fmt/index.html#formatting-parameters) Alternative to #7865 # User-Facing Changes None intended # Tests + Formatting (Ran `cargo +stable clippy --fix --workspace -- -A clippy::all -D clippy::uninlined_format_args` to achieve this. Depends on Rust `1.67`)
304 lines
11 KiB
Rust
304 lines
11 KiB
Rust
use super::hashable_value::HashableValue;
|
|
use itertools::Itertools;
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::ast::Call;
|
|
use nu_protocol::engine::{Command, EngineState, Stack};
|
|
use nu_protocol::{
|
|
Example, IntoPipelineData, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape,
|
|
Type, Value,
|
|
};
|
|
use std::collections::HashMap;
|
|
use std::iter;
|
|
|
|
#[derive(Clone)]
|
|
pub struct Histogram;
|
|
|
|
enum PercentageCalcMethod {
|
|
Normalize,
|
|
Relative,
|
|
}
|
|
|
|
impl Command for Histogram {
|
|
fn name(&self) -> &str {
|
|
"histogram"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("histogram")
|
|
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::Table(vec![])),])
|
|
.optional("column-name", SyntaxShape::String, "column name to calc frequency, no need to provide if input is just a list")
|
|
.optional("frequency-column-name", SyntaxShape::String, "histogram's frequency column, default to be frequency column output")
|
|
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Creates a new table with a histogram based on the column name passed in."
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Compute a histogram of file types",
|
|
example: "ls | histogram type",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description:
|
|
"Compute a histogram for the types of files, with frequency column named freq",
|
|
example: "ls | histogram type freq",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers",
|
|
example: "[1 2 1] | histogram",
|
|
result: Some(Value::List {
|
|
vals: vec![Value::Record {
|
|
cols: vec!["value".to_string(), "count".to_string(), "quantile".to_string(), "percentage".to_string(), "frequency".to_string()],
|
|
vals: vec![
|
|
Value::test_int(1),
|
|
Value::test_int(2),
|
|
Value::test_float(0.6666666666666666),
|
|
Value::test_string("66.67%"),
|
|
Value::test_string("******************************************************************"),
|
|
],
|
|
span: Span::test_data(),
|
|
},
|
|
Value::Record {
|
|
cols: vec!["value".to_string(), "count".to_string(), "quantile".to_string(), "percentage".to_string(), "frequency".to_string()],
|
|
vals: vec![
|
|
Value::test_int(2),
|
|
Value::test_int(1),
|
|
Value::test_float(0.3333333333333333),
|
|
Value::test_string("33.33%"),
|
|
Value::test_string("*********************************"),
|
|
],
|
|
span: Span::test_data(),
|
|
}],
|
|
span: Span::test_data(),
|
|
}
|
|
),
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
|
|
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
|
|
result: None,
|
|
}
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
// input check.
|
|
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
|
|
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
|
|
let frequency_column_name = match frequency_name_arg {
|
|
Some(inner) => {
|
|
if ["value", "count", "quantile", "percentage"].contains(&inner.item.as_str()) {
|
|
return Err(ShellError::TypeMismatch(
|
|
"frequency-column-name can't be 'value', 'count' or 'percentage'"
|
|
.to_string(),
|
|
inner.span,
|
|
));
|
|
}
|
|
inner.item
|
|
}
|
|
None => "frequency".to_string(),
|
|
};
|
|
|
|
let calc_method: Option<Spanned<String>> =
|
|
call.get_flag(engine_state, stack, "percentage-type")?;
|
|
let calc_method = match calc_method {
|
|
None => PercentageCalcMethod::Normalize,
|
|
Some(inner) => match inner.item.as_str() {
|
|
"normalize" => PercentageCalcMethod::Normalize,
|
|
"relative" => PercentageCalcMethod::Relative,
|
|
_ => {
|
|
return Err(ShellError::TypeMismatch(
|
|
"calc method can only be 'normalize' or 'relative'".to_string(),
|
|
inner.span,
|
|
))
|
|
}
|
|
},
|
|
};
|
|
|
|
let span = call.head;
|
|
let data_as_value = input.into_value(span);
|
|
// `input` is not a list, here we can return an error.
|
|
run_histogram(
|
|
data_as_value.as_list()?.to_vec(),
|
|
column_name,
|
|
frequency_column_name,
|
|
calc_method,
|
|
span,
|
|
// Note that as_list() filters out Value::Error here.
|
|
data_as_value.expect_span(),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn run_histogram(
|
|
values: Vec<Value>,
|
|
column_name: Option<Spanned<String>>,
|
|
freq_column: String,
|
|
calc_method: PercentageCalcMethod,
|
|
head_span: Span,
|
|
list_span: Span,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let mut inputs = vec![];
|
|
// convert from inputs to hashable values.
|
|
match column_name {
|
|
None => {
|
|
// some invalid input scenario needs to handle:
|
|
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
|
|
for v in values {
|
|
match v {
|
|
// Propagate existing errors.
|
|
Value::Error { error } => return Err(error),
|
|
_ => {
|
|
let t = v.get_type();
|
|
let span = v.expect_span();
|
|
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
|
|
ShellError::UnsupportedInput(
|
|
"Since --column-name was not provided, only lists of hashable values are supported.".to_string(),
|
|
format!(
|
|
"input type: {t:?}"
|
|
),
|
|
head_span,
|
|
span,
|
|
)
|
|
})?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ref col) => {
|
|
// some invalid input scenario needs to handle:
|
|
// * item in `input` is not a record, just skip it.
|
|
// * a record doesn't contain specific column, just skip it.
|
|
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
|
|
// * a record contain a value which can't be hashed, skip it.
|
|
let col_name = &col.item;
|
|
for v in values {
|
|
match v {
|
|
// parse record, and fill valid value to actual input.
|
|
Value::Record { cols, vals, .. } => {
|
|
for (c, v) in iter::zip(cols, vals) {
|
|
if &c == col_name {
|
|
if let Ok(v) = HashableValue::from_value(v, head_span) {
|
|
inputs.push(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Propagate existing errors.
|
|
Value::Error { error } => return Err(error),
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
if inputs.is_empty() {
|
|
return Err(ShellError::CantFindColumn(
|
|
col_name.clone(),
|
|
head_span,
|
|
list_span,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
let value_column_name = column_name
|
|
.map(|x| x.item)
|
|
.unwrap_or_else(|| "value".to_string());
|
|
Ok(histogram_impl(
|
|
inputs,
|
|
&value_column_name,
|
|
calc_method,
|
|
&freq_column,
|
|
head_span,
|
|
))
|
|
}
|
|
|
|
fn histogram_impl(
|
|
inputs: Vec<HashableValue>,
|
|
value_column_name: &str,
|
|
calc_method: PercentageCalcMethod,
|
|
freq_column: &str,
|
|
span: Span,
|
|
) -> PipelineData {
|
|
// here we can make sure that inputs is not empty, and every elements
|
|
// is a simple val and ok to make count.
|
|
let mut counter = HashMap::new();
|
|
let mut max_cnt = 0;
|
|
let total_cnt = inputs.len();
|
|
for i in inputs {
|
|
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
|
|
counter.insert(i, new_cnt);
|
|
if new_cnt > max_cnt {
|
|
max_cnt = new_cnt;
|
|
}
|
|
}
|
|
|
|
let mut result = vec![];
|
|
let result_cols = vec![
|
|
value_column_name.to_string(),
|
|
"count".to_string(),
|
|
"quantile".to_string(),
|
|
"percentage".to_string(),
|
|
freq_column.to_string(),
|
|
];
|
|
const MAX_FREQ_COUNT: f64 = 100.0;
|
|
for (val, count) in counter.into_iter().sorted() {
|
|
let quantile = match calc_method {
|
|
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
|
|
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
|
|
};
|
|
|
|
let percentage = format!("{:.2}%", quantile * 100_f64);
|
|
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
|
|
|
|
result.push((
|
|
count, // attach count first for easily sorting.
|
|
Value::Record {
|
|
cols: result_cols.clone(),
|
|
vals: vec![
|
|
val.into_value(),
|
|
Value::Int { val: count, span },
|
|
Value::Float {
|
|
val: quantile,
|
|
span,
|
|
},
|
|
Value::String {
|
|
val: percentage,
|
|
span,
|
|
},
|
|
Value::String { val: freq, span },
|
|
],
|
|
span,
|
|
},
|
|
));
|
|
}
|
|
result.sort_by(|a, b| b.0.cmp(&a.0));
|
|
Value::List {
|
|
vals: result.into_iter().map(|x| x.1).collect(),
|
|
span,
|
|
}
|
|
.into_pipeline_data()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
use crate::test_examples;
|
|
|
|
test_examples(Histogram)
|
|
}
|
|
}
|