Stefan Holderbach 95b78eee25
Change the usage misnomer to "description" (#13598)
# Description
    
The meaning of the word usage is specific to describing how a command
function is *used* and not a synonym for general description. Usage can
be used to describe the SYNOPSIS or EXAMPLES sections of a man page
where the permitted argument combinations are shown or example *uses*
are given.
Let's not confuse people and call it what it is a description.

Our `help` command already creates its own *Usage* section based on the
available arguments and doesn't refer to the description with usage.

# User-Facing Changes

`help commands` and `scope commands` will now use `description` or
`extra_description`
`usage`-> `description`
`extra_usage` -> `extra_description`

Breaking change in the plugin protocol:

In the signature record communicated with the engine.
`usage`-> `description`
`extra_usage` -> `extra_description`

The same rename also takes place for the methods on
`SimplePluginCommand` and `PluginCommand`

# Tests + Formatting
- Updated plugin protocol specific changes
# After Submitting
- [ ] update plugin protocol doc
2024-08-22 12:02:08 +02:00

274 lines
10 KiB
Rust
Executable File

use super::hashable_value::HashableValue;
use itertools::Itertools;
use nu_engine::command_prelude::*;
use std::collections::HashMap;
#[derive(Clone)]
pub struct Histogram;
enum PercentageCalcMethod {
Normalize,
Relative,
}
impl Command for Histogram {
fn name(&self) -> &str {
"histogram"
}
fn signature(&self) -> Signature {
Signature::build("histogram")
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::table()),])
.optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.")
.optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.")
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
.category(Category::Chart)
}
fn description(&self) -> &str {
"Creates a new table with a histogram based on the column name passed in."
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "Compute a histogram of file types",
example: "ls | histogram type",
result: None,
},
Example {
description:
"Compute a histogram for the types of files, with frequency column named freq",
example: "ls | histogram type freq",
result: None,
},
Example {
description: "Compute a histogram for a list of numbers",
example: "[1 2 1] | histogram",
result: Some(Value::test_list (
vec![Value::test_record(record! {
"value" => Value::test_int(1),
"count" => Value::test_int(2),
"quantile" => Value::test_float(0.6666666666666666),
"percentage" => Value::test_string("66.67%"),
"frequency" => Value::test_string("******************************************************************"),
}),
Value::test_record(record! {
"value" => Value::test_int(2),
"count" => Value::test_int(1),
"quantile" => Value::test_float(0.3333333333333333),
"percentage" => Value::test_string("33.33%"),
"frequency" => Value::test_string("*********************************"),
})],
)
),
},
Example {
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
result: None,
}
]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
// input check.
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
let frequency_column_name = match frequency_name_arg {
Some(inner) => {
let forbidden_column_names = ["value", "count", "quantile", "percentage"];
if forbidden_column_names.contains(&inner.item.as_str()) {
return Err(ShellError::TypeMismatch {
err_message: format!(
"frequency-column-name can't be {}",
forbidden_column_names
.iter()
.map(|val| format!("'{}'", val))
.collect::<Vec<_>>()
.join(", ")
),
span: inner.span,
});
}
inner.item
}
None => "frequency".to_string(),
};
let calc_method: Option<Spanned<String>> =
call.get_flag(engine_state, stack, "percentage-type")?;
let calc_method = match calc_method {
None => PercentageCalcMethod::Normalize,
Some(inner) => match inner.item.as_str() {
"normalize" => PercentageCalcMethod::Normalize,
"relative" => PercentageCalcMethod::Relative,
_ => {
return Err(ShellError::TypeMismatch {
err_message: "calc method can only be 'normalize' or 'relative'"
.to_string(),
span: inner.span,
})
}
},
};
let span = call.head;
let data_as_value = input.into_value(span)?;
let value_span = data_as_value.span();
// `input` is not a list, here we can return an error.
run_histogram(
data_as_value.into_list()?,
column_name,
frequency_column_name,
calc_method,
span,
// Note that as_list() filters out Value::Error here.
value_span,
)
}
}
fn run_histogram(
values: Vec<Value>,
column_name: Option<Spanned<String>>,
freq_column: String,
calc_method: PercentageCalcMethod,
head_span: Span,
list_span: Span,
) -> Result<PipelineData, ShellError> {
let mut inputs = vec![];
// convert from inputs to hashable values.
match column_name {
None => {
// some invalid input scenario needs to handle:
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
for v in values {
match v {
// Propagate existing errors.
Value::Error { error, .. } => return Err(*error),
_ => {
let t = v.get_type();
let span = v.span();
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
ShellError::UnsupportedInput { msg: "Since column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!(
"input type: {t:?}"
), msg_span: head_span, input_span: span }
})?)
}
}
}
}
Some(ref col) => {
// some invalid input scenario needs to handle:
// * item in `input` is not a record, just skip it.
// * a record doesn't contain specific column, just skip it.
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
// * a record contain a value which can't be hashed, skip it.
let col_name = &col.item;
for v in values {
match v {
// parse record, and fill valid value to actual input.
Value::Record { val, .. } => {
if let Some(v) = val.get(col_name) {
if let Ok(v) = HashableValue::from_value(v.clone(), head_span) {
inputs.push(v);
}
}
}
// Propagate existing errors.
Value::Error { error, .. } => return Err(*error),
_ => continue,
}
}
if inputs.is_empty() {
return Err(ShellError::CantFindColumn {
col_name: col_name.clone(),
span: Some(head_span),
src_span: list_span,
});
}
}
}
let value_column_name = column_name
.map(|x| x.item)
.unwrap_or_else(|| "value".to_string());
Ok(histogram_impl(
inputs,
&value_column_name,
calc_method,
&freq_column,
head_span,
))
}
fn histogram_impl(
inputs: Vec<HashableValue>,
value_column_name: &str,
calc_method: PercentageCalcMethod,
freq_column: &str,
span: Span,
) -> PipelineData {
// here we can make sure that inputs is not empty, and every elements
// is a simple val and ok to make count.
let mut counter = HashMap::new();
let mut max_cnt = 0;
let total_cnt = inputs.len();
for i in inputs {
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
counter.insert(i, new_cnt);
if new_cnt > max_cnt {
max_cnt = new_cnt;
}
}
let mut result = vec![];
const MAX_FREQ_COUNT: f64 = 100.0;
for (val, count) in counter.into_iter().sorted() {
let quantile = match calc_method {
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
};
let percentage = format!("{:.2}%", quantile * 100_f64);
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
result.push((
count, // attach count first for easily sorting.
Value::record(
record! {
value_column_name => val.into_value(),
"count" => Value::int(count, span),
"quantile" => Value::float(quantile, span),
"percentage" => Value::string(percentage, span),
freq_column => Value::string(freq, span),
},
span,
),
));
}
result.sort_by(|a, b| b.0.cmp(&a.0));
Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_examples() {
use crate::test_examples;
test_examples(Histogram)
}
}