mirror of
https://github.com/nushell/nushell.git
synced 2025-05-22 23:51:18 +00:00
# Description After discussing with @sholderbach the cumbersome usage of `nu_protocol::Value` in Rust, I created a derive macro to simplify it. I’ve added a new crate called `nu-derive-value`, which includes two macros, `IntoValue` and `FromValue`. These are re-exported in `nu-protocol` and should be encouraged to be used via that re-export. The macros ensure that all types can easily convert from and into `Value`. For example, as a plugin author, you can define your plugin configuration using a Rust struct and easily convert it using `FromValue`. This makes plugin configuration less of a hassle. I introduced the `IntoValue` trait for a standardized approach to converting values into `Value` (and a fallible variant `TryIntoValue`). This trait could potentially replace existing `into_value` methods. Along with this, I've implemented `FromValue` for several standard types and refined other implementations to use blanket implementations where applicable. I made these design choices with input from @devyn. There are more improvements possible, but this is a solid start and the PR is already quite substantial. # User-Facing Changes For `nu-protocol` users, these changes simplify the handling of `Value`s. There are no changes for end-users of nushell itself. # Tests + Formatting Documenting the macros itself is not really possible, as they cannot really reference any other types since they are the root of the dependency graph. The standard library has the same problem ([std::Debug](https://doc.rust-lang.org/stable/std/fmt/derive.Debug.html)). However I documented the `FromValue` and `IntoValue` traits completely. For testing, I made of use `proc-macro2` in the derive macro code. This would allow testing the generated source code. Instead I just tested that the derived functionality is correct. This is done in `nu_protocol::value::test_derive`, as a consumer of `nu-derive-value` needs to do the testing of the macro usage. I think that these tests should provide a stable baseline so that users can be sure that the impl works. # After Submitting With these macros available, we can probably use them in some examples for plugins to showcase the use of them.
276 lines
10 KiB
Rust
Executable File
276 lines
10 KiB
Rust
Executable File
use super::hashable_value::HashableValue;
|
|
use itertools::Itertools;
|
|
use nu_engine::command_prelude::*;
|
|
|
|
use std::collections::HashMap;
|
|
|
|
#[derive(Clone)]
|
|
pub struct Histogram;
|
|
|
|
enum PercentageCalcMethod {
|
|
Normalize,
|
|
Relative,
|
|
}
|
|
|
|
impl Command for Histogram {
|
|
fn name(&self) -> &str {
|
|
"histogram"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("histogram")
|
|
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::table()),])
|
|
.optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.")
|
|
.optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.")
|
|
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
|
|
.category(Category::Chart)
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Creates a new table with a histogram based on the column name passed in."
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Compute a histogram of file types",
|
|
example: "ls | histogram type",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description:
|
|
"Compute a histogram for the types of files, with frequency column named freq",
|
|
example: "ls | histogram type freq",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers",
|
|
example: "[1 2 1] | histogram",
|
|
result: Some(Value::test_list (
|
|
vec![Value::test_record(record! {
|
|
"value" => Value::test_int(1),
|
|
"count" => Value::test_int(2),
|
|
"quantile" => Value::test_float(0.6666666666666666),
|
|
"percentage" => Value::test_string("66.67%"),
|
|
"frequency" => Value::test_string("******************************************************************"),
|
|
}),
|
|
Value::test_record(record! {
|
|
"value" => Value::test_int(2),
|
|
"count" => Value::test_int(1),
|
|
"quantile" => Value::test_float(0.3333333333333333),
|
|
"percentage" => Value::test_string("33.33%"),
|
|
"frequency" => Value::test_string("*********************************"),
|
|
})],
|
|
)
|
|
),
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
|
|
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
|
|
result: None,
|
|
}
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
// input check.
|
|
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
|
|
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
|
|
let frequency_column_name = match frequency_name_arg {
|
|
Some(inner) => {
|
|
let forbidden_column_names = ["value", "count", "quantile", "percentage"];
|
|
if forbidden_column_names.contains(&inner.item.as_str()) {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: format!(
|
|
"frequency-column-name can't be {}",
|
|
forbidden_column_names
|
|
.iter()
|
|
.map(|val| format!("'{}'", val))
|
|
.collect::<Vec<_>>()
|
|
.join(", ")
|
|
),
|
|
span: inner.span,
|
|
});
|
|
}
|
|
inner.item
|
|
}
|
|
None => "frequency".to_string(),
|
|
};
|
|
|
|
let calc_method: Option<Spanned<String>> =
|
|
call.get_flag(engine_state, stack, "percentage-type")?;
|
|
let calc_method = match calc_method {
|
|
None => PercentageCalcMethod::Normalize,
|
|
Some(inner) => match inner.item.as_str() {
|
|
"normalize" => PercentageCalcMethod::Normalize,
|
|
"relative" => PercentageCalcMethod::Relative,
|
|
_ => {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: "calc method can only be 'normalize' or 'relative'"
|
|
.to_string(),
|
|
span: inner.span,
|
|
})
|
|
}
|
|
},
|
|
};
|
|
|
|
let span = call.head;
|
|
let data_as_value = input.into_value(span)?;
|
|
let value_span = data_as_value.span();
|
|
// `input` is not a list, here we can return an error.
|
|
run_histogram(
|
|
data_as_value.into_list()?,
|
|
column_name,
|
|
frequency_column_name,
|
|
calc_method,
|
|
span,
|
|
// Note that as_list() filters out Value::Error here.
|
|
value_span,
|
|
)
|
|
}
|
|
}
|
|
|
|
fn run_histogram(
|
|
values: Vec<Value>,
|
|
column_name: Option<Spanned<String>>,
|
|
freq_column: String,
|
|
calc_method: PercentageCalcMethod,
|
|
head_span: Span,
|
|
list_span: Span,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let mut inputs = vec![];
|
|
// convert from inputs to hashable values.
|
|
match column_name {
|
|
None => {
|
|
// some invalid input scenario needs to handle:
|
|
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
|
|
for v in values {
|
|
match v {
|
|
// Propagate existing errors.
|
|
Value::Error { error, .. } => return Err(*error),
|
|
_ => {
|
|
let t = v.get_type();
|
|
let span = v.span();
|
|
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
|
|
ShellError::UnsupportedInput { msg: "Since column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!(
|
|
"input type: {t:?}"
|
|
), msg_span: head_span, input_span: span }
|
|
})?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ref col) => {
|
|
// some invalid input scenario needs to handle:
|
|
// * item in `input` is not a record, just skip it.
|
|
// * a record doesn't contain specific column, just skip it.
|
|
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
|
|
// * a record contain a value which can't be hashed, skip it.
|
|
let col_name = &col.item;
|
|
for v in values {
|
|
match v {
|
|
// parse record, and fill valid value to actual input.
|
|
Value::Record { val, .. } => {
|
|
for (c, v) in val.iter() {
|
|
if c == col_name {
|
|
if let Ok(v) = HashableValue::from_value(v.clone(), head_span) {
|
|
inputs.push(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Propagate existing errors.
|
|
Value::Error { error, .. } => return Err(*error),
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
if inputs.is_empty() {
|
|
return Err(ShellError::CantFindColumn {
|
|
col_name: col_name.clone(),
|
|
span: Some(head_span),
|
|
src_span: list_span,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
let value_column_name = column_name
|
|
.map(|x| x.item)
|
|
.unwrap_or_else(|| "value".to_string());
|
|
Ok(histogram_impl(
|
|
inputs,
|
|
&value_column_name,
|
|
calc_method,
|
|
&freq_column,
|
|
head_span,
|
|
))
|
|
}
|
|
|
|
fn histogram_impl(
|
|
inputs: Vec<HashableValue>,
|
|
value_column_name: &str,
|
|
calc_method: PercentageCalcMethod,
|
|
freq_column: &str,
|
|
span: Span,
|
|
) -> PipelineData {
|
|
// here we can make sure that inputs is not empty, and every elements
|
|
// is a simple val and ok to make count.
|
|
let mut counter = HashMap::new();
|
|
let mut max_cnt = 0;
|
|
let total_cnt = inputs.len();
|
|
for i in inputs {
|
|
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
|
|
counter.insert(i, new_cnt);
|
|
if new_cnt > max_cnt {
|
|
max_cnt = new_cnt;
|
|
}
|
|
}
|
|
|
|
let mut result = vec![];
|
|
const MAX_FREQ_COUNT: f64 = 100.0;
|
|
for (val, count) in counter.into_iter().sorted() {
|
|
let quantile = match calc_method {
|
|
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
|
|
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
|
|
};
|
|
|
|
let percentage = format!("{:.2}%", quantile * 100_f64);
|
|
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
|
|
|
|
result.push((
|
|
count, // attach count first for easily sorting.
|
|
Value::record(
|
|
record! {
|
|
value_column_name => val.into_value(),
|
|
"count" => Value::int(count, span),
|
|
"quantile" => Value::float(quantile, span),
|
|
"percentage" => Value::string(percentage, span),
|
|
freq_column => Value::string(freq, span),
|
|
},
|
|
span,
|
|
),
|
|
));
|
|
}
|
|
result.sort_by(|a, b| b.0.cmp(&a.0));
|
|
Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
use crate::test_examples;
|
|
|
|
test_examples(Histogram)
|
|
}
|
|
}
|