mirror of
https://github.com/nushell/nushell.git
synced 2025-05-14 03:34:32 +00:00
<!--
if this PR closes one or more issues, you can automatically link the PR
with
them by using one of the [*linking
keywords*](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword),
e.g.
- this PR should close #xxxx
- fixes #xxxx
you can also mention related issues, PRs or discussions!
-->
# Description
<!--
Thank you for improving Nushell. Please, check our [contributing
guide](../CONTRIBUTING.md) and talk to the core team before making major
changes.
Description of your pull request goes here. **Provide examples and/or
screenshots** if your changes affect the user experience.
-->
Fixes https://github.com/nushell/nushell/issues/11716
The problem is in our [record creation
API](0d518bf813/crates/nu-protocol/src/value/record.rs (L33)
)
which panics if the numbers of columns and values are different. I added
a safe variant that returns a `Result` and used it in the `rotate`
command.
## TODO in another PR:
Go through all `from_raw_cols_vals_unchecked()` (this includes the
`record!` macro which uses the unchecked version) and make sure that
either
a) it is guaranteed the number of cols and vals is the same, or
b) convert the call to `from_raw_cols_vals()`
Reason: Nushell should never panic.
# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->
# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.
Make sure you've run and fixed any issues with these commands:
- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use std testing; testing run-tests --path
crates/nu-std"` to run the tests for the standard library
> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->
# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
290 lines
11 KiB
Rust
Executable File
290 lines
11 KiB
Rust
Executable File
use super::hashable_value::HashableValue;
|
|
use itertools::Itertools;
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::ast::Call;
|
|
use nu_protocol::engine::{Command, EngineState, Stack};
|
|
use nu_protocol::{
|
|
record, Category, Example, IntoPipelineData, PipelineData, Record, ShellError, Signature, Span,
|
|
Spanned, SyntaxShape, Type, Value,
|
|
};
|
|
use std::collections::HashMap;
|
|
|
|
#[derive(Clone)]
|
|
pub struct Histogram;
|
|
|
|
enum PercentageCalcMethod {
|
|
Normalize,
|
|
Relative,
|
|
}
|
|
|
|
impl Command for Histogram {
|
|
fn name(&self) -> &str {
|
|
"histogram"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("histogram")
|
|
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::Table(vec![])),])
|
|
.optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.")
|
|
.optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.")
|
|
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
|
|
.category(Category::Chart)
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Creates a new table with a histogram based on the column name passed in."
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Compute a histogram of file types",
|
|
example: "ls | histogram type",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description:
|
|
"Compute a histogram for the types of files, with frequency column named freq",
|
|
example: "ls | histogram type freq",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers",
|
|
example: "[1 2 1] | histogram",
|
|
result: Some(Value::test_list (
|
|
vec![Value::test_record(record! {
|
|
"value" => Value::test_int(1),
|
|
"count" => Value::test_int(2),
|
|
"quantile" => Value::test_float(0.6666666666666666),
|
|
"percentage" => Value::test_string("66.67%"),
|
|
"frequency" => Value::test_string("******************************************************************"),
|
|
}),
|
|
Value::test_record(record! {
|
|
"value" => Value::test_int(2),
|
|
"count" => Value::test_int(1),
|
|
"quantile" => Value::test_float(0.3333333333333333),
|
|
"percentage" => Value::test_string("33.33%"),
|
|
"frequency" => Value::test_string("*********************************"),
|
|
})],
|
|
)
|
|
),
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
|
|
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
|
|
result: None,
|
|
}
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
// input check.
|
|
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
|
|
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
|
|
let frequency_column_name = match frequency_name_arg {
|
|
Some(inner) => {
|
|
let forbidden_column_names = ["value", "count", "quantile", "percentage"];
|
|
if forbidden_column_names.contains(&inner.item.as_str()) {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: format!(
|
|
"frequency-column-name can't be {}",
|
|
forbidden_column_names
|
|
.iter()
|
|
.map(|val| format!("'{}'", val))
|
|
.collect::<Vec<_>>()
|
|
.join(", ")
|
|
),
|
|
span: inner.span,
|
|
});
|
|
}
|
|
inner.item
|
|
}
|
|
None => "frequency".to_string(),
|
|
};
|
|
|
|
let calc_method: Option<Spanned<String>> =
|
|
call.get_flag(engine_state, stack, "percentage-type")?;
|
|
let calc_method = match calc_method {
|
|
None => PercentageCalcMethod::Normalize,
|
|
Some(inner) => match inner.item.as_str() {
|
|
"normalize" => PercentageCalcMethod::Normalize,
|
|
"relative" => PercentageCalcMethod::Relative,
|
|
_ => {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: "calc method can only be 'normalize' or 'relative'"
|
|
.to_string(),
|
|
span: inner.span,
|
|
})
|
|
}
|
|
},
|
|
};
|
|
|
|
let span = call.head;
|
|
let data_as_value = input.into_value(span);
|
|
// `input` is not a list, here we can return an error.
|
|
run_histogram(
|
|
data_as_value.as_list()?.to_vec(),
|
|
column_name,
|
|
frequency_column_name,
|
|
calc_method,
|
|
span,
|
|
// Note that as_list() filters out Value::Error here.
|
|
data_as_value.span(),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn run_histogram(
|
|
values: Vec<Value>,
|
|
column_name: Option<Spanned<String>>,
|
|
freq_column: String,
|
|
calc_method: PercentageCalcMethod,
|
|
head_span: Span,
|
|
list_span: Span,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let mut inputs = vec![];
|
|
// convert from inputs to hashable values.
|
|
match column_name {
|
|
None => {
|
|
// some invalid input scenario needs to handle:
|
|
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
|
|
for v in values {
|
|
match v {
|
|
// Propagate existing errors.
|
|
Value::Error { error, .. } => return Err(*error),
|
|
_ => {
|
|
let t = v.get_type();
|
|
let span = v.span();
|
|
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
|
|
ShellError::UnsupportedInput { msg: "Since --column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!(
|
|
"input type: {t:?}"
|
|
), msg_span: head_span, input_span: span }
|
|
})?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ref col) => {
|
|
// some invalid input scenario needs to handle:
|
|
// * item in `input` is not a record, just skip it.
|
|
// * a record doesn't contain specific column, just skip it.
|
|
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
|
|
// * a record contain a value which can't be hashed, skip it.
|
|
let col_name = &col.item;
|
|
for v in values {
|
|
match v {
|
|
// parse record, and fill valid value to actual input.
|
|
Value::Record { val, .. } => {
|
|
for (c, v) in val {
|
|
if &c == col_name {
|
|
if let Ok(v) = HashableValue::from_value(v, head_span) {
|
|
inputs.push(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Propagate existing errors.
|
|
Value::Error { error, .. } => return Err(*error),
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
if inputs.is_empty() {
|
|
return Err(ShellError::CantFindColumn {
|
|
col_name: col_name.clone(),
|
|
span: head_span,
|
|
src_span: list_span,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
let value_column_name = column_name
|
|
.map(|x| x.item)
|
|
.unwrap_or_else(|| "value".to_string());
|
|
Ok(histogram_impl(
|
|
inputs,
|
|
&value_column_name,
|
|
calc_method,
|
|
&freq_column,
|
|
head_span,
|
|
))
|
|
}
|
|
|
|
fn histogram_impl(
|
|
inputs: Vec<HashableValue>,
|
|
value_column_name: &str,
|
|
calc_method: PercentageCalcMethod,
|
|
freq_column: &str,
|
|
span: Span,
|
|
) -> PipelineData {
|
|
// here we can make sure that inputs is not empty, and every elements
|
|
// is a simple val and ok to make count.
|
|
let mut counter = HashMap::new();
|
|
let mut max_cnt = 0;
|
|
let total_cnt = inputs.len();
|
|
for i in inputs {
|
|
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
|
|
counter.insert(i, new_cnt);
|
|
if new_cnt > max_cnt {
|
|
max_cnt = new_cnt;
|
|
}
|
|
}
|
|
|
|
let mut result = vec![];
|
|
let result_cols = vec![
|
|
value_column_name.to_string(),
|
|
"count".to_string(),
|
|
"quantile".to_string(),
|
|
"percentage".to_string(),
|
|
freq_column.to_string(),
|
|
];
|
|
const MAX_FREQ_COUNT: f64 = 100.0;
|
|
for (val, count) in counter.into_iter().sorted() {
|
|
let quantile = match calc_method {
|
|
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
|
|
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
|
|
};
|
|
|
|
let percentage = format!("{:.2}%", quantile * 100_f64);
|
|
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
|
|
|
|
result.push((
|
|
count, // attach count first for easily sorting.
|
|
Value::record(
|
|
Record::from_raw_cols_vals_unchecked(
|
|
result_cols.clone(),
|
|
vec![
|
|
val.into_value(),
|
|
Value::int(count, span),
|
|
Value::float(quantile, span),
|
|
Value::string(percentage, span),
|
|
Value::string(freq, span),
|
|
],
|
|
),
|
|
span,
|
|
),
|
|
));
|
|
}
|
|
result.sort_by(|a, b| b.0.cmp(&a.0));
|
|
Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
use crate::test_examples;
|
|
|
|
test_examples(Histogram)
|
|
}
|
|
}
|