Jakub Žádník b8d37a7541
Fix panic in rotate; Add safe record creation function (#11718)
<!--
if this PR closes one or more issues, you can automatically link the PR
with
them by using one of the [*linking
keywords*](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword),
e.g.
- this PR should close #xxxx
- fixes #xxxx

you can also mention related issues, PRs or discussions!
-->

# Description
<!--
Thank you for improving Nushell. Please, check our [contributing
guide](../CONTRIBUTING.md) and talk to the core team before making major
changes.

Description of your pull request goes here. **Provide examples and/or
screenshots** if your changes affect the user experience.
-->

Fixes https://github.com/nushell/nushell/issues/11716

The problem is in our [record creation
API](0d518bf813/crates/nu-protocol/src/value/record.rs (L33))
which panics if the numbers of columns and values are different. I added
a safe variant that returns a `Result` and used it in the `rotate`
command.

## TODO in another PR:

Go through all `from_raw_cols_vals_unchecked()` (this includes the
`record!` macro which uses the unchecked version) and make sure that
either
a) it is guaranteed the number of cols and vals is the same, or
b) convert the call to `from_raw_cols_vals()`

Reason: Nushell should never panic.

# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->

# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.

Make sure you've run and fixed any issues with these commands:

- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use std testing; testing run-tests --path
crates/nu-std"` to run the tests for the standard library

> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->

# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
2024-02-03 13:23:16 +02:00

290 lines
11 KiB
Rust
Executable File

use super::hashable_value::HashableValue;
use itertools::Itertools;
use nu_engine::CallExt;
use nu_protocol::ast::Call;
use nu_protocol::engine::{Command, EngineState, Stack};
use nu_protocol::{
record, Category, Example, IntoPipelineData, PipelineData, Record, ShellError, Signature, Span,
Spanned, SyntaxShape, Type, Value,
};
use std::collections::HashMap;
#[derive(Clone)]
pub struct Histogram;
enum PercentageCalcMethod {
Normalize,
Relative,
}
impl Command for Histogram {
fn name(&self) -> &str {
"histogram"
}
fn signature(&self) -> Signature {
Signature::build("histogram")
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::Table(vec![])),])
.optional("column-name", SyntaxShape::String, "Column name to calc frequency, no need to provide if input is a list.")
.optional("frequency-column-name", SyntaxShape::String, "Histogram's frequency column, default to be frequency column output.")
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
.category(Category::Chart)
}
fn usage(&self) -> &str {
"Creates a new table with a histogram based on the column name passed in."
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "Compute a histogram of file types",
example: "ls | histogram type",
result: None,
},
Example {
description:
"Compute a histogram for the types of files, with frequency column named freq",
example: "ls | histogram type freq",
result: None,
},
Example {
description: "Compute a histogram for a list of numbers",
example: "[1 2 1] | histogram",
result: Some(Value::test_list (
vec![Value::test_record(record! {
"value" => Value::test_int(1),
"count" => Value::test_int(2),
"quantile" => Value::test_float(0.6666666666666666),
"percentage" => Value::test_string("66.67%"),
"frequency" => Value::test_string("******************************************************************"),
}),
Value::test_record(record! {
"value" => Value::test_int(2),
"count" => Value::test_int(1),
"quantile" => Value::test_float(0.3333333333333333),
"percentage" => Value::test_string("33.33%"),
"frequency" => Value::test_string("*********************************"),
})],
)
),
},
Example {
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
result: None,
}
]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
// input check.
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
let frequency_column_name = match frequency_name_arg {
Some(inner) => {
let forbidden_column_names = ["value", "count", "quantile", "percentage"];
if forbidden_column_names.contains(&inner.item.as_str()) {
return Err(ShellError::TypeMismatch {
err_message: format!(
"frequency-column-name can't be {}",
forbidden_column_names
.iter()
.map(|val| format!("'{}'", val))
.collect::<Vec<_>>()
.join(", ")
),
span: inner.span,
});
}
inner.item
}
None => "frequency".to_string(),
};
let calc_method: Option<Spanned<String>> =
call.get_flag(engine_state, stack, "percentage-type")?;
let calc_method = match calc_method {
None => PercentageCalcMethod::Normalize,
Some(inner) => match inner.item.as_str() {
"normalize" => PercentageCalcMethod::Normalize,
"relative" => PercentageCalcMethod::Relative,
_ => {
return Err(ShellError::TypeMismatch {
err_message: "calc method can only be 'normalize' or 'relative'"
.to_string(),
span: inner.span,
})
}
},
};
let span = call.head;
let data_as_value = input.into_value(span);
// `input` is not a list, here we can return an error.
run_histogram(
data_as_value.as_list()?.to_vec(),
column_name,
frequency_column_name,
calc_method,
span,
// Note that as_list() filters out Value::Error here.
data_as_value.span(),
)
}
}
fn run_histogram(
values: Vec<Value>,
column_name: Option<Spanned<String>>,
freq_column: String,
calc_method: PercentageCalcMethod,
head_span: Span,
list_span: Span,
) -> Result<PipelineData, ShellError> {
let mut inputs = vec![];
// convert from inputs to hashable values.
match column_name {
None => {
// some invalid input scenario needs to handle:
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
for v in values {
match v {
// Propagate existing errors.
Value::Error { error, .. } => return Err(*error),
_ => {
let t = v.get_type();
let span = v.span();
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
ShellError::UnsupportedInput { msg: "Since --column-name was not provided, only lists of hashable values are supported.".to_string(), input: format!(
"input type: {t:?}"
), msg_span: head_span, input_span: span }
})?)
}
}
}
}
Some(ref col) => {
// some invalid input scenario needs to handle:
// * item in `input` is not a record, just skip it.
// * a record doesn't contain specific column, just skip it.
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
// * a record contain a value which can't be hashed, skip it.
let col_name = &col.item;
for v in values {
match v {
// parse record, and fill valid value to actual input.
Value::Record { val, .. } => {
for (c, v) in val {
if &c == col_name {
if let Ok(v) = HashableValue::from_value(v, head_span) {
inputs.push(v);
}
}
}
}
// Propagate existing errors.
Value::Error { error, .. } => return Err(*error),
_ => continue,
}
}
if inputs.is_empty() {
return Err(ShellError::CantFindColumn {
col_name: col_name.clone(),
span: head_span,
src_span: list_span,
});
}
}
}
let value_column_name = column_name
.map(|x| x.item)
.unwrap_or_else(|| "value".to_string());
Ok(histogram_impl(
inputs,
&value_column_name,
calc_method,
&freq_column,
head_span,
))
}
fn histogram_impl(
inputs: Vec<HashableValue>,
value_column_name: &str,
calc_method: PercentageCalcMethod,
freq_column: &str,
span: Span,
) -> PipelineData {
// here we can make sure that inputs is not empty, and every elements
// is a simple val and ok to make count.
let mut counter = HashMap::new();
let mut max_cnt = 0;
let total_cnt = inputs.len();
for i in inputs {
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
counter.insert(i, new_cnt);
if new_cnt > max_cnt {
max_cnt = new_cnt;
}
}
let mut result = vec![];
let result_cols = vec![
value_column_name.to_string(),
"count".to_string(),
"quantile".to_string(),
"percentage".to_string(),
freq_column.to_string(),
];
const MAX_FREQ_COUNT: f64 = 100.0;
for (val, count) in counter.into_iter().sorted() {
let quantile = match calc_method {
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
};
let percentage = format!("{:.2}%", quantile * 100_f64);
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
result.push((
count, // attach count first for easily sorting.
Value::record(
Record::from_raw_cols_vals_unchecked(
result_cols.clone(),
vec![
val.into_value(),
Value::int(count, span),
Value::float(quantile, span),
Value::string(percentage, span),
Value::string(freq, span),
],
),
span,
),
));
}
result.sort_by(|a, b| b.0.cmp(&a.0));
Value::list(result.into_iter().map(|x| x.1).collect(), span).into_pipeline_data()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_examples() {
use crate::test_examples;
test_examples(Histogram)
}
}