Than McIntosh 2d2590e94a [dev.link] cmd/link: add loader methods to access unit, gotype
Add loader hooks to get at the 'gotype' and 'unit' symbol properties.

Change-Id: Icdf5dd151e84a548fa2574efdb998c3b698a17d9
Reviewed-on: https://go-review.googlesource.com/c/go/+/214137
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
2020-01-10 12:37:31 +00:00

2576 lines
74 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package loader
import (
"bytes"
"cmd/internal/bio"
"cmd/internal/dwarf"
"cmd/internal/goobj2"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/sym"
"debug/elf"
"fmt"
"log"
"math/bits"
"os"
"sort"
"strconv"
"strings"
)
var _ = fmt.Print
// Sym encapsulates a global symbol index, used to identify a specific
// Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
type Sym int
// Relocs encapsulates the set of relocations on a given symbol; an
// instance of this type is returned by the Loader Relocs() method.
type Relocs struct {
Count int // number of relocs
li int // local index of symbol whose relocs we're examining
r *oReader // object reader for containing package
l *Loader // loader
extIdx Sym // index of external symbol we're examining or 0
}
// Reloc contains the payload for a specific relocation.
// TODO: replace this with sym.Reloc, once we change the
// relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc.
type Reloc struct {
Off int32 // offset to rewrite
Size uint8 // number of bytes to rewrite: 0, 1, 2, or 4
Type objabi.RelocType // the relocation type
Add int64 // addend
Sym Sym // global index of symbol the reloc addresses
}
// oReader is a wrapper type of obj.Reader, along with some
// extra information.
// TODO: rename to objReader once the old one is gone?
type oReader struct {
*goobj2.Reader
unit *sym.CompilationUnit
version int // version of static symbol
flags uint32 // read from object file
pkgprefix string
rcache []Sym // cache mapping local PkgNone symbol to resolved Sym
}
type objIdx struct {
r *oReader
i Sym // start index
e Sym // end index
}
type nameVer struct {
name string
v int
}
type bitmap []uint32
// set the i-th bit.
func (bm bitmap) set(i Sym) {
n, r := uint(i)/32, uint(i)%32
bm[n] |= 1 << r
}
// unset the i-th bit.
func (bm bitmap) unset(i Sym) {
n, r := uint(i)/32, uint(i)%32
bm[n] &^= (1 << r)
}
// whether the i-th bit is set.
func (bm bitmap) has(i Sym) bool {
n, r := uint(i)/32, uint(i)%32
return bm[n]&(1<<r) != 0
}
// return current length of bitmap in bits.
func (bm bitmap) len() int {
return len(bm) * 32
}
func makeBitmap(n int) bitmap {
return make(bitmap, (n+31)/32)
}
// growBitmap insures that the specified bitmap has enough capacity,
// reallocating (doubling the size) if needed.
func growBitmap(reqLen int, b bitmap) bitmap {
curLen := b.len()
if reqLen > curLen {
b = append(b, makeBitmap(reqLen+1-curLen)...)
}
return b
}
// A Loader loads new object files and resolves indexed symbol references.
//
// Notes on the layout of global symbol index space:
//
// - Go object files are read before host object files; each Go object
// read allocates a new chunk of global index space of size P + NP,
// where P is the number of package defined symbols in the object and
// NP is the number of non-package defined symbols.
//
// - In loader.LoadRefs(), the loader makes a sweep through all of the
// non-package references in each object file and allocates sym indices
// for any symbols that have not yet been defined (start of this space
// is marked by loader.extStart).
//
// - Host object file loading happens; the host object loader does a
// name/version lookup for each symbol it finds; this can wind up
// extending the external symbol index space range. The host object
// loader currently stores symbol payloads in sym.Symbol objects,
// which get handed off to the loader.
//
// - A given external symbol (Sym) either has a sym.Symbol acting as
// its backing store (this will continue to be the case until we
// finish rewriting the host object loader to work entirely with
// loader.Sym) or it has a "payload" backing store (represented by
// extSymPayload). Newly created external symbols (created by
// a call to AddExtSym or equivalent) start out in the "has payload"
// state, and continue until installSym is called for the sym
// index in question.
//
// - At some point (when the wayfront is pushed through all of the
// linker), all external symbols will be payload-based, and we can
// get rid of the loader.Syms array.
//
type Loader struct {
start map[*oReader]Sym // map from object file to its start index
objs []objIdx // sorted by start index (i.e. objIdx.i)
max Sym // current max index
extStart Sym // from this index on, the symbols are externally defined
builtinSyms []Sym // global index of builtin symbols
ocache int // index (into 'objs') of most recent lookup
symsByName [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal
extStaticSyms map[nameVer]Sym // externally defined static symbols, keyed by name
overwrite map[Sym]Sym // overwrite[i]=j if symbol j overwrites symbol i
payloads []extSymPayload // contents of linker-materialized external syms
values []int64 // symbol values, indexed by global sym index
itablink map[Sym]struct{} // itablink[j] defined if j is go.itablink.*
objByPkg map[string]*oReader // map package path to its Go object reader
Syms []*sym.Symbol // indexed symbols. XXX we still make sym.Symbol for now.
symBatch []sym.Symbol // batch of symbols.
anonVersion int // most recently assigned ext static sym pseudo-version
// Bitmaps and other side structures used to store data used to store
// symbol flags/attributes; these are to be accessed via the
// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
// visit the comments on these methods for more details on the
// semantics / interpretation of the specific flags or attribute.
attrReachable bitmap // reachable symbols, indexed by global index
attrOnList bitmap // "on list" symbols, indexed by global index
attrLocal bitmap // "local" symbols, indexed by global index
attrNotInSymbolTable bitmap // "not in symtab" symbols, indexed by glob idx
attrVisibilityHidden bitmap // hidden symbols, indexed by ext sym index
attrDuplicateOK bitmap // dupOK symbols, indexed by ext sym index
attrShared bitmap // shared symbols, indexed by ext sym index
attrExternal bitmap // external symbols, indexed by ext sym index
attrReadOnly map[Sym]bool // readonly data for this sym
attrTopFrame map[Sym]struct{} // top frame symbols
attrSpecial map[Sym]struct{} // "special" frame symbols
attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
attrCgoExportStatic map[Sym]struct{} // "cgo_export_static" symbols
// Outer and Sub relations for symbols.
// TODO: figure out whether it's more efficient to just have these
// as fields on extSymPayload (note that this won't be a viable
// strategy if somewhere in the linker we set sub/outer for a
// non-external sym).
outer map[Sym]Sym
sub map[Sym]Sym
align map[Sym]int32 // stores alignment for symbols
dynimplib map[Sym]string // stores Dynimplib symbol attribute
dynimpvers map[Sym]string // stores Dynimpvers symbol attribute
localentry map[Sym]uint8 // stores Localentry symbol attribute
extname map[Sym]string // stores Extname symbol attribute
elfType map[Sym]elf.SymType // stores elf type symbol property
symFile map[Sym]string // stores file for shlib-derived syms
// Used to implement field tracking; created during deadcode if
// field tracking is enabled. Reachparent[K] contains the index of
// the symbol that triggered the marking of symbol K as live.
Reachparent []Sym
relocBatch []sym.Reloc // for bulk allocation of relocations
flags uint32
strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled
elfsetstring elfsetstringFunc
}
type elfsetstringFunc func(s *sym.Symbol, str string, off int)
// extSymPayload holds the payload (data + relocations) for linker-synthesized
// external symbols (note that symbol value is stored in a separate slice).
type extSymPayload struct {
name string // TODO: would this be better as offset into str table?
size int64
ver int
kind sym.SymKind
objidx uint32 // index of original object if sym made by cloneToExternal
gotype Sym // Gotype (0 if not present)
relocs []Reloc
data []byte
}
const (
// Loader.flags
FlagStrictDups = 1 << iota
)
func NewLoader(flags uint32, elfsetstring elfsetstringFunc) *Loader {
nbuiltin := goobj2.NBuiltin()
return &Loader{
start: make(map[*oReader]Sym),
objs: []objIdx{{nil, 0, 0}},
symsByName: [2]map[string]Sym{make(map[string]Sym), make(map[string]Sym)},
objByPkg: make(map[string]*oReader),
outer: make(map[Sym]Sym),
sub: make(map[Sym]Sym),
align: make(map[Sym]int32),
dynimplib: make(map[Sym]string),
dynimpvers: make(map[Sym]string),
localentry: make(map[Sym]uint8),
extname: make(map[Sym]string),
attrReadOnly: make(map[Sym]bool),
elfType: make(map[Sym]elf.SymType),
symFile: make(map[Sym]string),
attrTopFrame: make(map[Sym]struct{}),
attrSpecial: make(map[Sym]struct{}),
attrCgoExportDynamic: make(map[Sym]struct{}),
attrCgoExportStatic: make(map[Sym]struct{}),
overwrite: make(map[Sym]Sym),
itablink: make(map[Sym]struct{}),
extStaticSyms: make(map[nameVer]Sym),
builtinSyms: make([]Sym, nbuiltin),
flags: flags,
elfsetstring: elfsetstring,
}
}
// Return the start index in the global index space for a given object file.
func (l *Loader) startIndex(r *oReader) Sym {
return l.start[r]
}
// Add object file r, return the start index.
func (l *Loader) addObj(pkg string, r *oReader) Sym {
if _, ok := l.start[r]; ok {
panic("already added")
}
pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
if _, ok := l.objByPkg[pkg]; !ok {
l.objByPkg[pkg] = r
}
n := r.NSym() + r.NNonpkgdef()
i := l.max + 1
l.start[r] = i
l.objs = append(l.objs, objIdx{r, i, i + Sym(n) - 1})
l.max += Sym(n)
l.growValues(int(l.max))
return i
}
// Add a symbol with a given index, return if it is added.
func (l *Loader) AddSym(name string, ver int, i Sym, r *oReader, dupok bool, typ sym.SymKind) bool {
if l.extStart != 0 {
panic("AddSym called after AddExtSym is called")
}
if ver == r.version {
// Static symbol. Add its global index but don't
// add to name lookup table, as it cannot be
// referenced by name.
return true
}
if oldi, ok := l.symsByName[ver][name]; ok {
if dupok {
if l.flags&FlagStrictDups != 0 {
l.checkdup(name, i, r, oldi)
}
return false
}
oldr, li := l.toLocal(oldi)
oldsym := goobj2.Sym{}
oldsym.Read(oldr.Reader, oldr.SymOff(li))
if oldsym.Dupok() {
return false
}
overwrite := r.DataSize(int(i-l.startIndex(r))) != 0
if overwrite {
// new symbol overwrites old symbol.
oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type)]
if !oldtyp.IsData() && r.DataSize(li) == 0 {
log.Fatalf("duplicated definition of symbol " + name)
}
l.overwrite[oldi] = i
} else {
// old symbol overwrites new symbol.
if typ != sym.SDATA && typ != sym.SNOPTRDATA && typ != sym.SBSS && typ != sym.SNOPTRBSS { // only allow overwriting data symbol
log.Fatalf("duplicated definition of symbol " + name)
}
l.overwrite[i] = oldi
return false
}
}
l.symsByName[ver][name] = i
return true
}
// newExtSym creates a new external sym with the specified
// name/version.
func (l *Loader) newExtSym(name string, ver int) Sym {
l.max++
i := l.max
if l.extStart == 0 {
l.extStart = i
}
l.growSyms(int(i))
pi := i - l.extStart
l.payloads[pi].name = name
l.payloads[pi].ver = ver
return i
}
// Add an external symbol (without index). Return the index of newly added
// symbol, or 0 if not added.
func (l *Loader) AddExtSym(name string, ver int) Sym {
i := l.Lookup(name, ver)
if i != 0 {
return 0
}
i = l.newExtSym(name, ver)
static := ver >= sym.SymVerStatic || ver < 0
if static {
l.extStaticSyms[nameVer{name, ver}] = i
} else {
l.symsByName[ver][name] = i
}
return i
}
// LookupOrCreateSym looks up the symbol with the specified name/version,
// returning its Sym index if found. If the lookup fails, a new external
// Sym will be created, entered into the lookup tables, and returned.
func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
i := l.Lookup(name, ver)
if i != 0 {
return i
}
i = l.newExtSym(name, ver)
static := ver >= sym.SymVerStatic || ver < 0
if static {
l.extStaticSyms[nameVer{name, ver}] = i
} else {
l.symsByName[ver][name] = i
}
return i
}
func (l *Loader) IsExternal(i Sym) bool {
return l.extStart != 0 && i >= l.extStart
}
// getPayload returns a pointer to the extSymPayload struct for an
// external symbol if the symbol has a payload, or nil if the
// data for the sym is being stored in a sym.Symbol. Will panic if
// the symbol in question is bogus (zero or not an external sym).
func (l *Loader) getPayload(i Sym) *extSymPayload {
if l.extStart == 0 || i < l.extStart {
panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
}
if l.Syms[i] != nil {
return nil
}
pi := i - l.extStart
return &l.payloads[pi]
}
func (ms *extSymPayload) Grow(siz int64) {
if int64(int(siz)) != siz {
log.Fatalf("symgrow size %d too long", siz)
}
if int64(len(ms.data)) >= siz {
return
}
if cap(ms.data) < int(siz) {
cl := len(ms.data)
ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
ms.data = ms.data[0:cl]
}
ms.data = ms.data[:siz]
}
// Ensure Syms slice has enough space, as well as growing the
// 'payloads' slice.
func (l *Loader) growSyms(i int) {
n := len(l.Syms)
if n > i {
return
}
l.Syms = append(l.Syms, make([]*sym.Symbol, i+1-n)...)
l.payloads = append(l.payloads, make([]extSymPayload, i+1-n)...)
l.growValues(int(i) + 1)
l.growAttrBitmaps(int(i) + 1)
}
// getOverwrite returns the overwrite symbol for 'symIdx', while
// collapsing any chains of overwrites along the way. This is
// apparently needed in cases where we add an overwrite entry X -> Y
// during preload (where both X and Y are non-external symbols), and
// then we add an additional entry to the overwrite map Y -> W in
// cloneToExternal when we encounter the real definition of the symbol
// in a host object file, and we need to build up W's content.
//
// Note: it would be nice to avoid this sort of complexity. One of the
// main reasons we wind up with overwrites has to do with the way the
// compiler handles link-named symbols that are 'defined elsewhere':
// at the moment they wind up as no-package defs. For example, consider
// the variable "runtime.no_pointers_stackmap". This variable is defined
// in an assembly file as RODATA, then in one of the Go files it is
// declared this way:
//
// var no_pointers_stackmap uint64 // defined in assembly
//
// This generates what amounts to a weak definition (in the object
// containing the line of code above), which is then overriden by the
// stronger def from the assembly file. Rather than have things work
// this way, it would be better if in the Go file we emitted a
// no-package ref instead of a no-package def, which would eliminate
// the need for overwrites. Doing this would also require changing the
// semantics of //go:linkname, however; we'd have to insure that in
// the cross-package case there is a go:linkname directive on both
// ends.
func (l *Loader) getOverwrite(symIdx Sym) Sym {
var seen map[Sym]bool
result := symIdx
cur := symIdx
for {
if ov, ok := l.overwrite[cur]; ok {
if seen == nil {
seen = make(map[Sym]bool)
seen[symIdx] = true
}
if _, ok := seen[ov]; ok {
panic("cycle in overwrite map")
} else {
seen[cur] = true
}
cur = ov
} else {
break
}
}
if cur != symIdx {
result = cur
cur = symIdx
for {
if ov, ok := l.overwrite[cur]; ok {
l.overwrite[cur] = result
cur = ov
} else {
break
}
}
}
return result
}
// Convert a local index to a global index.
func (l *Loader) toGlobal(r *oReader, i int) Sym {
g := l.startIndex(r) + Sym(i)
g = l.getOverwrite(g)
return g
}
// Convert a global index to a local index.
func (l *Loader) toLocal(i Sym) (*oReader, int) {
if ov, ok := l.overwrite[i]; ok {
i = ov
}
if l.IsExternal(i) {
return nil, int(i - l.extStart)
}
oc := l.ocache
if oc != 0 && i >= l.objs[oc].i && i <= l.objs[oc].e {
return l.objs[oc].r, int(i - l.objs[oc].i)
}
// Search for the local object holding index i.
// Below k is the first one that has its start index > i,
// so k-1 is the one we want.
k := sort.Search(len(l.objs), func(k int) bool {
return l.objs[k].i > i
})
l.ocache = k - 1
return l.objs[k-1].r, int(i - l.objs[k-1].i)
}
// rcacheGet checks for a valid entry for 's' in the readers cache,
// where 's' is a local PkgIdxNone ref or def, or zero if
// the cache is empty or doesn't contain a value for 's'.
func (or *oReader) rcacheGet(symIdx uint32) Sym {
if len(or.rcache) > 0 {
return or.rcache[symIdx]
}
return 0
}
// rcacheSet installs a new entry in the oReader's PkgNone
// resolver cache for the specified PkgIdxNone ref or def,
// allocating a new cache if needed.
func (or *oReader) rcacheSet(symIdx uint32, gsym Sym) {
if len(or.rcache) == 0 {
or.rcache = make([]Sym, or.NNonpkgdef()+or.NNonpkgref())
}
or.rcache[symIdx] = gsym
}
// Resolve a local symbol reference. Return global index.
func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym {
var rr *oReader
switch p := s.PkgIdx; p {
case goobj2.PkgIdxInvalid:
if s.SymIdx != 0 {
panic("bad sym ref")
}
return 0
case goobj2.PkgIdxNone:
// Check for cached version first
if cached := r.rcacheGet(s.SymIdx); cached != 0 {
ov := l.getOverwrite(cached)
if cached != ov {
r.rcacheSet(s.SymIdx, ov)
return ov
}
}
// Resolve by name
i := int(s.SymIdx) + r.NSym()
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(i))
name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
v := abiToVer(osym.ABI, r.version)
gsym := l.getOverwrite(l.Lookup(name, v))
// Add to cache, then return.
r.rcacheSet(s.SymIdx, gsym)
return gsym
case goobj2.PkgIdxBuiltin:
return l.builtinSyms[s.SymIdx]
case goobj2.PkgIdxSelf:
rr = r
default:
pkg := r.Pkg(int(p))
var ok bool
rr, ok = l.objByPkg[pkg]
if !ok {
log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib)
}
}
return l.toGlobal(rr, int(s.SymIdx))
}
// Look up a symbol by name, return global index, or 0 if not found.
// This is more like Syms.ROLookup than Lookup -- it doesn't create
// new symbol.
func (l *Loader) Lookup(name string, ver int) Sym {
if ver >= sym.SymVerStatic || ver < 0 {
return l.extStaticSyms[nameVer{name, ver}]
}
return l.symsByName[ver][name]
}
// Returns whether i is a dup of another symbol, and i is not
// "primary", i.e. Lookup i by name will not return i.
func (l *Loader) IsDup(i Sym) bool {
if _, ok := l.overwrite[i]; ok {
return true
}
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
if !osym.Dupok() {
return false
}
if osym.Name == "" {
return false // Unnamed aux symbol cannot be dup.
}
if osym.ABI == goobj2.SymABIstatic {
return false // Static symbol cannot be dup.
}
name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
ver := abiToVer(osym.ABI, r.version)
return l.symsByName[ver][name] != i
}
// Check that duplicate symbols have same contents.
func (l *Loader) checkdup(name string, i Sym, r *oReader, dup Sym) {
li := int(i - l.startIndex(r))
p := r.Data(li)
if strings.HasPrefix(name, "go.info.") {
p, _ = patchDWARFName1(p, r)
}
rdup, ldup := l.toLocal(dup)
pdup := rdup.Data(ldup)
if strings.HasPrefix(name, "go.info.") {
pdup, _ = patchDWARFName1(pdup, rdup)
}
if bytes.Equal(p, pdup) {
return
}
reason := "same length but different contents"
if len(p) != len(pdup) {
reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
}
fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)
// For the moment, whitelist DWARF subprogram DIEs for
// auto-generated wrapper functions. What seems to happen
// here is that we get different line numbers on formal
// params; I am guessing that the pos is being inherited
// from the spot where the wrapper is needed.
whitelist := strings.HasPrefix(name, "go.info.go.interface") ||
strings.HasPrefix(name, "go.info.go.builtin") ||
strings.HasPrefix(name, "go.debuglines")
if !whitelist {
l.strictDupMsgs++
}
}
func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }
// Number of total symbols.
func (l *Loader) NSym() int {
return int(l.max + 1)
}
// Number of defined Go symbols.
func (l *Loader) NDef() int {
return int(l.extStart)
}
// Returns the raw (unpatched) name of the i-th symbol.
func (l *Loader) RawSymName(i Sym) string {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return s.Name
}
pp := l.getPayload(i)
return pp.name
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return osym.Name
}
// Returns the (patched) name of the i-th symbol.
func (l *Loader) SymName(i Sym) string {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return s.Name // external name should already be patched?
}
pp := l.getPayload(i)
return pp.name
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
}
// Returns the version of the i-th symbol.
func (l *Loader) SymVersion(i Sym) int {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return int(s.Version)
}
pp := l.getPayload(i)
return pp.ver
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return int(abiToVer(osym.ABI, r.version))
}
// Returns the type of the i-th symbol.
func (l *Loader) SymType(i Sym) sym.SymKind {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return s.Type
}
pp := l.getPayload(i)
if pp != nil {
return pp.kind
}
return 0
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]
}
// Returns the attributes of the i-th symbol.
func (l *Loader) SymAttr(i Sym) uint8 {
if l.IsExternal(i) {
// TODO: do something? External symbols have different representation of attributes. For now, ReflectMethod is the only thing matters and it cannot be set by external symbol.
return 0
}
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return osym.Flag
}
// AttrReachable returns true for symbols that are transitively
// referenced from the entry points. Unreachable symbols are not
// written to the output.
func (l *Loader) AttrReachable(i Sym) bool {
return l.attrReachable.has(i)
}
// SetAttrReachable sets the reachability property for a symbol (see
// AttrReachable).
func (l *Loader) SetAttrReachable(i Sym, v bool) {
if v {
l.attrReachable.set(i)
} else {
l.attrReachable.unset(i)
}
}
// AttrOnList returns true for symbols that are on some list (such as
// the list of all text symbols, or one of the lists of data symbols)
// and is consulted to avoid bugs where a symbol is put on a list
// twice.
func (l *Loader) AttrOnList(i Sym) bool {
return l.attrOnList.has(i)
}
// SetAttrOnList sets the "on list" property for a symbol (see
// AttrOnList).
func (l *Loader) SetAttrOnList(i Sym, v bool) {
if v {
l.attrOnList.set(i)
} else {
l.attrOnList.unset(i)
}
}
// AttrLocal returns true for symbols that are only visible within the
// module (executable or shared library) being linked. This attribute
// is applied to thunks and certain other linker-generated symbols.
func (l *Loader) AttrLocal(i Sym) bool {
return l.attrLocal.has(i)
}
// SetAttrLocal the "local" property for a symbol (see AttrLocal above).
func (l *Loader) SetAttrLocal(i Sym, v bool) {
if v {
l.attrLocal.set(i)
} else {
l.attrLocal.unset(i)
}
}
// AttrNotInSymbolTable returns true for symbols that should not be
// added to the symbol table of the final generated load module.
func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
return l.attrNotInSymbolTable.has(i)
}
// SetAttrNotInSymbolTable the "not in symtab" property for a symbol
// (see AttrNotInSymbolTable above).
func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
if v {
l.attrNotInSymbolTable.set(i)
} else {
l.attrNotInSymbolTable.unset(i)
}
}
// AttrVisibilityHidden symbols returns true for ELF symbols with
// visibility set to STV_HIDDEN. They become local symbols in
// the final executable. Only relevant when internally linking
// on an ELF platform.
func (l *Loader) AttrVisibilityHidden(i Sym) bool {
if i < l.extStart {
return false
}
return l.attrVisibilityHidden.has(i - l.extStart)
}
// SetAttrVisibilityHidden sets the "hidden visibility" property for a
// symbol (see AttrVisibilityHidden).
func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
if i < l.extStart {
panic("tried to set visibility attr on non-external symbol")
}
if v {
l.attrVisibilityHidden.set(i - l.extStart)
} else {
l.attrVisibilityHidden.unset(i - l.extStart)
}
}
// AttrDuplicateOK returns true for a symbol that can be present in
// multiple object files.
func (l *Loader) AttrDuplicateOK(i Sym) bool {
if i < l.extStart {
// TODO: if this path winds up being taken frequently, it
// might make more sense to copy the flag value out of the object
// into a larger bitmap during preload.
r, li := l.toLocal(i)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(li))
return osym.Dupok()
}
return l.attrDuplicateOK.has(i - l.extStart)
}
// SetAttrDuplicateOK sets the "duplicate OK" property for an external
// symbol (see AttrDuplicateOK).
func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
if i < l.extStart {
panic("tried to set dupok attr on non-external symbol")
}
if v {
l.attrDuplicateOK.set(i - l.extStart)
} else {
l.attrDuplicateOK.unset(i - l.extStart)
}
}
// AttrShared returns true for symbols compiled with the -shared option.
func (l *Loader) AttrShared(i Sym) bool {
if i < l.extStart {
// TODO: if this path winds up being taken frequently, it
// might make more sense to copy the flag value out of the
// object into a larger bitmap during preload.
r, _ := l.toLocal(i)
return (r.Flags() & goobj2.ObjFlagShared) != 0
}
return l.attrShared.has(i - l.extStart)
}
// SetAttrShared sets the "shared" property for an external
// symbol (see AttrShared).
func (l *Loader) SetAttrShared(i Sym, v bool) {
if i < l.extStart {
panic("tried to set shared attr on non-external symbol")
}
if v {
l.attrShared.set(i - l.extStart)
} else {
l.attrShared.unset(i - l.extStart)
}
}
// AttrExternal returns true for function symbols loaded from host
// object files.
func (l *Loader) AttrExternal(i Sym) bool {
if i < l.extStart {
return false
}
return l.attrExternal.has(i - l.extStart)
}
// SetAttrExternal sets the "external" property for an host object
// symbol (see AttrExternal).
func (l *Loader) SetAttrExternal(i Sym, v bool) {
if i < l.extStart {
panic("tried to set external attr on non-external symbol")
}
if v {
l.attrExternal.set(i - l.extStart)
} else {
l.attrExternal.unset(i - l.extStart)
}
}
// AttrTopFrame returns true for a function symbol that is an entry
// point, meaning that unwinders should stop when they hit this
// function.
func (l *Loader) AttrTopFrame(i Sym) bool {
_, ok := l.attrTopFrame[i]
return ok
}
// SetAttrTopFrame sets the "top frame" property for a symbol (see
// AttrTopFrame).
func (l *Loader) SetAttrTopFrame(i Sym, v bool) {
if v {
l.attrTopFrame[i] = struct{}{}
} else {
delete(l.attrTopFrame, i)
}
}
// AttrSpecial returns true for a symbols that do not have their
// address (i.e. Value) computed by the usual mechanism of
// data.go:dodata() & data.go:address().
func (l *Loader) AttrSpecial(i Sym) bool {
_, ok := l.attrSpecial[i]
return ok
}
// SetAttrSpecial sets the "special" property for a symbol (see
// AttrSpecial).
func (l *Loader) SetAttrSpecial(i Sym, v bool) {
if v {
l.attrSpecial[i] = struct{}{}
} else {
delete(l.attrSpecial, i)
}
}
// AttrCgoExportDynamic returns true for a symbol that has been
// specially marked via the "cgo_export_dynamic" compiler directive
// written by cgo (in response to //export directives in the source).
func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
_, ok := l.attrCgoExportDynamic[i]
return ok
}
// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportDynamic).
func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
if v {
l.attrCgoExportDynamic[i] = struct{}{}
} else {
delete(l.attrCgoExportDynamic, i)
}
}
// AttrCgoExportStatic returns true for a symbol that has been
// specially marked via the "cgo_export_static" directive
// written by cgo.
func (l *Loader) AttrCgoExportStatic(i Sym) bool {
_, ok := l.attrCgoExportStatic[i]
return ok
}
// SetAttrCgoExportStatic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportStatic).
func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
if v {
l.attrCgoExportStatic[i] = struct{}{}
} else {
delete(l.attrCgoExportStatic, i)
}
}
// AttrReadOnly returns true for a symbol whose underlying data
// is stored via a read-only mmap.
func (l *Loader) AttrReadOnly(i Sym) bool {
if v, ok := l.attrReadOnly[i]; ok {
return v
}
if i >= l.extStart {
return false
}
r, _ := l.toLocal(i)
return r.ReadOnly()
}
// SetAttrReadOnly sets the "cgo_export_dynamic" for a symbol
// (see AttrReadOnly).
func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
l.attrReadOnly[i] = v
}
// AttrSubSymbol returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
func (l *Loader) AttrSubSymbol(i Sym) bool {
// we don't explicitly store this attribute any more -- return
// a value based on the sub-symbol setting.
return l.OuterSym(i) != 0
}
// AttrContainer returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
func (l *Loader) AttrContainer(i Sym) bool {
// we don't explicitly store this attribute any more -- return
// a value based on the sub-symbol setting.
return l.SubSym(i) != 0
}
// Note that we don't have SetAttrSubSymbol' or 'SetAttrContainer' methods
// in the loader; clients should just use methods like PrependSub
// to establish these relationships
// Returns whether the i-th symbol has ReflectMethod attribute set.
func (l *Loader) IsReflectMethod(i Sym) bool {
return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0
}
// Returns whether this is a Go type symbol.
func (l *Loader) IsGoType(i Sym) bool {
return l.SymAttr(i)&goobj2.SymFlagGoType != 0
}
// Returns whether this is a "go.itablink.*" symbol.
func (l *Loader) IsItabLink(i Sym) bool {
if _, ok := l.itablink[i]; ok {
return true
}
return false
}
// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
curLen := len(l.values)
if reqLen > curLen {
l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
}
}
// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
return l.values[i]
}
// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
l.values[i] = val
}
// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return s.P
}
pp := l.getPayload(i)
if pp != nil {
return pp.data
}
return nil
}
r, li := l.toLocal(i)
return r.Data(li)
}
// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
// If an alignment has been recorded, return that.
if align, ok := l.align[i]; ok {
return align
}
// TODO: would it make sense to return an arch-specific
// alignment depending on section type? E.g. STEXT => 32,
// SDATA => 1, etc?
return 0
}
// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
// reject bad synbols
if i > l.max || i == 0 {
panic("bad symbol index in SetSymAlign")
}
// Reject nonsense alignments.
// TODO: do we need this?
if align < 0 {
panic("bad alignment value")
}
if align == 0 {
delete(l.align, i)
} else {
// Alignment should be a power of 2.
if bits.OnesCount32(uint32(align)) != 1 {
panic("bad alignment value")
}
l.align[i] = align
}
}
// SymDynImplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
return l.dynimplib[i]
}
// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetDynimplib")
}
if value == "" {
delete(l.dynimplib, i)
} else {
l.dynimplib[i] = value
}
}
// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
return l.dynimpvers[i]
}
// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetDynimpvers")
}
if value == "" {
delete(l.dynimpvers, i)
} else {
l.dynimpvers[i] = value
}
}
// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
return l.extname[i]
}
// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetExtname")
}
if value == "" {
delete(l.extname, i)
} else {
l.extname[i] = value
}
}
// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
if et, ok := l.elfType[i]; ok {
return et
}
return elf.STT_NOTYPE
}
// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetSymElfType")
}
if et == elf.STT_NOTYPE {
delete(l.elfType, i)
} else {
l.elfType[i] = et
}
}
// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym {
if l.IsExternal(i) {
if l.Syms[i] != nil {
panic("gotype already converted to sym.Symbol")
}
pp := l.getPayload(i)
return pp.gotype
}
r, li := l.toLocal(i)
naux := r.NAux(li)
for j := 0; j < naux; j++ {
a := goobj2.Aux{}
a.Read(r.Reader, r.AuxOff(li, j))
switch a.Type {
case goobj2.AuxGotype:
return l.resolve(r, a.Sym)
}
}
return 0
}
// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
if l.IsExternal(i) {
if l.Syms[i] != nil {
return l.Syms[i].Unit
}
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit
}
return nil
}
r, _ := l.toLocal(i)
return r.unit
}
// SymFile returns the file for a symbol, which is normally the
// package the symbol came from (for regular compiler-generated Go
// symbols), but in the case of building with "-linkshared" (when a
// symbol is read from a a shared library), will hold the library
// name.
func (l *Loader) SymFile(i Sym) string {
if l.IsExternal(i) {
if l.Syms[i] != nil {
return l.Syms[i].File
}
if f, ok := l.symFile[i]; ok {
return f
}
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit.Lib.File
}
return ""
}
r, _ := l.toLocal(i)
return r.unit.Lib.File
}
// SetSymFile sets the file attribute for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymFile(i Sym, file string) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetSymFile")
}
if !l.IsExternal(i) {
panic("can't set file for non-external sym")
}
if l.Syms[i] != nil {
l.Syms[i].File = file
return
}
l.symFile[i] = file
}
// SymLocalentry returns the "local entry" value for the specified
// symbol.
func (l *Loader) SymLocalentry(i Sym) uint8 {
return l.localentry[i]
}
// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
// reject bad symbols
if i > l.max || i == 0 {
panic("bad symbol index in SetExtname")
}
if value == 0 {
delete(l.localentry, i)
} else {
l.localentry[i] = value
}
}
// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
if l.IsExternal(i) {
return 0
}
r, li := l.toLocal(i)
return r.NAux(li)
}
// Returns the referred symbol of the j-th aux symbol of the i-th
// symbol.
func (l *Loader) AuxSym(i Sym, j int) Sym {
if l.IsExternal(i) {
return 0
}
r, li := l.toLocal(i)
a := goobj2.Aux{}
a.Read(r.Reader, r.AuxOff(li, j))
return l.resolve(r, a.Sym)
}
// ReadAuxSyms reads the aux symbol ids for the specified symbol into the
// slice passed as a parameter. If the slice capacity is not large enough, a new
// larger slice will be allocated. Final slice is returned.
func (l *Loader) ReadAuxSyms(symIdx Sym, dst []Sym) []Sym {
if l.IsExternal(symIdx) {
return dst[:0]
}
naux := l.NAux(symIdx)
if naux == 0 {
return dst[:0]
}
if cap(dst) < naux {
dst = make([]Sym, naux)
}
dst = dst[:0]
r, li := l.toLocal(symIdx)
for i := 0; i < naux; i++ {
a := goobj2.Aux{}
a.Read(r.Reader, r.AuxOff(li, i))
dst = append(dst, l.resolve(r, a.Sym))
}
return dst
}
// PrependSub prepends 'sub' onto the sub list for outer symbol 'outer'.
// Will panic if 'sub' already has an outer sym or sub sym.
// FIXME: should this be instead a method on SymbolBuilder?
func (l *Loader) PrependSub(outer Sym, sub Sym) {
if l.Syms[outer] != nil {
panic("not implemented for sym.Symbol based syms")
}
// NB: this presupposes that an outer sym can't be a sub symbol of
// some other outer-outer sym (I'm assuming this is true, but I
// haven't tested exhaustively).
if l.OuterSym(outer) != 0 {
panic("outer has outer itself")
}
if l.SubSym(sub) != 0 {
panic("sub set for subsym")
}
if l.OuterSym(sub) != 0 {
panic("outer already set for subsym")
}
l.sub[sub] = l.sub[outer]
l.sub[outer] = sub
l.outer[sub] = outer
}
// OuterSym gets the outer symbol for host object loaded symbols.
func (l *Loader) OuterSym(i Sym) Sym {
sym := l.Syms[i]
if sym != nil && sym.Outer != nil {
outer := sym.Outer
return l.Lookup(outer.Name, int(outer.Version))
}
// FIXME: add check for isExternal?
return l.outer[i]
}
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
sym := l.Syms[i]
if sym != nil && sym.Sub != nil {
sub := sym.Sub
return l.Lookup(sub.Name, int(sub.Version))
}
// NB: note -- no check for l.isExternal(), since I am pretty sure
// that later phases in the linker set subsym for "type." syms
return l.sub[i]
}
// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
l.growAttrBitmaps(l.NSym() + 1)
}
type symWithVal struct {
s Sym
v int64
}
type bySymValue []symWithVal
func (s bySymValue) Len() int { return len(s) }
func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {
if s == 0 || l.sub[s] == 0 {
return s
}
// Sort symbols using a slice first. Use a stable sort on the off
// chance that there's more than once symbol with the same value,
// so as to preserve reproducible builds.
sl := []symWithVal{}
for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
}
sort.Stable(bySymValue(sl))
// Then apply any changes needed to the sub map.
ns := Sym(0)
for i := len(sl) - 1; i >= 0; i-- {
s := sl[i].s
l.sub[s] = ns
ns = s
}
// Update sub for outer symbol, then return
l.sub[s] = sl[0].s
return sl[0].s
}
// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
if reqLen > l.attrReachable.len() {
// These are indexed by global symbol
l.attrReachable = growBitmap(reqLen, l.attrReachable)
l.attrOnList = growBitmap(reqLen, l.attrOnList)
l.attrLocal = growBitmap(reqLen, l.attrLocal)
l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
}
// These are indexed by external symbol offset (e.g. i - l.extStart)
if l.extStart == 0 {
return
}
extReqLen := reqLen - int(l.extStart)
if extReqLen > l.attrVisibilityHidden.len() {
l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
l.attrShared = growBitmap(extReqLen, l.attrShared)
l.attrExternal = growBitmap(extReqLen, l.attrExternal)
}
}
// At method returns the j-th reloc for a global symbol.
func (relocs *Relocs) At(j int) Reloc {
if s := relocs.l.Syms[relocs.extIdx]; s != nil {
rel := s.R[j]
return Reloc{
Off: rel.Off,
Size: rel.Siz,
Type: rel.Type,
Add: rel.Add,
Sym: relocs.l.Lookup(rel.Sym.Name, int(rel.Sym.Version)),
}
}
if relocs.extIdx != 0 {
pp := relocs.l.getPayload(relocs.extIdx)
return pp.relocs[j]
}
rel := goobj2.Reloc{}
rel.Read(relocs.r.Reader, relocs.r.RelocOff(relocs.li, j))
target := relocs.l.resolve(relocs.r, rel.Sym)
return Reloc{
Off: rel.Off,
Size: rel.Siz,
Type: objabi.RelocType(rel.Type),
Add: rel.Add,
Sym: target,
}
}
// ReadAll method reads all relocations for a symbol into the
// specified slice. If the slice capacity is not large enough, a new
// larger slice will be allocated. Final slice is returned.
func (relocs *Relocs) ReadAll(dst []Reloc) []Reloc {
if relocs.Count == 0 {
return dst[:0]
}
if cap(dst) < relocs.Count {
dst = make([]Reloc, relocs.Count)
}
dst = dst[:0]
if s := relocs.l.Syms[relocs.extIdx]; s != nil {
for i := 0; i < relocs.Count; i++ {
erel := &s.R[i]
rel := Reloc{
Off: erel.Off,
Size: erel.Siz,
Type: erel.Type,
Add: erel.Add,
Sym: relocs.l.Lookup(erel.Sym.Name, int(erel.Sym.Version)),
}
dst = append(dst, rel)
}
return dst
}
if relocs.extIdx != 0 {
pp := relocs.l.getPayload(relocs.extIdx)
dst = append(dst, pp.relocs...)
return dst
}
off := relocs.r.RelocOff(relocs.li, 0)
for i := 0; i < relocs.Count; i++ {
rel := goobj2.Reloc{}
rel.Read(relocs.r.Reader, off)
off += uint32(rel.Size())
target := relocs.l.resolve(relocs.r, rel.Sym)
dst = append(dst, Reloc{
Off: rel.Off,
Size: rel.Siz,
Type: objabi.RelocType(rel.Type),
Add: rel.Add,
Sym: target,
})
}
return dst
}
// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
if l.IsExternal(i) {
if s := l.Syms[i]; s != nil {
return Relocs{Count: len(s.R), l: l, extIdx: i}
}
pp := l.getPayload(i)
if pp != nil {
return Relocs{Count: len(pp.relocs), l: l, extIdx: i}
}
return Relocs{}
}
r, li := l.toLocal(i)
if r == nil {
panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
}
return l.relocs(r, li)
}
// Relocs returns a Relocs object given a local sym index and reader.
func (l *Loader) relocs(r *oReader, li int) Relocs {
return Relocs{
Count: r.NReloc(li),
li: li,
r: r,
l: l,
}
}
// RelocByOff implements sort.Interface for sorting relocations by offset.
type RelocByOff []Reloc
func (x RelocByOff) Len() int { return len(x) }
func (x RelocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }
// Preload a package: add autolibs, add symbols to the symbol table.
// Does not read symbol data yet.
func (l *Loader) Preload(arch *sys.Arch, syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64, pn string, flags int) {
roObject, readonly, err := f.Slice(uint64(length))
if err != nil {
log.Fatal("cannot read object file:", err)
}
r := goobj2.NewReaderFromBytes(roObject, readonly)
if r == nil {
panic("cannot read object file")
}
localSymVersion := syms.IncVersion()
pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, nil}
// Autolib
lib.ImportStrings = append(lib.ImportStrings, r.Autolib()...)
// DWARF file table
nfile := r.NDwarfFile()
unit.DWARFFileTable = make([]string, nfile)
for i := range unit.DWARFFileTable {
unit.DWARFFileTable[i] = r.DwarfFile(i)
}
istart := l.addObj(lib.Pkg, or)
ndef := r.NSym()
nnonpkgdef := r.NNonpkgdef()
l.growAttrBitmaps(int(istart) + ndef + nnonpkgdef)
for i, n := 0, ndef+nnonpkgdef; i < n; i++ {
osym := goobj2.Sym{}
osym.Read(r, r.SymOff(i))
name := strings.Replace(osym.Name, "\"\".", pkgprefix, -1)
if name == "" {
continue // don't add unnamed aux symbol
}
v := abiToVer(osym.ABI, localSymVersion)
dupok := osym.Dupok()
added := l.AddSym(name, v, istart+Sym(i), or, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)])
if !added {
continue
}
if strings.HasPrefix(name, "go.itablink.") {
l.itablink[istart+Sym(i)] = struct{}{}
}
if strings.HasPrefix(name, "runtime.") {
if bi := goobj2.BuiltinIdx(name, v); bi != -1 {
// This is a definition of a builtin symbol. Record where it is.
l.builtinSyms[bi] = istart + Sym(i)
}
}
if strings.HasPrefix(name, "go.string.") ||
strings.HasPrefix(name, "runtime.gcbits.") {
l.SetAttrNotInSymbolTable(istart+Sym(i), true)
}
}
// The caller expects us consuming all the data
f.MustSeek(length, os.SEEK_CUR)
}
// Make sure referenced symbols are added. Most of them should already be added.
// This should only be needed for referenced external symbols.
func (l *Loader) LoadRefs(arch *sys.Arch, syms *sym.Symbols) {
for _, o := range l.objs[1:] {
loadObjRefs(l, o.r, arch, syms)
}
}
func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch, syms *sym.Symbols) {
ndef := r.NSym() + r.NNonpkgdef()
for i, n := 0, r.NNonpkgref(); i < n; i++ {
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(ndef+i))
name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
v := abiToVer(osym.ABI, r.version)
l.AddExtSym(name, v)
}
}
func abiToVer(abi uint16, localSymVersion int) int {
var v int
if abi == goobj2.SymABIstatic {
// Static
v = localSymVersion
} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
// Note that data symbols are "ABI0", which maps to version 0.
v = abiver
} else {
log.Fatalf("invalid symbol ABI: %d", abi)
}
return v
}
func preprocess(arch *sys.Arch, s *sym.Symbol) {
if s.Name != "" && s.Name[0] == '$' && len(s.Name) > 5 && s.Type == 0 && len(s.P) == 0 {
x, err := strconv.ParseUint(s.Name[5:], 16, 64)
if err != nil {
log.Panicf("failed to parse $-symbol %s: %v", s.Name, err)
}
s.Type = sym.SRODATA
s.Attr |= sym.AttrLocal
switch s.Name[:5] {
case "$f32.":
if uint64(uint32(x)) != x {
log.Panicf("$-symbol %s too large: %d", s.Name, x)
}
s.AddUint32(arch, uint32(x))
case "$f64.", "$i64.":
s.AddUint64(arch, x)
default:
log.Panicf("unrecognized $-symbol: %s", s.Name)
}
}
}
// Load full contents.
func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols) {
// create all Symbols first.
l.growSyms(l.NSym())
nr := 0 // total number of sym.Reloc's we'll need
for _, o := range l.objs[1:] {
nr += loadObjSyms(l, syms, o.r)
}
// Make a first pass through the external symbols, making
// sure that each external symbol has a non-nil entry in
// l.Syms (note that relocations and symbol content will
// be copied in a later loop).
toConvert := make([]Sym, 0, l.max-l.extStart+1)
for i := l.extStart; i <= l.max; i++ {
if s := l.Syms[i]; s != nil {
s.Attr.Set(sym.AttrReachable, l.attrReachable.has(i))
continue
}
if i != l.getOverwrite(i) {
continue
}
sname := l.RawSymName(i)
if !l.attrReachable.has(i) && !strings.HasPrefix(sname, "gofile..") { // XXX file symbols are used but not marked
continue
}
pp := l.getPayload(i)
nr += len(pp.relocs)
// create and install the sym.Symbol here so that l.Syms will
// be fully populated when we do relocation processing and
// outer/sub processing below. Note that once we do this,
// we'll need to get at the payload for a symbol with direct
// reference to l.payloads[] as opposed to calling l.getPayload().
s := l.allocSym(sname, 0)
l.installSym(i, s)
toConvert = append(toConvert, i)
}
// allocate a single large slab of relocations for all live symbols
l.relocBatch = make([]sym.Reloc, nr)
// convert payload-based external symbols into sym.Symbol-based
for _, i := range toConvert {
// Copy kind/size/value etc.
pp := &l.payloads[i-l.extStart]
s := l.Syms[i]
s.Version = int16(pp.ver)
s.Type = pp.kind
s.Size = pp.size
s.Value = l.SymValue(i)
if pp.gotype != 0 {
s.Gotype = l.Syms[pp.gotype]
}
s.Value = l.values[i]
if f, ok := l.symFile[i]; ok {
s.File = f
} else if pp.objidx != 0 {
s.File = l.objs[pp.objidx].r.unit.Lib.File
}
// Copy relocations
batch := l.relocBatch
s.R = batch[:len(pp.relocs):len(pp.relocs)]
l.relocBatch = batch[len(pp.relocs):]
l.convertRelocations(pp.relocs, s)
// Copy data
s.P = pp.data
// Transfer over attributes.
l.migrateAttributes(i, s)
// Preprocess symbol. May set 'AttrLocal'.
preprocess(arch, s)
}
// load contents of defined symbols
for _, o := range l.objs[1:] {
loadObjFull(l, o.r)
}
// Note: resolution of ABI aliases is now also handled in
// loader.convertRelocations, so once the host object loaders move
// completely to loader.Sym, we can remove the code below.
// Resolve ABI aliases for external symbols. This is only
// needed for internal cgo linking.
// (The old code does this in deadcode, but deadcode2 doesn't
// do this.)
for i := l.extStart; i <= l.max; i++ {
if s := l.Syms[i]; s != nil && s.Attr.Reachable() {
for ri := range s.R {
r := &s.R[ri]
if r.Sym != nil && r.Sym.Type == sym.SABIALIAS {
r.Sym = r.Sym.R[0].Sym
}
}
}
}
}
// ExtractSymbols grabs the symbols out of the loader for work that hasn't been
// ported to the new symbol type.
func (l *Loader) ExtractSymbols(syms *sym.Symbols) {
// Nil out overwritten symbols.
// Overwritten Go symbols aren't a problem (as they're lazy loaded), but
// symbols loaded from host object loaders are fully loaded, and we might
// have multiple symbols with the same name. This loop nils them out.
for oldI := range l.overwrite {
l.Syms[oldI] = nil
}
// Add symbols to the ctxt.Syms lookup table. This explicitly skips things
// created via loader.Create (marked with versions less than zero), since
// if we tried to add these we'd wind up with collisions. We do, however,
// add these symbols to the list of global symbols so that other future
// steps (like pclntab generation) can find these symbols if neceassary.
// Along the way, update the version from the negative anon version to
// something larger than sym.SymVerStatic (needed so that
// sym.symbol.IsFileLocal() works properly).
anonVerReplacement := syms.IncVersion()
for _, s := range l.Syms {
if s == nil {
continue
}
if s.Name != "" && s.Version >= 0 {
syms.Add(s)
} else {
syms.Allsym = append(syms.Allsym, s)
}
if s.Version < 0 {
s.Version = int16(anonVerReplacement)
}
}
}
// allocSym allocates a new symbol backing.
func (l *Loader) allocSym(name string, version int) *sym.Symbol {
batch := l.symBatch
if len(batch) == 0 {
batch = make([]sym.Symbol, 1000)
}
s := &batch[0]
l.symBatch = batch[1:]
s.Dynid = -1
s.Name = name
s.Version = int16(version)
return s
}
// installSym sets the underlying sym.Symbol for the specified sym index.
func (l *Loader) installSym(i Sym, s *sym.Symbol) {
if s == nil {
panic("installSym nil symbol")
}
if l.Syms[i] != nil {
panic("sym already present in installSym")
}
l.Syms[i] = s
}
// addNewSym adds a new sym.Symbol to the i-th index in the list of symbols.
func (l *Loader) addNewSym(i Sym, name string, ver int, unit *sym.CompilationUnit, t sym.SymKind) *sym.Symbol {
s := l.allocSym(name, ver)
if s.Type != 0 && s.Type != sym.SXREF {
fmt.Println("symbol already processed:", unit.Lib, i, s)
panic("symbol already processed")
}
if t == sym.SBSS && (s.Type == sym.SRODATA || s.Type == sym.SNOPTRBSS) {
t = s.Type
}
s.Type = t
s.Unit = unit
l.growSyms(int(i))
l.installSym(i, s)
return s
}
// loadObjSyms creates sym.Symbol objects for the live Syms in the
// object corresponding to object reader "r". Return value is the
// number of sym.Reloc entries required for all the new symbols.
func loadObjSyms(l *Loader, syms *sym.Symbols, r *oReader) int {
istart := l.startIndex(r)
nr := 0
for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ {
// If it's been previously loaded in host object loading, we don't need to do it again.
if s := l.Syms[istart+Sym(i)]; s != nil {
// Mark symbol as reachable as it wasn't marked as such before.
s.Attr.Set(sym.AttrReachable, l.attrReachable.has(istart+Sym(i)))
nr += r.NReloc(i)
continue
}
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(i))
name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
if name == "" {
continue
}
ver := abiToVer(osym.ABI, r.version)
if osym.ABI != goobj2.SymABIstatic && l.symsByName[ver][name] != istart+Sym(i) {
continue
}
t := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]
if t == sym.SXREF {
log.Fatalf("bad sxref")
}
if t == 0 {
log.Fatalf("missing type for %s in %s", name, r.unit.Lib)
}
if !l.attrReachable.has(istart+Sym(i)) && !(t == sym.SRODATA && strings.HasPrefix(name, "type.")) && name != "runtime.addmoduledata" && name != "runtime.lastmoduledatap" {
// No need to load unreachable symbols.
// XXX some type symbol's content may be needed in DWARF code, but they are not marked.
// XXX reference to runtime.addmoduledata may be generated later by the linker in plugin mode.
continue
}
s := l.addNewSym(istart+Sym(i), name, ver, r.unit, t)
l.migrateAttributes(istart+Sym(i), s)
nr += r.NReloc(i)
}
return nr
}
// funcInfoSym records the sym.Symbol for a function, along with a copy
// of the corresponding goobj2.Sym and the index of its FuncInfo aux sym.
// We use this to delay populating FuncInfo until we can batch-allocate
// slices for their sub-objects.
type funcInfoSym struct {
s *sym.Symbol // sym.Symbol for a live function
osym goobj2.Sym // object file symbol data for that function
isym int // global symbol index of FuncInfo aux sym for func
}
// funcAllocInfo records totals/counts for all functions in an objfile;
// used to help with bulk allocation of sym.Symbol sub-objects.
type funcAllocInfo struct {
symPtr uint32 // number of *sym.Symbol's needed in file slices
inlCall uint32 // number of sym.InlinedCall's needed in inltree slices
pcData uint32 // number of sym.Pcdata's needed in pdata slices
fdOff uint32 // number of int64's needed in all Funcdataoff slices
}
// loadSymbol loads a single symbol by name.
// NB: This function does NOT set the symbol as reachable.
func (l *Loader) loadSymbol(name string, version int) *sym.Symbol {
global := l.Lookup(name, version)
// If we're already loaded, bail.
if global != 0 && int(global) < len(l.Syms) && l.Syms[global] != nil {
return l.Syms[global]
}
// Read the symbol.
r, i := l.toLocal(global)
istart := l.startIndex(r)
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(int(i)))
if l.symsByName[version][name] != istart+Sym(i) {
return nil
}
return l.addNewSym(istart+Sym(i), name, version, r.unit, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)])
}
// LookupOrCreate looks up a symbol by name, and creates one if not found.
// Either way, it will also create a sym.Symbol for it, if not already.
// This should only be called when interacting with parts of the linker
// that still works on sym.Symbols (i.e. internal cgo linking, for now).
func (l *Loader) LookupOrCreate(name string, version int) *sym.Symbol {
i := l.Lookup(name, version)
if i != 0 {
// symbol exists
if int(i) < len(l.Syms) && l.Syms[i] != nil {
return l.Syms[i]
}
if l.IsExternal(i) {
panic("Can't load an external symbol.")
}
return l.loadSymbol(name, version)
}
i = l.AddExtSym(name, version)
s := l.allocSym(name, version)
l.Syms[i] = s
return s
}
// cloneToExternal takes the existing object file symbol (symIdx)
// and creates a new external symbol that is a clone with respect
// to name, version, type, relocations, etc. The idea here is that
// if the linker decides it wants to update the contents of a
// symbol originally discovered as part of an object file, it's
// easier to do this if we make the updates to a new and similarly
// named external copy of that symbol.
func (l *Loader) cloneToExternal(symIdx Sym) Sym {
if l.IsExternal(symIdx) {
panic("sym is already external, no need for clone")
}
// Read the particulars from object.
osym := goobj2.Sym{}
r, li := l.toLocal(symIdx)
osym.Read(r.Reader, r.SymOff(li))
sname := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
sver := abiToVer(osym.ABI, r.version)
skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]
// Create new symbol, update version and kind.
ns := l.newExtSym(sname, sver)
pp := &l.payloads[ns-l.extStart]
pp.kind = skind
pp.ver = sver
pp.size = int64(osym.Siz)
pp.objidx = uint32(l.ocache)
// If this is a def, then copy the guts. We expect this case
// to be very rare (one case it may come up is with -X).
if li < (r.NSym() + r.NNonpkgdef()) {
// Copy relocations
relocs := l.Relocs(symIdx)
pp.relocs = relocs.ReadAll(nil)
// Copy data
pp.data = r.Data(li)
// Copy read-only attr
if r.ReadOnly() {
l.attrReadOnly[ns] = true
}
}
// If we're overriding a data symbol, collect the associated
// Gotype, so as to propagate it to the new symbol.
naux := r.NAux(li)
for j := 0; j < naux; j++ {
a := goobj2.Aux{}
a.Read(r.Reader, r.AuxOff(li, j))
switch a.Type {
case goobj2.AuxGotype:
pp.gotype = l.resolve(r, a.Sym)
default:
log.Fatalf("internal error: cloneToExternal applied to %s symbol %s with non-gotype aux data %d", skind.String(), sname, a.Type)
}
}
// Fix up the lookup tables if the symbol in question was
// present in the lookup tables. At the moment it only makes
// sense to do this sort of clone/update for symbols that are
// in the symbol table (as opposed to anonymous symbols);
// issue an error if we can't look up the original symbol.
if sver >= sym.SymVerStatic {
s, ok := l.extStaticSyms[nameVer{sname, sver}]
if !ok || s != symIdx {
panic("lookup failed for clone of non-external static symbol")
}
l.extStaticSyms[nameVer{sname, sver}] = ns
} else {
s, ok := l.symsByName[sver][sname]
if !ok || s != symIdx {
panic("lookup failed for clone of non-external symbol")
}
l.symsByName[sver][sname] = ns
}
// Copy over selected attributes / properties. This is
// probably overkill for most of these attributes, but it's
// simpler just to copy everything.
l.copyAttributes(symIdx, ns)
if l.SymExtname(symIdx) != "" {
l.SetSymExtname(ns, l.SymExtname(symIdx))
}
if l.SymDynimplib(symIdx) != "" {
l.SetSymDynimplib(ns, l.SymDynimplib(symIdx))
}
if l.SymDynimpvers(symIdx) != "" {
l.SetSymDynimpvers(ns, l.SymDynimpvers(symIdx))
}
// Add an overwrite entry (in case there are relocations against
// the old symbol).
l.overwrite[symIdx] = ns
return ns
}
// copyAttributes copies over all of the attributes of symbol 'src' to
// symbol 'dst'. The assumption is that 'dst' is an external symbol.
func (l *Loader) copyAttributes(src Sym, dst Sym) {
l.SetAttrReachable(dst, l.AttrReachable(src))
l.SetAttrOnList(dst, l.AttrOnList(src))
l.SetAttrLocal(dst, l.AttrLocal(src))
l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src))
l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src))
l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src))
l.SetAttrShared(dst, l.AttrShared(src))
l.SetAttrExternal(dst, l.AttrExternal(src))
l.SetAttrTopFrame(dst, l.AttrTopFrame(src))
l.SetAttrSpecial(dst, l.AttrSpecial(src))
l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src))
l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src))
}
// migrateAttributes copies over all of the attributes of symbol 'src' to
// sym.Symbol 'dst'.
func (l *Loader) migrateAttributes(src Sym, dst *sym.Symbol) {
src = l.getOverwrite(src)
dst.Attr.Set(sym.AttrReachable, l.AttrReachable(src))
dst.Attr.Set(sym.AttrOnList, l.AttrOnList(src))
dst.Attr.Set(sym.AttrLocal, l.AttrLocal(src))
dst.Attr.Set(sym.AttrNotInSymbolTable, l.AttrNotInSymbolTable(src))
dst.Attr.Set(sym.AttrVisibilityHidden, l.AttrVisibilityHidden(src))
dst.Attr.Set(sym.AttrDuplicateOK, l.AttrDuplicateOK(src))
dst.Attr.Set(sym.AttrShared, l.AttrShared(src))
dst.Attr.Set(sym.AttrExternal, l.AttrExternal(src))
dst.Attr.Set(sym.AttrTopFrame, l.AttrTopFrame(src))
dst.Attr.Set(sym.AttrSpecial, l.AttrSpecial(src))
dst.Attr.Set(sym.AttrCgoExportDynamic, l.AttrCgoExportDynamic(src))
dst.Attr.Set(sym.AttrCgoExportStatic, l.AttrCgoExportStatic(src))
// Convert outer/sub relationships
if outer, ok := l.outer[src]; ok {
dst.Outer = l.Syms[outer]
}
if sub, ok := l.sub[src]; ok {
dst.Sub = l.Syms[sub]
}
// Set sub-symbol attribute. FIXME: would be better to do away
// with this and just use l.OuterSymbol() != 0 elsewhere within
// the linker.
dst.Attr.Set(sym.AttrSubSymbol, dst.Outer != nil)
// Copy over dynimplib, dynimpvers, extname.
if l.SymExtname(src) != "" {
dst.SetExtname(l.SymExtname(src))
}
if l.SymDynimplib(src) != "" {
dst.SetDynimplib(l.SymDynimplib(src))
}
if l.SymDynimpvers(src) != "" {
dst.SetDynimpvers(l.SymDynimpvers(src))
}
// Copy ELF type if set.
if et, ok := l.elfType[src]; ok {
dst.SetElfType(et)
}
}
// CreateExtSym creates a new external symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateExtSym(name string) Sym {
// Assign a new unique negative version -- this is to mark the
// symbol so that it can be skipped when ExtractSymbols is adding
// ext syms to the sym.Symbols hash.
l.anonVersion--
return l.newExtSym(name, l.anonVersion)
}
// Create creates a symbol with the specified name, returning a
// sym.Symbol object for it. This method is intended for static/hidden
// symbols discovered while loading host objects. We can see more than
// one instance of a given static symbol with the same name/version,
// so we can't add them to the lookup tables "as is". Instead assign
// them fictitious (unique) versions, starting at -1 and decreasing by
// one for each newly created symbol, and record them in the
// extStaticSyms hash.
func (l *Loader) Create(name string) *sym.Symbol {
i := l.max + 1
l.max++
if l.extStart == 0 {
l.extStart = i
}
// Assign a new unique negative version -- this is to mark the
// symbol so that it can be skipped when ExtractSymbols is adding
// ext syms to the sym.Symbols hash.
l.anonVersion--
ver := l.anonVersion
l.growSyms(int(i))
s := l.allocSym(name, ver)
l.installSym(i, s)
l.extStaticSyms[nameVer{name, ver}] = i
return s
}
func loadObjFull(l *Loader, r *oReader) {
lib := r.unit.Lib
istart := l.startIndex(r)
resolveSymRef := func(s goobj2.SymRef) *sym.Symbol {
i := l.resolve(r, s)
return l.Syms[i]
}
funcs := []funcInfoSym{}
fdsyms := []*sym.Symbol{}
var funcAllocCounts funcAllocInfo
pcdataBase := r.PcdataBase()
rslice := []Reloc{}
for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ {
osym := goobj2.Sym{}
osym.Read(r.Reader, r.SymOff(i))
name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
if name == "" {
continue
}
ver := abiToVer(osym.ABI, r.version)
dupok := osym.Dupok()
if dupok {
if dupsym := l.symsByName[ver][name]; dupsym != istart+Sym(i) {
if l.attrReachable.has(dupsym) {
// A dupok symbol is resolved to another package. We still need
// to record its presence in the current package, as the trampoline
// pass expects packages are laid out in dependency order.
s := l.Syms[dupsym]
if s.Type == sym.STEXT {
lib.DupTextSyms = append(lib.DupTextSyms, s)
lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(dupsym))
}
}
continue
}
}
s := l.Syms[istart+Sym(i)]
if s == nil {
continue
}
if s.Name != name { // Sanity check. We can remove it in the final version.
fmt.Println("name mismatch:", lib, i, s.Name, name)
panic("name mismatch")
}
local := osym.Local()
makeTypelink := osym.Typelink()
size := osym.Siz
// Symbol data
s.P = r.Data(i)
s.Attr.Set(sym.AttrReadOnly, r.ReadOnly())
// Relocs
relocs := l.relocs(r, i)
rslice = relocs.ReadAll(rslice)
batch := l.relocBatch
s.R = batch[:relocs.Count:relocs.Count]
l.relocBatch = batch[relocs.Count:]
l.convertRelocations(rslice, s)
// Aux symbol info
isym := -1
naux := r.NAux(i)
for j := 0; j < naux; j++ {
a := goobj2.Aux{}
a.Read(r.Reader, r.AuxOff(i, j))
switch a.Type {
case goobj2.AuxGotype:
typ := resolveSymRef(a.Sym)
if typ != nil {
s.Gotype = typ
}
case goobj2.AuxFuncdata:
fdsyms = append(fdsyms, resolveSymRef(a.Sym))
case goobj2.AuxFuncInfo:
if a.Sym.PkgIdx != goobj2.PkgIdxSelf {
panic("funcinfo symbol not defined in current package")
}
isym = int(a.Sym.SymIdx)
case goobj2.AuxDwarfInfo, goobj2.AuxDwarfLoc, goobj2.AuxDwarfRanges, goobj2.AuxDwarfLines:
// ignored for now
default:
panic("unknown aux type")
}
}
s.File = r.pkgprefix[:len(r.pkgprefix)-1]
if dupok {
s.Attr |= sym.AttrDuplicateOK
}
if s.Size < int64(size) {
s.Size = int64(size)
}
s.Attr.Set(sym.AttrLocal, local)
s.Attr.Set(sym.AttrMakeTypelink, makeTypelink)
if s.Type == sym.SDWARFINFO {
// For DWARF symbols, replace `"".` to actual package prefix
// in the symbol content.
// TODO: maybe we should do this in the compiler and get rid
// of this.
patchDWARFName(s, r)
}
if s.Type != sym.STEXT {
continue
}
if isym == -1 {
continue
}
// Record function sym and associated info for additional
// processing in the loop below.
fwis := funcInfoSym{s: s, isym: isym, osym: osym}
funcs = append(funcs, fwis)
// Read the goobj2.FuncInfo for this text symbol so that we can
// collect allocation counts. We'll read it again in the loop
// below.
b := r.Data(isym)
info := goobj2.FuncInfo{}
info.Read(b)
funcAllocCounts.symPtr += uint32(len(info.File))
funcAllocCounts.pcData += uint32(len(info.Pcdata))
funcAllocCounts.inlCall += uint32(len(info.InlTree))
funcAllocCounts.fdOff += uint32(len(info.Funcdataoff))
}
// At this point we can do batch allocation of the sym.FuncInfo's,
// along with the slices of sub-objects they use.
fiBatch := make([]sym.FuncInfo, len(funcs))
inlCallBatch := make([]sym.InlinedCall, funcAllocCounts.inlCall)
symPtrBatch := make([]*sym.Symbol, funcAllocCounts.symPtr)
pcDataBatch := make([]sym.Pcdata, funcAllocCounts.pcData)
fdOffBatch := make([]int64, funcAllocCounts.fdOff)
// Populate FuncInfo contents for func symbols.
for fi := 0; fi < len(funcs); fi++ {
s := funcs[fi].s
isym := funcs[fi].isym
osym := funcs[fi].osym
s.FuncInfo = &fiBatch[0]
fiBatch = fiBatch[1:]
b := r.Data(isym)
info := goobj2.FuncInfo{}
info.Read(b)
if info.NoSplit != 0 {
s.Attr |= sym.AttrNoSplit
}
if osym.ReflectMethod() {
s.Attr |= sym.AttrReflectMethod
}
if r.Flags()&goobj2.ObjFlagShared != 0 {
s.Attr |= sym.AttrShared
}
if osym.TopFrame() {
s.Attr |= sym.AttrTopFrame
}
pc := s.FuncInfo
if len(info.Funcdataoff) != 0 {
nfd := len(info.Funcdataoff)
pc.Funcdata = fdsyms[:nfd:nfd]
fdsyms = fdsyms[nfd:]
}
info.Pcdata = append(info.Pcdata, info.PcdataEnd) // for the ease of knowing where it ends
pc.Args = int32(info.Args)
pc.Locals = int32(info.Locals)
npc := len(info.Pcdata) - 1 // -1 as we appended one above
pc.Pcdata = pcDataBatch[:npc:npc]
pcDataBatch = pcDataBatch[npc:]
nfd := len(info.Funcdataoff)
pc.Funcdataoff = fdOffBatch[:nfd:nfd]
fdOffBatch = fdOffBatch[nfd:]
nsp := len(info.File)
pc.File = symPtrBatch[:nsp:nsp]
symPtrBatch = symPtrBatch[nsp:]
nic := len(info.InlTree)
pc.InlTree = inlCallBatch[:nic:nic]
inlCallBatch = inlCallBatch[nic:]
pc.Pcsp.P = r.BytesAt(pcdataBase+info.Pcsp, int(info.Pcfile-info.Pcsp))
pc.Pcfile.P = r.BytesAt(pcdataBase+info.Pcfile, int(info.Pcline-info.Pcfile))
pc.Pcline.P = r.BytesAt(pcdataBase+info.Pcline, int(info.Pcinline-info.Pcline))
pc.Pcinline.P = r.BytesAt(pcdataBase+info.Pcinline, int(info.Pcdata[0]-info.Pcinline))
for k := range pc.Pcdata {
pc.Pcdata[k].P = r.BytesAt(pcdataBase+info.Pcdata[k], int(info.Pcdata[k+1]-info.Pcdata[k]))
}
for k := range pc.Funcdataoff {
pc.Funcdataoff[k] = int64(info.Funcdataoff[k])
}
for k := range pc.File {
pc.File[k] = resolveSymRef(info.File[k])
}
for k := range pc.InlTree {
inl := &info.InlTree[k]
pc.InlTree[k] = sym.InlinedCall{
Parent: inl.Parent,
File: resolveSymRef(inl.File),
Line: inl.Line,
Func: l.SymName(l.resolve(r, inl.Func)),
ParentPC: inl.ParentPC,
}
}
dupok := osym.Dupok()
if !dupok {
if s.Attr.OnList() {
log.Fatalf("symbol %s listed multiple times", s.Name)
}
s.Attr.Set(sym.AttrOnList, true)
lib.Textp = append(lib.Textp, s)
lib.Textp2 = append(lib.Textp2, sym.LoaderSym(isym))
} else {
// there may be a dup in another package
// put into a temp list and add to text later
lib.DupTextSyms = append(lib.DupTextSyms, s)
lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(isym))
}
}
}
// convertRelocations takes a vector of loader.Reloc relocations and
// translates them into an equivalent set of sym.Reloc relocations on
// the symbol "dst", performing fixups along the way for ABI aliases,
// etc. It is assumed that the called has pre-allocated the dst symbol
// relocations slice.
func (l *Loader) convertRelocations(src []Reloc, dst *sym.Symbol) {
for j := range dst.R {
r := src[j]
rs := r.Sym
sz := r.Size
rt := r.Type
if rt == objabi.R_METHODOFF {
if l.attrReachable.has(rs) {
rt = objabi.R_ADDROFF
} else {
sz = 0
rs = 0
}
}
if rt == objabi.R_WEAKADDROFF && !l.attrReachable.has(rs) {
rs = 0
sz = 0
}
if rs != 0 && l.Syms[rs] != nil && l.Syms[rs].Type == sym.SABIALIAS {
rsrelocs := l.Relocs(rs)
rs = rsrelocs.At(0).Sym
}
dst.R[j] = sym.Reloc{
Off: r.Off,
Siz: sz,
Type: rt,
Add: r.Add,
Sym: l.Syms[rs],
}
}
}
var emptyPkg = []byte(`"".`)
func patchDWARFName1(p []byte, r *oReader) ([]byte, int) {
// This is kind of ugly. Really the package name should not
// even be included here.
if len(p) < 1 || p[0] != dwarf.DW_ABRV_FUNCTION {
return p, -1
}
e := bytes.IndexByte(p, 0)
if e == -1 {
return p, -1
}
if !bytes.Contains(p[:e], emptyPkg) {
return p, -1
}
pkgprefix := []byte(r.pkgprefix)
patched := bytes.Replace(p[:e], emptyPkg, pkgprefix, -1)
return append(patched, p[e:]...), e
}
func patchDWARFName(s *sym.Symbol, r *oReader) {
patched, e := patchDWARFName1(s.P, r)
if e == -1 {
return
}
s.P = patched
s.Attr.Set(sym.AttrReadOnly, false)
delta := int64(len(s.P)) - s.Size
s.Size = int64(len(s.P))
for i := range s.R {
r := &s.R[i]
if r.Off > int32(e) {
r.Off += int32(delta)
}
}
}
// UndefinedRelocTargets iterates through the global symbol index
// space, looking for symbols with relocations targeting undefined
// references. The linker's loadlib method uses this to determine if
// there are unresolved references to functions in system libraries
// (for example, libgcc.a), presumably due to CGO code. Return
// value is a list of loader.Sym's corresponding to the undefined
// cross-refs. The "limit" param controls the maximum number of
// results returned; if "limit" is -1, then all undefs are returned.
func (l *Loader) UndefinedRelocTargets(limit int) []Sym {
result := []Sym{}
rslice := []Reloc{}
for si := Sym(1); si <= l.max; si++ {
if _, ok := l.overwrite[si]; ok {
continue
}
relocs := l.Relocs(si)
rslice = relocs.ReadAll(rslice)
for ri := 0; ri < relocs.Count; ri++ {
r := &rslice[ri]
if r.Sym != 0 && l.SymType(r.Sym) == sym.SXREF && l.RawSymName(r.Sym) != ".got" {
result = append(result, r.Sym)
if limit != -1 && len(result) >= limit {
break
}
}
}
}
return result
}
// For debugging.
func (l *Loader) Dump() {
fmt.Println("objs")
for _, obj := range l.objs {
if obj.r != nil {
fmt.Println(obj.i, obj.r.unit.Lib)
}
}
fmt.Println("extStart:", l.extStart)
fmt.Println("max:", l.max)
fmt.Println("syms")
for i, s := range l.Syms {
if i == 0 {
continue
}
if s != nil {
fmt.Println(i, s, s.Type)
} else {
otag := ""
si := Sym(i)
if _, ok := l.overwrite[si]; ok {
si = l.getOverwrite(si)
otag = fmt.Sprintf(" <overwritten to %d>", si)
}
fmt.Println(i, l.SymName(si), "<not loaded>", otag)
}
}
fmt.Println("overwrite:", l.overwrite)
fmt.Println("symsByName")
for name, i := range l.symsByName[0] {
fmt.Println(i, name, 0)
}
for name, i := range l.symsByName[1] {
fmt.Println(i, name, 1)
}
}